langfuse

Langfuse GitHub Banner

Langfuse Python SDK

MIT License CI test status PyPI Version GitHub Repo stars Discord YC W23

Installation

Important

The SDK was rewritten in v3 and released in June 2025. Refer to the v3 migration guide for instructions on updating your code.

pip install langfuse

Docs

Please see our docs for detailed information on this SDK.

 1""".. include:: ../README.md"""
 2
 3from ._client.attributes import LangfuseOtelSpanAttributes
 4from ._client.get_client import get_client
 5from ._client import client as _client
 6from ._client.observe import observe
 7from ._client.span import LangfuseEvent, LangfuseGeneration, LangfuseSpan
 8
 9Langfuse = _client.Langfuse
10
11__all__ = [
12    "Langfuse",
13    "get_client",
14    "observe",
15    "LangfuseSpan",
16    "LangfuseGeneration",
17    "LangfuseEvent",
18    "LangfuseOtelSpanAttributes",
19]
class Langfuse:
  75class Langfuse:
  76    """Main client for Langfuse tracing and platform features.
  77
  78    This class provides an interface for creating and managing traces, spans,
  79    and generations in Langfuse as well as interacting with the Langfuse API.
  80
  81    The client features a thread-safe singleton pattern for each unique public API key,
  82    ensuring consistent trace context propagation across your application. It implements
  83    efficient batching of spans with configurable flush settings and includes background
  84    thread management for media uploads and score ingestion.
  85
  86    Configuration is flexible through either direct parameters or environment variables,
  87    with graceful fallbacks and runtime configuration updates.
  88
  89    Attributes:
  90        api: Synchronous API client for Langfuse backend communication
  91        async_api: Asynchronous API client for Langfuse backend communication
  92        langfuse_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
  93
  94    Parameters:
  95        public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
  96        secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
  97        host (Optional[str]): The Langfuse API host URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_HOST environment variable.
  98        timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
  99        httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
 100        debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
 101        tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
 102        flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
 103        flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
 104        environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
 105        release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
 106        media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
 107        sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
 108        mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
 109        blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (`metadata.scope.name`)
 110        additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
 111        tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
 112
 113    Example:
 114        ```python
 115        from langfuse.otel import Langfuse
 116
 117        # Initialize the client (reads from env vars if not provided)
 118        langfuse = Langfuse(
 119            public_key="your-public-key",
 120            secret_key="your-secret-key",
 121            host="https://cloud.langfuse.com",  # Optional, default shown
 122        )
 123
 124        # Create a trace span
 125        with langfuse.start_as_current_span(name="process-query") as span:
 126            # Your application code here
 127
 128            # Create a nested generation span for an LLM call
 129            with span.start_as_current_generation(
 130                name="generate-response",
 131                model="gpt-4",
 132                input={"query": "Tell me about AI"},
 133                model_parameters={"temperature": 0.7, "max_tokens": 500}
 134            ) as generation:
 135                # Generate response here
 136                response = "AI is a field of computer science..."
 137
 138                generation.update(
 139                    output=response,
 140                    usage_details={"prompt_tokens": 10, "completion_tokens": 50},
 141                    cost_details={"total_cost": 0.0023}
 142                )
 143
 144                # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL)
 145                generation.score(name="relevance", value=0.95, data_type="NUMERIC")
 146        ```
 147    """
 148
 149    _resources: Optional[LangfuseResourceManager] = None
 150    _mask: Optional[MaskFunction] = None
 151    _otel_tracer: otel_trace_api.Tracer
 152
 153    def __init__(
 154        self,
 155        *,
 156        public_key: Optional[str] = None,
 157        secret_key: Optional[str] = None,
 158        host: Optional[str] = None,
 159        timeout: Optional[int] = None,
 160        httpx_client: Optional[httpx.Client] = None,
 161        debug: bool = False,
 162        tracing_enabled: Optional[bool] = True,
 163        flush_at: Optional[int] = None,
 164        flush_interval: Optional[float] = None,
 165        environment: Optional[str] = None,
 166        release: Optional[str] = None,
 167        media_upload_thread_count: Optional[int] = None,
 168        sample_rate: Optional[float] = None,
 169        mask: Optional[MaskFunction] = None,
 170        blocked_instrumentation_scopes: Optional[List[str]] = None,
 171        additional_headers: Optional[Dict[str, str]] = None,
 172        tracer_provider: Optional[TracerProvider] = None,
 173    ):
 174        self._host = host or cast(
 175            str, os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com")
 176        )
 177        self._environment = environment or cast(
 178            str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT)
 179        )
 180        self._project_id: Optional[str] = None
 181        sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0))
 182        if not 0.0 <= sample_rate <= 1.0:
 183            raise ValueError(
 184                f"Sample rate must be between 0.0 and 1.0, got {sample_rate}"
 185            )
 186
 187        timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5))
 188
 189        self._tracing_enabled = (
 190            tracing_enabled
 191            and os.environ.get(LANGFUSE_TRACING_ENABLED, "True") != "False"
 192        )
 193        if not self._tracing_enabled:
 194            langfuse_logger.info(
 195                "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API."
 196            )
 197
 198        debug = debug if debug else (os.getenv(LANGFUSE_DEBUG, "False") == "True")
 199        if debug:
 200            logging.basicConfig(
 201                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 202            )
 203            langfuse_logger.setLevel(logging.DEBUG)
 204
 205        public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY)
 206        if public_key is None:
 207            langfuse_logger.warning(
 208                "Authentication error: Langfuse client initialized without public_key. Client will be disabled. "
 209                "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. "
 210            )
 211            self._otel_tracer = otel_trace_api.NoOpTracer()
 212            return
 213
 214        secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY)
 215        if secret_key is None:
 216            langfuse_logger.warning(
 217                "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. "
 218                "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. "
 219            )
 220            self._otel_tracer = otel_trace_api.NoOpTracer()
 221            return
 222
 223        # Initialize api and tracer if requirements are met
 224        self._resources = LangfuseResourceManager(
 225            public_key=public_key,
 226            secret_key=secret_key,
 227            host=self._host,
 228            timeout=timeout,
 229            environment=environment,
 230            release=release,
 231            flush_at=flush_at,
 232            flush_interval=flush_interval,
 233            httpx_client=httpx_client,
 234            media_upload_thread_count=media_upload_thread_count,
 235            sample_rate=sample_rate,
 236            mask=mask,
 237            tracing_enabled=self._tracing_enabled,
 238            blocked_instrumentation_scopes=blocked_instrumentation_scopes,
 239            additional_headers=additional_headers,
 240            tracer_provider=tracer_provider,
 241        )
 242        self._mask = self._resources.mask
 243
 244        self._otel_tracer = (
 245            self._resources.tracer
 246            if self._tracing_enabled and self._resources.tracer is not None
 247            else otel_trace_api.NoOpTracer()
 248        )
 249        self.api = self._resources.api
 250        self.async_api = self._resources.async_api
 251
 252    def start_span(
 253        self,
 254        *,
 255        trace_context: Optional[TraceContext] = None,
 256        name: str,
 257        input: Optional[Any] = None,
 258        output: Optional[Any] = None,
 259        metadata: Optional[Any] = None,
 260        version: Optional[str] = None,
 261        level: Optional[SpanLevel] = None,
 262        status_message: Optional[str] = None,
 263    ) -> LangfuseSpan:
 264        """Create a new span for tracing a unit of work.
 265
 266        This method creates a new span but does not set it as the current span in the
 267        context. To create and use a span within a context, use start_as_current_span().
 268
 269        The created span will be the child of the current span in the context.
 270
 271        Args:
 272            trace_context: Optional context for connecting to an existing trace
 273            name: Name of the span (e.g., function or operation name)
 274            input: Input data for the operation (can be any JSON-serializable object)
 275            output: Output data from the operation (can be any JSON-serializable object)
 276            metadata: Additional metadata to associate with the span
 277            version: Version identifier for the code or component
 278            level: Importance level of the span (info, warning, error)
 279            status_message: Optional status message for the span
 280
 281        Returns:
 282            A LangfuseSpan object that must be ended with .end() when the operation completes
 283
 284        Example:
 285            ```python
 286            span = langfuse.start_span(name="process-data")
 287            try:
 288                # Do work
 289                span.update(output="result")
 290            finally:
 291                span.end()
 292            ```
 293        """
 294        if trace_context:
 295            trace_id = trace_context.get("trace_id", None)
 296            parent_span_id = trace_context.get("parent_span_id", None)
 297
 298            if trace_id:
 299                remote_parent_span = self._create_remote_parent_span(
 300                    trace_id=trace_id, parent_span_id=parent_span_id
 301                )
 302
 303                with otel_trace_api.use_span(
 304                    cast(otel_trace_api.Span, remote_parent_span)
 305                ):
 306                    otel_span = self._otel_tracer.start_span(name=name)
 307                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
 308
 309                    return LangfuseSpan(
 310                        otel_span=otel_span,
 311                        langfuse_client=self,
 312                        environment=self._environment,
 313                        input=input,
 314                        output=output,
 315                        metadata=metadata,
 316                        version=version,
 317                        level=level,
 318                        status_message=status_message,
 319                    )
 320
 321        otel_span = self._otel_tracer.start_span(name=name)
 322
 323        return LangfuseSpan(
 324            otel_span=otel_span,
 325            langfuse_client=self,
 326            environment=self._environment,
 327            input=input,
 328            output=output,
 329            metadata=metadata,
 330            version=version,
 331            level=level,
 332            status_message=status_message,
 333        )
 334
 335    def start_as_current_span(
 336        self,
 337        *,
 338        trace_context: Optional[TraceContext] = None,
 339        name: str,
 340        input: Optional[Any] = None,
 341        output: Optional[Any] = None,
 342        metadata: Optional[Any] = None,
 343        version: Optional[str] = None,
 344        level: Optional[SpanLevel] = None,
 345        status_message: Optional[str] = None,
 346        end_on_exit: Optional[bool] = None,
 347    ) -> _AgnosticContextManager[LangfuseSpan]:
 348        """Create a new span and set it as the current span in a context manager.
 349
 350        This method creates a new span and sets it as the current span within a context
 351        manager. Use this method with a 'with' statement to automatically handle span
 352        lifecycle within a code block.
 353
 354        The created span will be the child of the current span in the context.
 355
 356        Args:
 357            trace_context: Optional context for connecting to an existing trace
 358            name: Name of the span (e.g., function or operation name)
 359            input: Input data for the operation (can be any JSON-serializable object)
 360            output: Output data from the operation (can be any JSON-serializable object)
 361            metadata: Additional metadata to associate with the span
 362            version: Version identifier for the code or component
 363            level: Importance level of the span (info, warning, error)
 364            status_message: Optional status message for the span
 365            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
 366
 367        Returns:
 368            A context manager that yields a LangfuseSpan
 369
 370        Example:
 371            ```python
 372            with langfuse.start_as_current_span(name="process-query") as span:
 373                # Do work
 374                result = process_data()
 375                span.update(output=result)
 376
 377                # Create a child span automatically
 378                with span.start_as_current_span(name="sub-operation") as child_span:
 379                    # Do sub-operation work
 380                    child_span.update(output="sub-result")
 381            ```
 382        """
 383        if trace_context:
 384            trace_id = trace_context.get("trace_id", None)
 385            parent_span_id = trace_context.get("parent_span_id", None)
 386
 387            if trace_id:
 388                remote_parent_span = self._create_remote_parent_span(
 389                    trace_id=trace_id, parent_span_id=parent_span_id
 390                )
 391
 392                return cast(
 393                    _AgnosticContextManager[LangfuseSpan],
 394                    self._create_span_with_parent_context(
 395                        as_type="span",
 396                        name=name,
 397                        remote_parent_span=remote_parent_span,
 398                        parent=None,
 399                        end_on_exit=end_on_exit,
 400                        input=input,
 401                        output=output,
 402                        metadata=metadata,
 403                        version=version,
 404                        level=level,
 405                        status_message=status_message,
 406                    ),
 407                )
 408
 409        return cast(
 410            _AgnosticContextManager[LangfuseSpan],
 411            self._start_as_current_otel_span_with_processed_media(
 412                as_type="span",
 413                name=name,
 414                end_on_exit=end_on_exit,
 415                input=input,
 416                output=output,
 417                metadata=metadata,
 418                version=version,
 419                level=level,
 420                status_message=status_message,
 421            ),
 422        )
 423
 424    def start_generation(
 425        self,
 426        *,
 427        trace_context: Optional[TraceContext] = None,
 428        name: str,
 429        input: Optional[Any] = None,
 430        output: Optional[Any] = None,
 431        metadata: Optional[Any] = None,
 432        version: Optional[str] = None,
 433        level: Optional[SpanLevel] = None,
 434        status_message: Optional[str] = None,
 435        completion_start_time: Optional[datetime] = None,
 436        model: Optional[str] = None,
 437        model_parameters: Optional[Dict[str, MapValue]] = None,
 438        usage_details: Optional[Dict[str, int]] = None,
 439        cost_details: Optional[Dict[str, float]] = None,
 440        prompt: Optional[PromptClient] = None,
 441    ) -> LangfuseGeneration:
 442        """Create a new generation span for model generations.
 443
 444        This method creates a specialized span for tracking model generations.
 445        It includes additional fields specific to model generations such as model name,
 446        token usage, and cost details.
 447
 448        The created generation span will be the child of the current span in the context.
 449
 450        Args:
 451            trace_context: Optional context for connecting to an existing trace
 452            name: Name of the generation operation
 453            input: Input data for the model (e.g., prompts)
 454            output: Output from the model (e.g., completions)
 455            metadata: Additional metadata to associate with the generation
 456            version: Version identifier for the model or component
 457            level: Importance level of the generation (info, warning, error)
 458            status_message: Optional status message for the generation
 459            completion_start_time: When the model started generating the response
 460            model: Name/identifier of the AI model used (e.g., "gpt-4")
 461            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
 462            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
 463            cost_details: Cost information for the model call
 464            prompt: Associated prompt template from Langfuse prompt management
 465
 466        Returns:
 467            A LangfuseGeneration object that must be ended with .end() when complete
 468
 469        Example:
 470            ```python
 471            generation = langfuse.start_generation(
 472                name="answer-generation",
 473                model="gpt-4",
 474                input={"prompt": "Explain quantum computing"},
 475                model_parameters={"temperature": 0.7}
 476            )
 477            try:
 478                # Call model API
 479                response = llm.generate(...)
 480
 481                generation.update(
 482                    output=response.text,
 483                    usage_details={
 484                        "prompt_tokens": response.usage.prompt_tokens,
 485                        "completion_tokens": response.usage.completion_tokens
 486                    }
 487                )
 488            finally:
 489                generation.end()
 490            ```
 491        """
 492        if trace_context:
 493            trace_id = trace_context.get("trace_id", None)
 494            parent_span_id = trace_context.get("parent_span_id", None)
 495
 496            if trace_id:
 497                remote_parent_span = self._create_remote_parent_span(
 498                    trace_id=trace_id, parent_span_id=parent_span_id
 499                )
 500
 501                with otel_trace_api.use_span(
 502                    cast(otel_trace_api.Span, remote_parent_span)
 503                ):
 504                    otel_span = self._otel_tracer.start_span(name=name)
 505                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
 506
 507                    return LangfuseGeneration(
 508                        otel_span=otel_span,
 509                        langfuse_client=self,
 510                        input=input,
 511                        output=output,
 512                        metadata=metadata,
 513                        version=version,
 514                        level=level,
 515                        status_message=status_message,
 516                        completion_start_time=completion_start_time,
 517                        model=model,
 518                        model_parameters=model_parameters,
 519                        usage_details=usage_details,
 520                        cost_details=cost_details,
 521                        prompt=prompt,
 522                    )
 523
 524        otel_span = self._otel_tracer.start_span(name=name)
 525
 526        return LangfuseGeneration(
 527            otel_span=otel_span,
 528            langfuse_client=self,
 529            input=input,
 530            output=output,
 531            metadata=metadata,
 532            version=version,
 533            level=level,
 534            status_message=status_message,
 535            completion_start_time=completion_start_time,
 536            model=model,
 537            model_parameters=model_parameters,
 538            usage_details=usage_details,
 539            cost_details=cost_details,
 540            prompt=prompt,
 541        )
 542
 543    def start_as_current_generation(
 544        self,
 545        *,
 546        trace_context: Optional[TraceContext] = None,
 547        name: str,
 548        input: Optional[Any] = None,
 549        output: Optional[Any] = None,
 550        metadata: Optional[Any] = None,
 551        version: Optional[str] = None,
 552        level: Optional[SpanLevel] = None,
 553        status_message: Optional[str] = None,
 554        completion_start_time: Optional[datetime] = None,
 555        model: Optional[str] = None,
 556        model_parameters: Optional[Dict[str, MapValue]] = None,
 557        usage_details: Optional[Dict[str, int]] = None,
 558        cost_details: Optional[Dict[str, float]] = None,
 559        prompt: Optional[PromptClient] = None,
 560        end_on_exit: Optional[bool] = None,
 561    ) -> _AgnosticContextManager[LangfuseGeneration]:
 562        """Create a new generation span and set it as the current span in a context manager.
 563
 564        This method creates a specialized span for model generations and sets it as the
 565        current span within a context manager. Use this method with a 'with' statement to
 566        automatically handle the generation span lifecycle within a code block.
 567
 568        The created generation span will be the child of the current span in the context.
 569
 570        Args:
 571            trace_context: Optional context for connecting to an existing trace
 572            name: Name of the generation operation
 573            input: Input data for the model (e.g., prompts)
 574            output: Output from the model (e.g., completions)
 575            metadata: Additional metadata to associate with the generation
 576            version: Version identifier for the model or component
 577            level: Importance level of the generation (info, warning, error)
 578            status_message: Optional status message for the generation
 579            completion_start_time: When the model started generating the response
 580            model: Name/identifier of the AI model used (e.g., "gpt-4")
 581            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
 582            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
 583            cost_details: Cost information for the model call
 584            prompt: Associated prompt template from Langfuse prompt management
 585            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
 586
 587        Returns:
 588            A context manager that yields a LangfuseGeneration
 589
 590        Example:
 591            ```python
 592            with langfuse.start_as_current_generation(
 593                name="answer-generation",
 594                model="gpt-4",
 595                input={"prompt": "Explain quantum computing"}
 596            ) as generation:
 597                # Call model API
 598                response = llm.generate(...)
 599
 600                # Update with results
 601                generation.update(
 602                    output=response.text,
 603                    usage_details={
 604                        "prompt_tokens": response.usage.prompt_tokens,
 605                        "completion_tokens": response.usage.completion_tokens
 606                    }
 607                )
 608            ```
 609        """
 610        if trace_context:
 611            trace_id = trace_context.get("trace_id", None)
 612            parent_span_id = trace_context.get("parent_span_id", None)
 613
 614            if trace_id:
 615                remote_parent_span = self._create_remote_parent_span(
 616                    trace_id=trace_id, parent_span_id=parent_span_id
 617                )
 618
 619                return cast(
 620                    _AgnosticContextManager[LangfuseGeneration],
 621                    self._create_span_with_parent_context(
 622                        as_type="generation",
 623                        name=name,
 624                        remote_parent_span=remote_parent_span,
 625                        parent=None,
 626                        end_on_exit=end_on_exit,
 627                        input=input,
 628                        output=output,
 629                        metadata=metadata,
 630                        version=version,
 631                        level=level,
 632                        status_message=status_message,
 633                        completion_start_time=completion_start_time,
 634                        model=model,
 635                        model_parameters=model_parameters,
 636                        usage_details=usage_details,
 637                        cost_details=cost_details,
 638                        prompt=prompt,
 639                    ),
 640                )
 641
 642        return cast(
 643            _AgnosticContextManager[LangfuseGeneration],
 644            self._start_as_current_otel_span_with_processed_media(
 645                as_type="generation",
 646                name=name,
 647                end_on_exit=end_on_exit,
 648                input=input,
 649                output=output,
 650                metadata=metadata,
 651                version=version,
 652                level=level,
 653                status_message=status_message,
 654                completion_start_time=completion_start_time,
 655                model=model,
 656                model_parameters=model_parameters,
 657                usage_details=usage_details,
 658                cost_details=cost_details,
 659                prompt=prompt,
 660            ),
 661        )
 662
 663    @_agnosticcontextmanager
 664    def _create_span_with_parent_context(
 665        self,
 666        *,
 667        name: str,
 668        parent: Optional[otel_trace_api.Span] = None,
 669        remote_parent_span: Optional[otel_trace_api.Span] = None,
 670        as_type: Literal["generation", "span"],
 671        end_on_exit: Optional[bool] = None,
 672        input: Optional[Any] = None,
 673        output: Optional[Any] = None,
 674        metadata: Optional[Any] = None,
 675        version: Optional[str] = None,
 676        level: Optional[SpanLevel] = None,
 677        status_message: Optional[str] = None,
 678        completion_start_time: Optional[datetime] = None,
 679        model: Optional[str] = None,
 680        model_parameters: Optional[Dict[str, MapValue]] = None,
 681        usage_details: Optional[Dict[str, int]] = None,
 682        cost_details: Optional[Dict[str, float]] = None,
 683        prompt: Optional[PromptClient] = None,
 684    ) -> Any:
 685        parent_span = parent or cast(otel_trace_api.Span, remote_parent_span)
 686
 687        with otel_trace_api.use_span(parent_span):
 688            with self._start_as_current_otel_span_with_processed_media(
 689                name=name,
 690                as_type=as_type,
 691                end_on_exit=end_on_exit,
 692                input=input,
 693                output=output,
 694                metadata=metadata,
 695                version=version,
 696                level=level,
 697                status_message=status_message,
 698                completion_start_time=completion_start_time,
 699                model=model,
 700                model_parameters=model_parameters,
 701                usage_details=usage_details,
 702                cost_details=cost_details,
 703                prompt=prompt,
 704            ) as langfuse_span:
 705                if remote_parent_span is not None:
 706                    langfuse_span._otel_span.set_attribute(
 707                        LangfuseOtelSpanAttributes.AS_ROOT, True
 708                    )
 709
 710                yield langfuse_span
 711
 712    @_agnosticcontextmanager
 713    def _start_as_current_otel_span_with_processed_media(
 714        self,
 715        *,
 716        name: str,
 717        as_type: Optional[Literal["generation", "span"]] = None,
 718        end_on_exit: Optional[bool] = None,
 719        input: Optional[Any] = None,
 720        output: Optional[Any] = None,
 721        metadata: Optional[Any] = None,
 722        version: Optional[str] = None,
 723        level: Optional[SpanLevel] = None,
 724        status_message: Optional[str] = None,
 725        completion_start_time: Optional[datetime] = None,
 726        model: Optional[str] = None,
 727        model_parameters: Optional[Dict[str, MapValue]] = None,
 728        usage_details: Optional[Dict[str, int]] = None,
 729        cost_details: Optional[Dict[str, float]] = None,
 730        prompt: Optional[PromptClient] = None,
 731    ) -> Any:
 732        with self._otel_tracer.start_as_current_span(
 733            name=name,
 734            end_on_exit=end_on_exit if end_on_exit is not None else True,
 735        ) as otel_span:
 736            yield (
 737                LangfuseSpan(
 738                    otel_span=otel_span,
 739                    langfuse_client=self,
 740                    environment=self._environment,
 741                    input=input,
 742                    output=output,
 743                    metadata=metadata,
 744                    version=version,
 745                    level=level,
 746                    status_message=status_message,
 747                )
 748                if as_type == "span"
 749                else LangfuseGeneration(
 750                    otel_span=otel_span,
 751                    langfuse_client=self,
 752                    environment=self._environment,
 753                    input=input,
 754                    output=output,
 755                    metadata=metadata,
 756                    version=version,
 757                    level=level,
 758                    status_message=status_message,
 759                    completion_start_time=completion_start_time,
 760                    model=model,
 761                    model_parameters=model_parameters,
 762                    usage_details=usage_details,
 763                    cost_details=cost_details,
 764                    prompt=prompt,
 765                )
 766            )
 767
 768    def _get_current_otel_span(self) -> Optional[otel_trace_api.Span]:
 769        current_span = otel_trace_api.get_current_span()
 770
 771        if current_span is otel_trace_api.INVALID_SPAN:
 772            langfuse_logger.warning(
 773                "Context error: No active span in current context. Operations that depend on an active span will be skipped. "
 774                "Ensure spans are created with start_as_current_span() or that you're operating within an active span context."
 775            )
 776            return None
 777
 778        return current_span
 779
 780    def update_current_generation(
 781        self,
 782        *,
 783        name: Optional[str] = None,
 784        input: Optional[Any] = None,
 785        output: Optional[Any] = None,
 786        metadata: Optional[Any] = None,
 787        version: Optional[str] = None,
 788        level: Optional[SpanLevel] = None,
 789        status_message: Optional[str] = None,
 790        completion_start_time: Optional[datetime] = None,
 791        model: Optional[str] = None,
 792        model_parameters: Optional[Dict[str, MapValue]] = None,
 793        usage_details: Optional[Dict[str, int]] = None,
 794        cost_details: Optional[Dict[str, float]] = None,
 795        prompt: Optional[PromptClient] = None,
 796    ) -> None:
 797        """Update the current active generation span with new information.
 798
 799        This method updates the current generation span in the active context with
 800        additional information. It's useful for adding output, usage stats, or other
 801        details that become available during or after model generation.
 802
 803        Args:
 804            name: The generation name
 805            input: Updated input data for the model
 806            output: Output from the model (e.g., completions)
 807            metadata: Additional metadata to associate with the generation
 808            version: Version identifier for the model or component
 809            level: Importance level of the generation (info, warning, error)
 810            status_message: Optional status message for the generation
 811            completion_start_time: When the model started generating the response
 812            model: Name/identifier of the AI model used (e.g., "gpt-4")
 813            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
 814            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
 815            cost_details: Cost information for the model call
 816            prompt: Associated prompt template from Langfuse prompt management
 817
 818        Example:
 819            ```python
 820            with langfuse.start_as_current_generation(name="answer-query") as generation:
 821                # Initial setup and API call
 822                response = llm.generate(...)
 823
 824                # Update with results that weren't available at creation time
 825                langfuse.update_current_generation(
 826                    output=response.text,
 827                    usage_details={
 828                        "prompt_tokens": response.usage.prompt_tokens,
 829                        "completion_tokens": response.usage.completion_tokens
 830                    }
 831                )
 832            ```
 833        """
 834        if not self._tracing_enabled:
 835            langfuse_logger.debug(
 836                "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode."
 837            )
 838            return
 839
 840        current_otel_span = self._get_current_otel_span()
 841
 842        if current_otel_span is not None:
 843            generation = LangfuseGeneration(
 844                otel_span=current_otel_span, langfuse_client=self
 845            )
 846
 847            if name:
 848                current_otel_span.update_name(name)
 849
 850            generation.update(
 851                input=input,
 852                output=output,
 853                metadata=metadata,
 854                version=version,
 855                level=level,
 856                status_message=status_message,
 857                completion_start_time=completion_start_time,
 858                model=model,
 859                model_parameters=model_parameters,
 860                usage_details=usage_details,
 861                cost_details=cost_details,
 862                prompt=prompt,
 863            )
 864
 865    def update_current_span(
 866        self,
 867        *,
 868        name: Optional[str] = None,
 869        input: Optional[Any] = None,
 870        output: Optional[Any] = None,
 871        metadata: Optional[Any] = None,
 872        version: Optional[str] = None,
 873        level: Optional[SpanLevel] = None,
 874        status_message: Optional[str] = None,
 875    ) -> None:
 876        """Update the current active span with new information.
 877
 878        This method updates the current span in the active context with
 879        additional information. It's useful for adding outputs or metadata
 880        that become available during execution.
 881
 882        Args:
 883            name: The span name
 884            input: Updated input data for the operation
 885            output: Output data from the operation
 886            metadata: Additional metadata to associate with the span
 887            version: Version identifier for the code or component
 888            level: Importance level of the span (info, warning, error)
 889            status_message: Optional status message for the span
 890
 891        Example:
 892            ```python
 893            with langfuse.start_as_current_span(name="process-data") as span:
 894                # Initial processing
 895                result = process_first_part()
 896
 897                # Update with intermediate results
 898                langfuse.update_current_span(metadata={"intermediate_result": result})
 899
 900                # Continue processing
 901                final_result = process_second_part(result)
 902
 903                # Final update
 904                langfuse.update_current_span(output=final_result)
 905            ```
 906        """
 907        if not self._tracing_enabled:
 908            langfuse_logger.debug(
 909                "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode."
 910            )
 911            return
 912
 913        current_otel_span = self._get_current_otel_span()
 914
 915        if current_otel_span is not None:
 916            span = LangfuseSpan(
 917                otel_span=current_otel_span,
 918                langfuse_client=self,
 919                environment=self._environment,
 920            )
 921
 922            if name:
 923                current_otel_span.update_name(name)
 924
 925            span.update(
 926                input=input,
 927                output=output,
 928                metadata=metadata,
 929                version=version,
 930                level=level,
 931                status_message=status_message,
 932            )
 933
 934    def update_current_trace(
 935        self,
 936        *,
 937        name: Optional[str] = None,
 938        user_id: Optional[str] = None,
 939        session_id: Optional[str] = None,
 940        version: Optional[str] = None,
 941        input: Optional[Any] = None,
 942        output: Optional[Any] = None,
 943        metadata: Optional[Any] = None,
 944        tags: Optional[List[str]] = None,
 945        public: Optional[bool] = None,
 946    ) -> None:
 947        """Update the current trace with additional information.
 948
 949        This method updates the Langfuse trace that the current span belongs to. It's useful for
 950        adding trace-level metadata like user ID, session ID, or tags that apply to
 951        the entire Langfuse trace rather than just a single observation.
 952
 953        Args:
 954            name: Updated name for the Langfuse trace
 955            user_id: ID of the user who initiated the Langfuse trace
 956            session_id: Session identifier for grouping related Langfuse traces
 957            version: Version identifier for the application or service
 958            input: Input data for the overall Langfuse trace
 959            output: Output data from the overall Langfuse trace
 960            metadata: Additional metadata to associate with the Langfuse trace
 961            tags: List of tags to categorize the Langfuse trace
 962            public: Whether the Langfuse trace should be publicly accessible
 963
 964        Example:
 965            ```python
 966            with langfuse.start_as_current_span(name="handle-request") as span:
 967                # Get user information
 968                user = authenticate_user(request)
 969
 970                # Update trace with user context
 971                langfuse.update_current_trace(
 972                    user_id=user.id,
 973                    session_id=request.session_id,
 974                    tags=["production", "web-app"]
 975                )
 976
 977                # Continue processing
 978                response = process_request(request)
 979
 980                # Update span with results
 981                span.update(output=response)
 982            ```
 983        """
 984        if not self._tracing_enabled:
 985            langfuse_logger.debug(
 986                "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode."
 987            )
 988            return
 989
 990        current_otel_span = self._get_current_otel_span()
 991
 992        if current_otel_span is not None:
 993            span = LangfuseSpan(
 994                otel_span=current_otel_span,
 995                langfuse_client=self,
 996                environment=self._environment,
 997            )
 998
 999            span.update_trace(
1000                name=name,
1001                user_id=user_id,
1002                session_id=session_id,
1003                version=version,
1004                input=input,
1005                output=output,
1006                metadata=metadata,
1007                tags=tags,
1008                public=public,
1009            )
1010
1011    def create_event(
1012        self,
1013        *,
1014        trace_context: Optional[TraceContext] = None,
1015        name: str,
1016        input: Optional[Any] = None,
1017        output: Optional[Any] = None,
1018        metadata: Optional[Any] = None,
1019        version: Optional[str] = None,
1020        level: Optional[SpanLevel] = None,
1021        status_message: Optional[str] = None,
1022    ) -> LangfuseEvent:
1023        """Create a new Langfuse observation of type 'EVENT'.
1024
1025        The created Langfuse Event observation will be the child of the current span in the context.
1026
1027        Args:
1028            trace_context: Optional context for connecting to an existing trace
1029            name: Name of the span (e.g., function or operation name)
1030            input: Input data for the operation (can be any JSON-serializable object)
1031            output: Output data from the operation (can be any JSON-serializable object)
1032            metadata: Additional metadata to associate with the span
1033            version: Version identifier for the code or component
1034            level: Importance level of the span (info, warning, error)
1035            status_message: Optional status message for the span
1036
1037        Returns:
1038            The Langfuse Event object
1039
1040        Example:
1041            ```python
1042            event = langfuse.create_event(name="process-event")
1043            ```
1044        """
1045        timestamp = time_ns()
1046
1047        if trace_context:
1048            trace_id = trace_context.get("trace_id", None)
1049            parent_span_id = trace_context.get("parent_span_id", None)
1050
1051            if trace_id:
1052                remote_parent_span = self._create_remote_parent_span(
1053                    trace_id=trace_id, parent_span_id=parent_span_id
1054                )
1055
1056                with otel_trace_api.use_span(
1057                    cast(otel_trace_api.Span, remote_parent_span)
1058                ):
1059                    otel_span = self._otel_tracer.start_span(
1060                        name=name, start_time=timestamp
1061                    )
1062                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
1063
1064                    return cast(
1065                        LangfuseEvent,
1066                        LangfuseEvent(
1067                            otel_span=otel_span,
1068                            langfuse_client=self,
1069                            environment=self._environment,
1070                            input=input,
1071                            output=output,
1072                            metadata=metadata,
1073                            version=version,
1074                            level=level,
1075                            status_message=status_message,
1076                        ).end(end_time=timestamp),
1077                    )
1078
1079        otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp)
1080
1081        return cast(
1082            LangfuseEvent,
1083            LangfuseEvent(
1084                otel_span=otel_span,
1085                langfuse_client=self,
1086                environment=self._environment,
1087                input=input,
1088                output=output,
1089                metadata=metadata,
1090                version=version,
1091                level=level,
1092                status_message=status_message,
1093            ).end(end_time=timestamp),
1094        )
1095
1096    def _create_remote_parent_span(
1097        self, *, trace_id: str, parent_span_id: Optional[str]
1098    ) -> Any:
1099        if not self._is_valid_trace_id(trace_id):
1100            langfuse_logger.warning(
1101                f"Passed trace ID '{trace_id}' is not a valid 32 lowercase hex char Langfuse trace id. Ignoring trace ID."
1102            )
1103
1104        if parent_span_id and not self._is_valid_span_id(parent_span_id):
1105            langfuse_logger.warning(
1106                f"Passed span ID '{parent_span_id}' is not a valid 16 lowercase hex char Langfuse span id. Ignoring parent span ID."
1107            )
1108
1109        int_trace_id = int(trace_id, 16)
1110        int_parent_span_id = (
1111            int(parent_span_id, 16)
1112            if parent_span_id
1113            else RandomIdGenerator().generate_span_id()
1114        )
1115
1116        span_context = otel_trace_api.SpanContext(
1117            trace_id=int_trace_id,
1118            span_id=int_parent_span_id,
1119            trace_flags=otel_trace_api.TraceFlags(0x01),  # mark span as sampled
1120            is_remote=False,
1121        )
1122
1123        return trace.NonRecordingSpan(span_context)
1124
1125    def _is_valid_trace_id(self, trace_id: str) -> bool:
1126        pattern = r"^[0-9a-f]{32}$"
1127
1128        return bool(re.match(pattern, trace_id))
1129
1130    def _is_valid_span_id(self, span_id: str) -> bool:
1131        pattern = r"^[0-9a-f]{16}$"
1132
1133        return bool(re.match(pattern, span_id))
1134
1135    def _create_observation_id(self, *, seed: Optional[str] = None) -> str:
1136        """Create a unique observation ID for use with Langfuse.
1137
1138        This method generates a unique observation ID (span ID in OpenTelemetry terms)
1139        for use with various Langfuse APIs. It can either generate a random ID or
1140        create a deterministic ID based on a seed string.
1141
1142        Observation IDs must be 16 lowercase hexadecimal characters, representing 8 bytes.
1143        This method ensures the generated ID meets this requirement. If you need to
1144        correlate an external ID with a Langfuse observation ID, use the external ID as
1145        the seed to get a valid, deterministic observation ID.
1146
1147        Args:
1148            seed: Optional string to use as a seed for deterministic ID generation.
1149                 If provided, the same seed will always produce the same ID.
1150                 If not provided, a random ID will be generated.
1151
1152        Returns:
1153            A 16-character lowercase hexadecimal string representing the observation ID.
1154
1155        Example:
1156            ```python
1157            # Generate a random observation ID
1158            obs_id = langfuse.create_observation_id()
1159
1160            # Generate a deterministic ID based on a seed
1161            user_obs_id = langfuse.create_observation_id(seed="user-123-feedback")
1162
1163            # Correlate an external item ID with a Langfuse observation ID
1164            item_id = "item-789012"
1165            correlated_obs_id = langfuse.create_observation_id(seed=item_id)
1166
1167            # Use the ID with Langfuse APIs
1168            langfuse.create_score(
1169                name="relevance",
1170                value=0.95,
1171                trace_id=trace_id,
1172                observation_id=obs_id
1173            )
1174            ```
1175        """
1176        if not seed:
1177            span_id_int = RandomIdGenerator().generate_span_id()
1178
1179            return self._format_otel_span_id(span_id_int)
1180
1181        return sha256(seed.encode("utf-8")).digest()[:8].hex()
1182
1183    @staticmethod
1184    def create_trace_id(*, seed: Optional[str] = None) -> str:
1185        """Create a unique trace ID for use with Langfuse.
1186
1187        This method generates a unique trace ID for use with various Langfuse APIs.
1188        It can either generate a random ID or create a deterministic ID based on
1189        a seed string.
1190
1191        Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes.
1192        This method ensures the generated ID meets this requirement. If you need to
1193        correlate an external ID with a Langfuse trace ID, use the external ID as the
1194        seed to get a valid, deterministic Langfuse trace ID.
1195
1196        Args:
1197            seed: Optional string to use as a seed for deterministic ID generation.
1198                 If provided, the same seed will always produce the same ID.
1199                 If not provided, a random ID will be generated.
1200
1201        Returns:
1202            A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
1203
1204        Example:
1205            ```python
1206            # Generate a random trace ID
1207            trace_id = langfuse.create_trace_id()
1208
1209            # Generate a deterministic ID based on a seed
1210            session_trace_id = langfuse.create_trace_id(seed="session-456")
1211
1212            # Correlate an external ID with a Langfuse trace ID
1213            external_id = "external-system-123456"
1214            correlated_trace_id = langfuse.create_trace_id(seed=external_id)
1215
1216            # Use the ID with trace context
1217            with langfuse.start_as_current_span(
1218                name="process-request",
1219                trace_context={"trace_id": trace_id}
1220            ) as span:
1221                # Operation will be part of the specific trace
1222                pass
1223            ```
1224        """
1225        if not seed:
1226            trace_id_int = RandomIdGenerator().generate_trace_id()
1227
1228            return Langfuse._format_otel_trace_id(trace_id_int)
1229
1230        return sha256(seed.encode("utf-8")).digest()[:16].hex()
1231
1232    def _get_otel_trace_id(self, otel_span: otel_trace_api.Span) -> str:
1233        span_context = otel_span.get_span_context()
1234
1235        return self._format_otel_trace_id(span_context.trace_id)
1236
1237    def _get_otel_span_id(self, otel_span: otel_trace_api.Span) -> str:
1238        span_context = otel_span.get_span_context()
1239
1240        return self._format_otel_span_id(span_context.span_id)
1241
1242    @staticmethod
1243    def _format_otel_span_id(span_id_int: int) -> str:
1244        """Format an integer span ID to a 16-character lowercase hex string.
1245
1246        Internal method to convert an OpenTelemetry integer span ID to the standard
1247        W3C Trace Context format (16-character lowercase hex string).
1248
1249        Args:
1250            span_id_int: 64-bit integer representing a span ID
1251
1252        Returns:
1253            A 16-character lowercase hexadecimal string
1254        """
1255        return format(span_id_int, "016x")
1256
1257    @staticmethod
1258    def _format_otel_trace_id(trace_id_int: int) -> str:
1259        """Format an integer trace ID to a 32-character lowercase hex string.
1260
1261        Internal method to convert an OpenTelemetry integer trace ID to the standard
1262        W3C Trace Context format (32-character lowercase hex string).
1263
1264        Args:
1265            trace_id_int: 128-bit integer representing a trace ID
1266
1267        Returns:
1268            A 32-character lowercase hexadecimal string
1269        """
1270        return format(trace_id_int, "032x")
1271
1272    @overload
1273    def create_score(
1274        self,
1275        *,
1276        name: str,
1277        value: float,
1278        session_id: Optional[str] = None,
1279        dataset_run_id: Optional[str] = None,
1280        trace_id: Optional[str] = None,
1281        observation_id: Optional[str] = None,
1282        score_id: Optional[str] = None,
1283        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
1284        comment: Optional[str] = None,
1285        config_id: Optional[str] = None,
1286        metadata: Optional[Any] = None,
1287    ) -> None: ...
1288
1289    @overload
1290    def create_score(
1291        self,
1292        *,
1293        name: str,
1294        value: str,
1295        session_id: Optional[str] = None,
1296        dataset_run_id: Optional[str] = None,
1297        trace_id: Optional[str] = None,
1298        score_id: Optional[str] = None,
1299        observation_id: Optional[str] = None,
1300        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
1301        comment: Optional[str] = None,
1302        config_id: Optional[str] = None,
1303        metadata: Optional[Any] = None,
1304    ) -> None: ...
1305
1306    def create_score(
1307        self,
1308        *,
1309        name: str,
1310        value: Union[float, str],
1311        session_id: Optional[str] = None,
1312        dataset_run_id: Optional[str] = None,
1313        trace_id: Optional[str] = None,
1314        observation_id: Optional[str] = None,
1315        score_id: Optional[str] = None,
1316        data_type: Optional[ScoreDataType] = None,
1317        comment: Optional[str] = None,
1318        config_id: Optional[str] = None,
1319        metadata: Optional[Any] = None,
1320    ) -> None:
1321        """Create a score for a specific trace or observation.
1322
1323        This method creates a score for evaluating a Langfuse trace or observation. Scores can be
1324        used to track quality metrics, user feedback, or automated evaluations.
1325
1326        Args:
1327            name: Name of the score (e.g., "relevance", "accuracy")
1328            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1329            session_id: ID of the Langfuse session to associate the score with
1330            dataset_run_id: ID of the Langfuse dataset run to associate the score with
1331            trace_id: ID of the Langfuse trace to associate the score with
1332            observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
1333            score_id: Optional custom ID for the score (auto-generated if not provided)
1334            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1335            comment: Optional comment or explanation for the score
1336            config_id: Optional ID of a score config defined in Langfuse
1337            metadata: Optional metadata to be attached to the score
1338
1339        Example:
1340            ```python
1341            # Create a numeric score for accuracy
1342            langfuse.create_score(
1343                name="accuracy",
1344                value=0.92,
1345                trace_id="abcdef1234567890abcdef1234567890",
1346                data_type="NUMERIC",
1347                comment="High accuracy with minor irrelevant details"
1348            )
1349
1350            # Create a categorical score for sentiment
1351            langfuse.create_score(
1352                name="sentiment",
1353                value="positive",
1354                trace_id="abcdef1234567890abcdef1234567890",
1355                observation_id="abcdef1234567890",
1356                data_type="CATEGORICAL"
1357            )
1358            ```
1359        """
1360        if not self._tracing_enabled:
1361            return
1362
1363        score_id = score_id or self._create_observation_id()
1364
1365        try:
1366            new_body = ScoreBody(
1367                id=score_id,
1368                sessionId=session_id,
1369                datasetRunId=dataset_run_id,
1370                traceId=trace_id,
1371                observationId=observation_id,
1372                name=name,
1373                value=value,
1374                dataType=data_type,  # type: ignore
1375                comment=comment,
1376                configId=config_id,
1377                environment=self._environment,
1378                metadata=metadata,
1379            )
1380
1381            event = {
1382                "id": self.create_trace_id(),
1383                "type": "score-create",
1384                "timestamp": _get_timestamp(),
1385                "body": new_body,
1386            }
1387
1388            if self._resources is not None:
1389                # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar
1390                force_sample = (
1391                    not self._is_valid_trace_id(trace_id) if trace_id else True
1392                )
1393
1394                self._resources.add_score_task(
1395                    event,
1396                    force_sample=force_sample,
1397                )
1398
1399        except Exception as e:
1400            langfuse_logger.exception(
1401                f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}"
1402            )
1403
1404    @overload
1405    def score_current_span(
1406        self,
1407        *,
1408        name: str,
1409        value: float,
1410        score_id: Optional[str] = None,
1411        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
1412        comment: Optional[str] = None,
1413        config_id: Optional[str] = None,
1414    ) -> None: ...
1415
1416    @overload
1417    def score_current_span(
1418        self,
1419        *,
1420        name: str,
1421        value: str,
1422        score_id: Optional[str] = None,
1423        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
1424        comment: Optional[str] = None,
1425        config_id: Optional[str] = None,
1426    ) -> None: ...
1427
1428    def score_current_span(
1429        self,
1430        *,
1431        name: str,
1432        value: Union[float, str],
1433        score_id: Optional[str] = None,
1434        data_type: Optional[ScoreDataType] = None,
1435        comment: Optional[str] = None,
1436        config_id: Optional[str] = None,
1437    ) -> None:
1438        """Create a score for the current active span.
1439
1440        This method scores the currently active span in the context. It's a convenient
1441        way to score the current operation without needing to know its trace and span IDs.
1442
1443        Args:
1444            name: Name of the score (e.g., "relevance", "accuracy")
1445            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1446            score_id: Optional custom ID for the score (auto-generated if not provided)
1447            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1448            comment: Optional comment or explanation for the score
1449            config_id: Optional ID of a score config defined in Langfuse
1450
1451        Example:
1452            ```python
1453            with langfuse.start_as_current_generation(name="answer-query") as generation:
1454                # Generate answer
1455                response = generate_answer(...)
1456                generation.update(output=response)
1457
1458                # Score the generation
1459                langfuse.score_current_span(
1460                    name="relevance",
1461                    value=0.85,
1462                    data_type="NUMERIC",
1463                    comment="Mostly relevant but contains some tangential information"
1464                )
1465            ```
1466        """
1467        current_span = self._get_current_otel_span()
1468
1469        if current_span is not None:
1470            trace_id = self._get_otel_trace_id(current_span)
1471            observation_id = self._get_otel_span_id(current_span)
1472
1473            langfuse_logger.info(
1474                f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}"
1475            )
1476
1477            self.create_score(
1478                trace_id=trace_id,
1479                observation_id=observation_id,
1480                name=name,
1481                value=cast(str, value),
1482                score_id=score_id,
1483                data_type=cast(Literal["CATEGORICAL"], data_type),
1484                comment=comment,
1485                config_id=config_id,
1486            )
1487
1488    @overload
1489    def score_current_trace(
1490        self,
1491        *,
1492        name: str,
1493        value: float,
1494        score_id: Optional[str] = None,
1495        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
1496        comment: Optional[str] = None,
1497        config_id: Optional[str] = None,
1498    ) -> None: ...
1499
1500    @overload
1501    def score_current_trace(
1502        self,
1503        *,
1504        name: str,
1505        value: str,
1506        score_id: Optional[str] = None,
1507        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
1508        comment: Optional[str] = None,
1509        config_id: Optional[str] = None,
1510    ) -> None: ...
1511
1512    def score_current_trace(
1513        self,
1514        *,
1515        name: str,
1516        value: Union[float, str],
1517        score_id: Optional[str] = None,
1518        data_type: Optional[ScoreDataType] = None,
1519        comment: Optional[str] = None,
1520        config_id: Optional[str] = None,
1521    ) -> None:
1522        """Create a score for the current trace.
1523
1524        This method scores the trace of the currently active span. Unlike score_current_span,
1525        this method associates the score with the entire trace rather than a specific span.
1526        It's useful for scoring overall performance or quality of the entire operation.
1527
1528        Args:
1529            name: Name of the score (e.g., "user_satisfaction", "overall_quality")
1530            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1531            score_id: Optional custom ID for the score (auto-generated if not provided)
1532            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1533            comment: Optional comment or explanation for the score
1534            config_id: Optional ID of a score config defined in Langfuse
1535
1536        Example:
1537            ```python
1538            with langfuse.start_as_current_span(name="process-user-request") as span:
1539                # Process request
1540                result = process_complete_request()
1541                span.update(output=result)
1542
1543                # Score the overall trace
1544                langfuse.score_current_trace(
1545                    name="overall_quality",
1546                    value=0.95,
1547                    data_type="NUMERIC",
1548                    comment="High quality end-to-end response"
1549                )
1550            ```
1551        """
1552        current_span = self._get_current_otel_span()
1553
1554        if current_span is not None:
1555            trace_id = self._get_otel_trace_id(current_span)
1556
1557            langfuse_logger.info(
1558                f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}"
1559            )
1560
1561            self.create_score(
1562                trace_id=trace_id,
1563                name=name,
1564                value=cast(str, value),
1565                score_id=score_id,
1566                data_type=cast(Literal["CATEGORICAL"], data_type),
1567                comment=comment,
1568                config_id=config_id,
1569            )
1570
1571    def flush(self) -> None:
1572        """Force flush all pending spans and events to the Langfuse API.
1573
1574        This method manually flushes any pending spans, scores, and other events to the
1575        Langfuse API. It's useful in scenarios where you want to ensure all data is sent
1576        before proceeding, without waiting for the automatic flush interval.
1577
1578        Example:
1579            ```python
1580            # Record some spans and scores
1581            with langfuse.start_as_current_span(name="operation") as span:
1582                # Do work...
1583                pass
1584
1585            # Ensure all data is sent to Langfuse before proceeding
1586            langfuse.flush()
1587
1588            # Continue with other work
1589            ```
1590        """
1591        if self._resources is not None:
1592            self._resources.flush()
1593
1594    def shutdown(self) -> None:
1595        """Shut down the Langfuse client and flush all pending data.
1596
1597        This method cleanly shuts down the Langfuse client, ensuring all pending data
1598        is flushed to the API and all background threads are properly terminated.
1599
1600        It's important to call this method when your application is shutting down to
1601        prevent data loss and resource leaks. For most applications, using the client
1602        as a context manager or relying on the automatic shutdown via atexit is sufficient.
1603
1604        Example:
1605            ```python
1606            # Initialize Langfuse
1607            langfuse = Langfuse(public_key="...", secret_key="...")
1608
1609            # Use Langfuse throughout your application
1610            # ...
1611
1612            # When application is shutting down
1613            langfuse.shutdown()
1614            ```
1615        """
1616        if self._resources is not None:
1617            self._resources.shutdown()
1618
1619    def get_current_trace_id(self) -> Optional[str]:
1620        """Get the trace ID of the current active span.
1621
1622        This method retrieves the trace ID from the currently active span in the context.
1623        It can be used to get the trace ID for referencing in logs, external systems,
1624        or for creating related operations.
1625
1626        Returns:
1627            The current trace ID as a 32-character lowercase hexadecimal string,
1628            or None if there is no active span.
1629
1630        Example:
1631            ```python
1632            with langfuse.start_as_current_span(name="process-request") as span:
1633                # Get the current trace ID for reference
1634                trace_id = langfuse.get_current_trace_id()
1635
1636                # Use it for external correlation
1637                log.info(f"Processing request with trace_id: {trace_id}")
1638
1639                # Or pass to another system
1640                external_system.process(data, trace_id=trace_id)
1641            ```
1642        """
1643        if not self._tracing_enabled:
1644            langfuse_logger.debug(
1645                "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode."
1646            )
1647            return None
1648
1649        current_otel_span = self._get_current_otel_span()
1650
1651        return self._get_otel_trace_id(current_otel_span) if current_otel_span else None
1652
1653    def get_current_observation_id(self) -> Optional[str]:
1654        """Get the observation ID (span ID) of the current active span.
1655
1656        This method retrieves the observation ID from the currently active span in the context.
1657        It can be used to get the observation ID for referencing in logs, external systems,
1658        or for creating scores or other related operations.
1659
1660        Returns:
1661            The current observation ID as a 16-character lowercase hexadecimal string,
1662            or None if there is no active span.
1663
1664        Example:
1665            ```python
1666            with langfuse.start_as_current_span(name="process-user-query") as span:
1667                # Get the current observation ID
1668                observation_id = langfuse.get_current_observation_id()
1669
1670                # Store it for later reference
1671                cache.set(f"query_{query_id}_observation", observation_id)
1672
1673                # Process the query...
1674            ```
1675        """
1676        if not self._tracing_enabled:
1677            langfuse_logger.debug(
1678                "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode."
1679            )
1680            return None
1681
1682        current_otel_span = self._get_current_otel_span()
1683
1684        return self._get_otel_span_id(current_otel_span) if current_otel_span else None
1685
1686    def _get_project_id(self) -> Optional[str]:
1687        """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys."""
1688        if not self._project_id:
1689            proj = self.api.projects.get()
1690            if not proj.data or not proj.data[0].id:
1691                return None
1692
1693            self._project_id = proj.data[0].id
1694
1695        return self._project_id
1696
1697    def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
1698        """Get the URL to view a trace in the Langfuse UI.
1699
1700        This method generates a URL that links directly to a trace in the Langfuse UI.
1701        It's useful for providing links in logs, notifications, or debugging tools.
1702
1703        Args:
1704            trace_id: Optional trace ID to generate a URL for. If not provided,
1705                     the trace ID of the current active span will be used.
1706
1707        Returns:
1708            A URL string pointing to the trace in the Langfuse UI,
1709            or None if the project ID couldn't be retrieved or no trace ID is available.
1710
1711        Example:
1712            ```python
1713            # Get URL for the current trace
1714            with langfuse.start_as_current_span(name="process-request") as span:
1715                trace_url = langfuse.get_trace_url()
1716                log.info(f"Processing trace: {trace_url}")
1717
1718            # Get URL for a specific trace
1719            specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
1720            send_notification(f"Review needed for trace: {specific_trace_url}")
1721            ```
1722        """
1723        project_id = self._get_project_id()
1724        final_trace_id = trace_id or self.get_current_trace_id()
1725
1726        return (
1727            f"{self._host}/project/{project_id}/traces/{final_trace_id}"
1728            if project_id and final_trace_id
1729            else None
1730        )
1731
1732    def get_dataset(
1733        self, name: str, *, fetch_items_page_size: Optional[int] = 50
1734    ) -> "DatasetClient":
1735        """Fetch a dataset by its name.
1736
1737        Args:
1738            name (str): The name of the dataset to fetch.
1739            fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
1740
1741        Returns:
1742            DatasetClient: The dataset with the given name.
1743        """
1744        try:
1745            langfuse_logger.debug(f"Getting datasets {name}")
1746            dataset = self.api.datasets.get(dataset_name=name)
1747
1748            dataset_items = []
1749            page = 1
1750
1751            while True:
1752                new_items = self.api.dataset_items.list(
1753                    dataset_name=self._url_encode(name, is_url_param=True),
1754                    page=page,
1755                    limit=fetch_items_page_size,
1756                )
1757                dataset_items.extend(new_items.data)
1758
1759                if new_items.meta.total_pages <= page:
1760                    break
1761
1762                page += 1
1763
1764            items = [DatasetItemClient(i, langfuse=self) for i in dataset_items]
1765
1766            return DatasetClient(dataset, items=items)
1767
1768        except Error as e:
1769            handle_fern_exception(e)
1770            raise e
1771
1772    def auth_check(self) -> bool:
1773        """Check if the provided credentials (public and secret key) are valid.
1774
1775        Raises:
1776            Exception: If no projects were found for the provided credentials.
1777
1778        Note:
1779            This method is blocking. It is discouraged to use it in production code.
1780        """
1781        try:
1782            projects = self.api.projects.get()
1783            langfuse_logger.debug(
1784                f"Auth check successful, found {len(projects.data)} projects"
1785            )
1786            if len(projects.data) == 0:
1787                raise Exception(
1788                    "Auth check failed, no project found for the keys provided."
1789                )
1790            return True
1791
1792        except AttributeError as e:
1793            langfuse_logger.warning(
1794                f"Auth check failed: Client not properly initialized. Error: {e}"
1795            )
1796            return False
1797
1798        except Error as e:
1799            handle_fern_exception(e)
1800            raise e
1801
1802    def create_dataset(
1803        self,
1804        *,
1805        name: str,
1806        description: Optional[str] = None,
1807        metadata: Optional[Any] = None,
1808    ) -> Dataset:
1809        """Create a dataset with the given name on Langfuse.
1810
1811        Args:
1812            name: Name of the dataset to create.
1813            description: Description of the dataset. Defaults to None.
1814            metadata: Additional metadata. Defaults to None.
1815
1816        Returns:
1817            Dataset: The created dataset as returned by the Langfuse API.
1818        """
1819        try:
1820            body = CreateDatasetRequest(
1821                name=name, description=description, metadata=metadata
1822            )
1823            langfuse_logger.debug(f"Creating datasets {body}")
1824
1825            return self.api.datasets.create(request=body)
1826
1827        except Error as e:
1828            handle_fern_exception(e)
1829            raise e
1830
1831    def create_dataset_item(
1832        self,
1833        *,
1834        dataset_name: str,
1835        input: Optional[Any] = None,
1836        expected_output: Optional[Any] = None,
1837        metadata: Optional[Any] = None,
1838        source_trace_id: Optional[str] = None,
1839        source_observation_id: Optional[str] = None,
1840        status: Optional[DatasetStatus] = None,
1841        id: Optional[str] = None,
1842    ) -> DatasetItem:
1843        """Create a dataset item.
1844
1845        Upserts if an item with id already exists.
1846
1847        Args:
1848            dataset_name: Name of the dataset in which the dataset item should be created.
1849            input: Input data. Defaults to None. Can contain any dict, list or scalar.
1850            expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
1851            metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
1852            source_trace_id: Id of the source trace. Defaults to None.
1853            source_observation_id: Id of the source observation. Defaults to None.
1854            status: Status of the dataset item. Defaults to ACTIVE for newly created items.
1855            id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
1856
1857        Returns:
1858            DatasetItem: The created dataset item as returned by the Langfuse API.
1859
1860        Example:
1861            ```python
1862            from langfuse import Langfuse
1863
1864            langfuse = Langfuse()
1865
1866            # Uploading items to the Langfuse dataset named "capital_cities"
1867            langfuse.create_dataset_item(
1868                dataset_name="capital_cities",
1869                input={"input": {"country": "Italy"}},
1870                expected_output={"expected_output": "Rome"},
1871                metadata={"foo": "bar"}
1872            )
1873            ```
1874        """
1875        try:
1876            body = CreateDatasetItemRequest(
1877                datasetName=dataset_name,
1878                input=input,
1879                expectedOutput=expected_output,
1880                metadata=metadata,
1881                sourceTraceId=source_trace_id,
1882                sourceObservationId=source_observation_id,
1883                status=status,
1884                id=id,
1885            )
1886            langfuse_logger.debug(f"Creating dataset item {body}")
1887            return self.api.dataset_items.create(request=body)
1888        except Error as e:
1889            handle_fern_exception(e)
1890            raise e
1891
1892    def resolve_media_references(
1893        self,
1894        *,
1895        obj: Any,
1896        resolve_with: Literal["base64_data_uri"],
1897        max_depth: int = 10,
1898        content_fetch_timeout_seconds: int = 5,
1899    ) -> Any:
1900        """Replace media reference strings in an object with base64 data URIs.
1901
1902        This method recursively traverses an object (up to max_depth) looking for media reference strings
1903        in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using
1904        the provided Langfuse client and replaces the reference string with a base64 data URI.
1905
1906        If fetching media content fails for a reference string, a warning is logged and the reference
1907        string is left unchanged.
1908
1909        Args:
1910            obj: The object to process. Can be a primitive value, array, or nested object.
1911                If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
1912            resolve_with: The representation of the media content to replace the media reference string with.
1913                Currently only "base64_data_uri" is supported.
1914            max_depth: int: The maximum depth to traverse the object. Default is 10.
1915            content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
1916
1917        Returns:
1918            A deep copy of the input object with all media references replaced with base64 data URIs where possible.
1919            If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
1920
1921        Example:
1922            obj = {
1923                "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@",
1924                "nested": {
1925                    "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@"
1926                }
1927            }
1928
1929            result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
1930
1931            # Result:
1932            # {
1933            #     "image": "...",
1934            #     "nested": {
1935            #         "pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
1936            #     }
1937            # }
1938        """
1939        return LangfuseMedia.resolve_media_references(
1940            langfuse_client=self,
1941            obj=obj,
1942            resolve_with=resolve_with,
1943            max_depth=max_depth,
1944            content_fetch_timeout_seconds=content_fetch_timeout_seconds,
1945        )
1946
1947    @overload
1948    def get_prompt(
1949        self,
1950        name: str,
1951        *,
1952        version: Optional[int] = None,
1953        label: Optional[str] = None,
1954        type: Literal["chat"],
1955        cache_ttl_seconds: Optional[int] = None,
1956        fallback: Optional[List[ChatMessageDict]] = None,
1957        max_retries: Optional[int] = None,
1958        fetch_timeout_seconds: Optional[int] = None,
1959    ) -> ChatPromptClient: ...
1960
1961    @overload
1962    def get_prompt(
1963        self,
1964        name: str,
1965        *,
1966        version: Optional[int] = None,
1967        label: Optional[str] = None,
1968        type: Literal["text"] = "text",
1969        cache_ttl_seconds: Optional[int] = None,
1970        fallback: Optional[str] = None,
1971        max_retries: Optional[int] = None,
1972        fetch_timeout_seconds: Optional[int] = None,
1973    ) -> TextPromptClient: ...
1974
1975    def get_prompt(
1976        self,
1977        name: str,
1978        *,
1979        version: Optional[int] = None,
1980        label: Optional[str] = None,
1981        type: Literal["chat", "text"] = "text",
1982        cache_ttl_seconds: Optional[int] = None,
1983        fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None,
1984        max_retries: Optional[int] = None,
1985        fetch_timeout_seconds: Optional[int] = None,
1986    ) -> PromptClient:
1987        """Get a prompt.
1988
1989        This method attempts to fetch the requested prompt from the local cache. If the prompt is not found
1990        in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again
1991        and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will
1992        return the expired prompt as a fallback.
1993
1994        Args:
1995            name (str): The name of the prompt to retrieve.
1996
1997        Keyword Args:
1998            version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
1999            label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
2000            cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a
2001            keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0.
2002            type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text".
2003            fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None.
2004            max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds.
2005            fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
2006
2007        Returns:
2008            The prompt object retrieved from the cache or directly fetched if not cached or expired of type
2009            - TextPromptClient, if type argument is 'text'.
2010            - ChatPromptClient, if type argument is 'chat'.
2011
2012        Raises:
2013            Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
2014            expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
2015        """
2016        if self._resources is None:
2017            raise Error(
2018                "SDK is not correctly initalized. Check the init logs for more details."
2019            )
2020        if version is not None and label is not None:
2021            raise ValueError("Cannot specify both version and label at the same time.")
2022
2023        if not name:
2024            raise ValueError("Prompt name cannot be empty.")
2025
2026        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
2027        bounded_max_retries = self._get_bounded_max_retries(
2028            max_retries, default_max_retries=2, max_retries_upper_bound=4
2029        )
2030
2031        langfuse_logger.debug(f"Getting prompt '{cache_key}'")
2032        cached_prompt = self._resources.prompt_cache.get(cache_key)
2033
2034        if cached_prompt is None or cache_ttl_seconds == 0:
2035            langfuse_logger.debug(
2036                f"Prompt '{cache_key}' not found in cache or caching disabled."
2037            )
2038            try:
2039                return self._fetch_prompt_and_update_cache(
2040                    name,
2041                    version=version,
2042                    label=label,
2043                    ttl_seconds=cache_ttl_seconds,
2044                    max_retries=bounded_max_retries,
2045                    fetch_timeout_seconds=fetch_timeout_seconds,
2046                )
2047            except Exception as e:
2048                if fallback:
2049                    langfuse_logger.warning(
2050                        f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}"
2051                    )
2052
2053                    fallback_client_args: Dict[str, Any] = {
2054                        "name": name,
2055                        "prompt": fallback,
2056                        "type": type,
2057                        "version": version or 0,
2058                        "config": {},
2059                        "labels": [label] if label else [],
2060                        "tags": [],
2061                    }
2062
2063                    if type == "text":
2064                        return TextPromptClient(
2065                            prompt=Prompt_Text(**fallback_client_args),
2066                            is_fallback=True,
2067                        )
2068
2069                    if type == "chat":
2070                        return ChatPromptClient(
2071                            prompt=Prompt_Chat(**fallback_client_args),
2072                            is_fallback=True,
2073                        )
2074
2075                raise e
2076
2077        if cached_prompt.is_expired():
2078            langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.")
2079            try:
2080                # refresh prompt in background thread, refresh_prompt deduplicates tasks
2081                langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.")
2082
2083                def refresh_task() -> None:
2084                    self._fetch_prompt_and_update_cache(
2085                        name,
2086                        version=version,
2087                        label=label,
2088                        ttl_seconds=cache_ttl_seconds,
2089                        max_retries=bounded_max_retries,
2090                        fetch_timeout_seconds=fetch_timeout_seconds,
2091                    )
2092
2093                self._resources.prompt_cache.add_refresh_prompt_task(
2094                    cache_key,
2095                    refresh_task,
2096                )
2097                langfuse_logger.debug(
2098                    f"Returning stale prompt '{cache_key}' from cache."
2099                )
2100                # return stale prompt
2101                return cached_prompt.value
2102
2103            except Exception as e:
2104                langfuse_logger.warning(
2105                    f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}"
2106                )
2107                # creation of refresh prompt task failed, return stale prompt
2108                return cached_prompt.value
2109
2110        return cached_prompt.value
2111
2112    def _fetch_prompt_and_update_cache(
2113        self,
2114        name: str,
2115        *,
2116        version: Optional[int] = None,
2117        label: Optional[str] = None,
2118        ttl_seconds: Optional[int] = None,
2119        max_retries: int,
2120        fetch_timeout_seconds: Optional[int],
2121    ) -> PromptClient:
2122        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
2123        langfuse_logger.debug(f"Fetching prompt '{cache_key}' from server...")
2124
2125        try:
2126
2127            @backoff.on_exception(
2128                backoff.constant, Exception, max_tries=max_retries + 1, logger=None
2129            )
2130            def fetch_prompts() -> Any:
2131                return self.api.prompts.get(
2132                    self._url_encode(name),
2133                    version=version,
2134                    label=label,
2135                    request_options={
2136                        "timeout_in_seconds": fetch_timeout_seconds,
2137                    }
2138                    if fetch_timeout_seconds is not None
2139                    else None,
2140                )
2141
2142            prompt_response = fetch_prompts()
2143
2144            prompt: PromptClient
2145            if prompt_response.type == "chat":
2146                prompt = ChatPromptClient(prompt_response)
2147            else:
2148                prompt = TextPromptClient(prompt_response)
2149
2150            if self._resources is not None:
2151                self._resources.prompt_cache.set(cache_key, prompt, ttl_seconds)
2152
2153            return prompt
2154
2155        except Exception as e:
2156            langfuse_logger.error(
2157                f"Error while fetching prompt '{cache_key}': {str(e)}"
2158            )
2159            raise e
2160
2161    def _get_bounded_max_retries(
2162        self,
2163        max_retries: Optional[int],
2164        *,
2165        default_max_retries: int = 2,
2166        max_retries_upper_bound: int = 4,
2167    ) -> int:
2168        if max_retries is None:
2169            return default_max_retries
2170
2171        bounded_max_retries = min(
2172            max(max_retries, 0),
2173            max_retries_upper_bound,
2174        )
2175
2176        return bounded_max_retries
2177
2178    @overload
2179    def create_prompt(
2180        self,
2181        *,
2182        name: str,
2183        prompt: List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]],
2184        labels: List[str] = [],
2185        tags: Optional[List[str]] = None,
2186        type: Optional[Literal["chat"]],
2187        config: Optional[Any] = None,
2188        commit_message: Optional[str] = None,
2189    ) -> ChatPromptClient: ...
2190
2191    @overload
2192    def create_prompt(
2193        self,
2194        *,
2195        name: str,
2196        prompt: str,
2197        labels: List[str] = [],
2198        tags: Optional[List[str]] = None,
2199        type: Optional[Literal["text"]] = "text",
2200        config: Optional[Any] = None,
2201        commit_message: Optional[str] = None,
2202    ) -> TextPromptClient: ...
2203
2204    def create_prompt(
2205        self,
2206        *,
2207        name: str,
2208        prompt: Union[
2209            str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]]
2210        ],
2211        labels: List[str] = [],
2212        tags: Optional[List[str]] = None,
2213        type: Optional[Literal["chat", "text"]] = "text",
2214        config: Optional[Any] = None,
2215        commit_message: Optional[str] = None,
2216    ) -> PromptClient:
2217        """Create a new prompt in Langfuse.
2218
2219        Keyword Args:
2220            name : The name of the prompt to be created.
2221            prompt : The content of the prompt to be created.
2222            is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead.
2223            labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label.
2224            tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt.
2225            config: Additional structured data to be saved with the prompt. Defaults to None.
2226            type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text".
2227            commit_message: Optional string describing the change.
2228
2229        Returns:
2230            TextPromptClient: The prompt if type argument is 'text'.
2231            ChatPromptClient: The prompt if type argument is 'chat'.
2232        """
2233        try:
2234            langfuse_logger.debug(f"Creating prompt {name=}, {labels=}")
2235
2236            if type == "chat":
2237                if not isinstance(prompt, list):
2238                    raise ValueError(
2239                        "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes."
2240                    )
2241                request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = (
2242                    CreatePromptRequest_Chat(
2243                        name=name,
2244                        prompt=cast(Any, prompt),
2245                        labels=labels,
2246                        tags=tags,
2247                        config=config or {},
2248                        commitMessage=commit_message,
2249                        type="chat",
2250                    )
2251                )
2252                server_prompt = self.api.prompts.create(request=request)
2253
2254                if self._resources is not None:
2255                    self._resources.prompt_cache.invalidate(name)
2256
2257                return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt))
2258
2259            if not isinstance(prompt, str):
2260                raise ValueError("For 'text' type, 'prompt' must be a string.")
2261
2262            request = CreatePromptRequest_Text(
2263                name=name,
2264                prompt=prompt,
2265                labels=labels,
2266                tags=tags,
2267                config=config or {},
2268                commitMessage=commit_message,
2269                type="text",
2270            )
2271
2272            server_prompt = self.api.prompts.create(request=request)
2273
2274            if self._resources is not None:
2275                self._resources.prompt_cache.invalidate(name)
2276
2277            return TextPromptClient(prompt=cast(Prompt_Text, server_prompt))
2278
2279        except Error as e:
2280            handle_fern_exception(e)
2281            raise e
2282
2283    def update_prompt(
2284        self,
2285        *,
2286        name: str,
2287        version: int,
2288        new_labels: List[str] = [],
2289    ) -> Any:
2290        """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
2291
2292        Args:
2293            name (str): The name of the prompt to update.
2294            version (int): The version number of the prompt to update.
2295            new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
2296
2297        Returns:
2298            Prompt: The updated prompt from the Langfuse API.
2299
2300        """
2301        updated_prompt = self.api.prompt_version.update(
2302            name=name,
2303            version=version,
2304            new_labels=new_labels,
2305        )
2306
2307        if self._resources is not None:
2308            self._resources.prompt_cache.invalidate(name)
2309
2310        return updated_prompt
2311
2312    def _url_encode(self, url: str, *, is_url_param: Optional[bool] = False) -> str:
2313        # httpx ≥ 0.28 does its own WHATWG-compliant quoting (eg. encodes bare
2314        # “%”, “?”, “#”, “|”, … in query/path parts).  Re-quoting here would
2315        # double-encode, so we skip when the value is about to be sent straight
2316        # to httpx (`is_url_param=True`) and the installed version is ≥ 0.28.
2317        if is_url_param and Version(httpx.__version__) >= Version("0.28.0"):
2318            return url
2319
2320        # urllib.parse.quote does not escape slashes "/" by default; we need to add safe="" to force escaping
2321        # we need add safe="" to force escaping of slashes
2322        # This is necessary for prompts in prompt folders
2323        return urllib.parse.quote(url, safe="")

Main client for Langfuse tracing and platform features.

This class provides an interface for creating and managing traces, spans, and generations in Langfuse as well as interacting with the Langfuse API.

The client features a thread-safe singleton pattern for each unique public API key, ensuring consistent trace context propagation across your application. It implements efficient batching of spans with configurable flush settings and includes background thread management for media uploads and score ingestion.

Configuration is flexible through either direct parameters or environment variables, with graceful fallbacks and runtime configuration updates.

Attributes:
  • api: Synchronous API client for Langfuse backend communication
  • async_api: Asynchronous API client for Langfuse backend communication
  • langfuse_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
Arguments:
  • public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
  • secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
  • host (Optional[str]): The Langfuse API host URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_HOST environment variable.
  • timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
  • httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
  • debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
  • tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
  • flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
  • flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
  • environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
  • release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
  • media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
  • sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
  • mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
  • blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (metadata.scope.name)
  • additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
  • tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
Example:
from langfuse.otel import Langfuse

# Initialize the client (reads from env vars if not provided)
langfuse = Langfuse(
    public_key="your-public-key",
    secret_key="your-secret-key",
    host="https://cloud.langfuse.com",  # Optional, default shown
)

# Create a trace span
with langfuse.start_as_current_span(name="process-query") as span:
    # Your application code here

    # Create a nested generation span for an LLM call
    with span.start_as_current_generation(
        name="generate-response",
        model="gpt-4",
        input={"query": "Tell me about AI"},
        model_parameters={"temperature": 0.7, "max_tokens": 500}
    ) as generation:
        # Generate response here
        response = "AI is a field of computer science..."

        generation.update(
            output=response,
            usage_details={"prompt_tokens": 10, "completion_tokens": 50},
            cost_details={"total_cost": 0.0023}
        )

        # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL)
        generation.score(name="relevance", value=0.95, data_type="NUMERIC")
Langfuse( *, public_key: Optional[str] = None, secret_key: Optional[str] = None, host: Optional[str] = None, timeout: Optional[int] = None, httpx_client: Optional[httpx.Client] = None, debug: bool = False, tracing_enabled: Optional[bool] = True, flush_at: Optional[int] = None, flush_interval: Optional[float] = None, environment: Optional[str] = None, release: Optional[str] = None, media_upload_thread_count: Optional[int] = None, sample_rate: Optional[float] = None, mask: Optional[langfuse.types.MaskFunction] = None, blocked_instrumentation_scopes: Optional[List[str]] = None, additional_headers: Optional[Dict[str, str]] = None, tracer_provider: Optional[opentelemetry.sdk.trace.TracerProvider] = None)
153    def __init__(
154        self,
155        *,
156        public_key: Optional[str] = None,
157        secret_key: Optional[str] = None,
158        host: Optional[str] = None,
159        timeout: Optional[int] = None,
160        httpx_client: Optional[httpx.Client] = None,
161        debug: bool = False,
162        tracing_enabled: Optional[bool] = True,
163        flush_at: Optional[int] = None,
164        flush_interval: Optional[float] = None,
165        environment: Optional[str] = None,
166        release: Optional[str] = None,
167        media_upload_thread_count: Optional[int] = None,
168        sample_rate: Optional[float] = None,
169        mask: Optional[MaskFunction] = None,
170        blocked_instrumentation_scopes: Optional[List[str]] = None,
171        additional_headers: Optional[Dict[str, str]] = None,
172        tracer_provider: Optional[TracerProvider] = None,
173    ):
174        self._host = host or cast(
175            str, os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com")
176        )
177        self._environment = environment or cast(
178            str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT)
179        )
180        self._project_id: Optional[str] = None
181        sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0))
182        if not 0.0 <= sample_rate <= 1.0:
183            raise ValueError(
184                f"Sample rate must be between 0.0 and 1.0, got {sample_rate}"
185            )
186
187        timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5))
188
189        self._tracing_enabled = (
190            tracing_enabled
191            and os.environ.get(LANGFUSE_TRACING_ENABLED, "True") != "False"
192        )
193        if not self._tracing_enabled:
194            langfuse_logger.info(
195                "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API."
196            )
197
198        debug = debug if debug else (os.getenv(LANGFUSE_DEBUG, "False") == "True")
199        if debug:
200            logging.basicConfig(
201                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
202            )
203            langfuse_logger.setLevel(logging.DEBUG)
204
205        public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY)
206        if public_key is None:
207            langfuse_logger.warning(
208                "Authentication error: Langfuse client initialized without public_key. Client will be disabled. "
209                "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. "
210            )
211            self._otel_tracer = otel_trace_api.NoOpTracer()
212            return
213
214        secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY)
215        if secret_key is None:
216            langfuse_logger.warning(
217                "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. "
218                "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. "
219            )
220            self._otel_tracer = otel_trace_api.NoOpTracer()
221            return
222
223        # Initialize api and tracer if requirements are met
224        self._resources = LangfuseResourceManager(
225            public_key=public_key,
226            secret_key=secret_key,
227            host=self._host,
228            timeout=timeout,
229            environment=environment,
230            release=release,
231            flush_at=flush_at,
232            flush_interval=flush_interval,
233            httpx_client=httpx_client,
234            media_upload_thread_count=media_upload_thread_count,
235            sample_rate=sample_rate,
236            mask=mask,
237            tracing_enabled=self._tracing_enabled,
238            blocked_instrumentation_scopes=blocked_instrumentation_scopes,
239            additional_headers=additional_headers,
240            tracer_provider=tracer_provider,
241        )
242        self._mask = self._resources.mask
243
244        self._otel_tracer = (
245            self._resources.tracer
246            if self._tracing_enabled and self._resources.tracer is not None
247            else otel_trace_api.NoOpTracer()
248        )
249        self.api = self._resources.api
250        self.async_api = self._resources.async_api
api
async_api
def start_span( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseSpan:
252    def start_span(
253        self,
254        *,
255        trace_context: Optional[TraceContext] = None,
256        name: str,
257        input: Optional[Any] = None,
258        output: Optional[Any] = None,
259        metadata: Optional[Any] = None,
260        version: Optional[str] = None,
261        level: Optional[SpanLevel] = None,
262        status_message: Optional[str] = None,
263    ) -> LangfuseSpan:
264        """Create a new span for tracing a unit of work.
265
266        This method creates a new span but does not set it as the current span in the
267        context. To create and use a span within a context, use start_as_current_span().
268
269        The created span will be the child of the current span in the context.
270
271        Args:
272            trace_context: Optional context for connecting to an existing trace
273            name: Name of the span (e.g., function or operation name)
274            input: Input data for the operation (can be any JSON-serializable object)
275            output: Output data from the operation (can be any JSON-serializable object)
276            metadata: Additional metadata to associate with the span
277            version: Version identifier for the code or component
278            level: Importance level of the span (info, warning, error)
279            status_message: Optional status message for the span
280
281        Returns:
282            A LangfuseSpan object that must be ended with .end() when the operation completes
283
284        Example:
285            ```python
286            span = langfuse.start_span(name="process-data")
287            try:
288                # Do work
289                span.update(output="result")
290            finally:
291                span.end()
292            ```
293        """
294        if trace_context:
295            trace_id = trace_context.get("trace_id", None)
296            parent_span_id = trace_context.get("parent_span_id", None)
297
298            if trace_id:
299                remote_parent_span = self._create_remote_parent_span(
300                    trace_id=trace_id, parent_span_id=parent_span_id
301                )
302
303                with otel_trace_api.use_span(
304                    cast(otel_trace_api.Span, remote_parent_span)
305                ):
306                    otel_span = self._otel_tracer.start_span(name=name)
307                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
308
309                    return LangfuseSpan(
310                        otel_span=otel_span,
311                        langfuse_client=self,
312                        environment=self._environment,
313                        input=input,
314                        output=output,
315                        metadata=metadata,
316                        version=version,
317                        level=level,
318                        status_message=status_message,
319                    )
320
321        otel_span = self._otel_tracer.start_span(name=name)
322
323        return LangfuseSpan(
324            otel_span=otel_span,
325            langfuse_client=self,
326            environment=self._environment,
327            input=input,
328            output=output,
329            metadata=metadata,
330            version=version,
331            level=level,
332            status_message=status_message,
333        )

Create a new span for tracing a unit of work.

This method creates a new span but does not set it as the current span in the context. To create and use a span within a context, use start_as_current_span().

The created span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A LangfuseSpan object that must be ended with .end() when the operation completes

Example:
span = langfuse.start_span(name="process-data")
try:
    # Do work
    span.update(output="result")
finally:
    span.end()
def start_as_current_span( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, end_on_exit: Optional[bool] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseSpan]:
335    def start_as_current_span(
336        self,
337        *,
338        trace_context: Optional[TraceContext] = None,
339        name: str,
340        input: Optional[Any] = None,
341        output: Optional[Any] = None,
342        metadata: Optional[Any] = None,
343        version: Optional[str] = None,
344        level: Optional[SpanLevel] = None,
345        status_message: Optional[str] = None,
346        end_on_exit: Optional[bool] = None,
347    ) -> _AgnosticContextManager[LangfuseSpan]:
348        """Create a new span and set it as the current span in a context manager.
349
350        This method creates a new span and sets it as the current span within a context
351        manager. Use this method with a 'with' statement to automatically handle span
352        lifecycle within a code block.
353
354        The created span will be the child of the current span in the context.
355
356        Args:
357            trace_context: Optional context for connecting to an existing trace
358            name: Name of the span (e.g., function or operation name)
359            input: Input data for the operation (can be any JSON-serializable object)
360            output: Output data from the operation (can be any JSON-serializable object)
361            metadata: Additional metadata to associate with the span
362            version: Version identifier for the code or component
363            level: Importance level of the span (info, warning, error)
364            status_message: Optional status message for the span
365            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
366
367        Returns:
368            A context manager that yields a LangfuseSpan
369
370        Example:
371            ```python
372            with langfuse.start_as_current_span(name="process-query") as span:
373                # Do work
374                result = process_data()
375                span.update(output=result)
376
377                # Create a child span automatically
378                with span.start_as_current_span(name="sub-operation") as child_span:
379                    # Do sub-operation work
380                    child_span.update(output="sub-result")
381            ```
382        """
383        if trace_context:
384            trace_id = trace_context.get("trace_id", None)
385            parent_span_id = trace_context.get("parent_span_id", None)
386
387            if trace_id:
388                remote_parent_span = self._create_remote_parent_span(
389                    trace_id=trace_id, parent_span_id=parent_span_id
390                )
391
392                return cast(
393                    _AgnosticContextManager[LangfuseSpan],
394                    self._create_span_with_parent_context(
395                        as_type="span",
396                        name=name,
397                        remote_parent_span=remote_parent_span,
398                        parent=None,
399                        end_on_exit=end_on_exit,
400                        input=input,
401                        output=output,
402                        metadata=metadata,
403                        version=version,
404                        level=level,
405                        status_message=status_message,
406                    ),
407                )
408
409        return cast(
410            _AgnosticContextManager[LangfuseSpan],
411            self._start_as_current_otel_span_with_processed_media(
412                as_type="span",
413                name=name,
414                end_on_exit=end_on_exit,
415                input=input,
416                output=output,
417                metadata=metadata,
418                version=version,
419                level=level,
420                status_message=status_message,
421            ),
422        )

Create a new span and set it as the current span in a context manager.

This method creates a new span and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle span lifecycle within a code block.

The created span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
  • end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:

A context manager that yields a LangfuseSpan

Example:
with langfuse.start_as_current_span(name="process-query") as span:
    # Do work
    result = process_data()
    span.update(output=result)

    # Create a child span automatically
    with span.start_as_current_span(name="sub-operation") as child_span:
        # Do sub-operation work
        child_span.update(output="sub-result")
def start_generation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> LangfuseGeneration:
424    def start_generation(
425        self,
426        *,
427        trace_context: Optional[TraceContext] = None,
428        name: str,
429        input: Optional[Any] = None,
430        output: Optional[Any] = None,
431        metadata: Optional[Any] = None,
432        version: Optional[str] = None,
433        level: Optional[SpanLevel] = None,
434        status_message: Optional[str] = None,
435        completion_start_time: Optional[datetime] = None,
436        model: Optional[str] = None,
437        model_parameters: Optional[Dict[str, MapValue]] = None,
438        usage_details: Optional[Dict[str, int]] = None,
439        cost_details: Optional[Dict[str, float]] = None,
440        prompt: Optional[PromptClient] = None,
441    ) -> LangfuseGeneration:
442        """Create a new generation span for model generations.
443
444        This method creates a specialized span for tracking model generations.
445        It includes additional fields specific to model generations such as model name,
446        token usage, and cost details.
447
448        The created generation span will be the child of the current span in the context.
449
450        Args:
451            trace_context: Optional context for connecting to an existing trace
452            name: Name of the generation operation
453            input: Input data for the model (e.g., prompts)
454            output: Output from the model (e.g., completions)
455            metadata: Additional metadata to associate with the generation
456            version: Version identifier for the model or component
457            level: Importance level of the generation (info, warning, error)
458            status_message: Optional status message for the generation
459            completion_start_time: When the model started generating the response
460            model: Name/identifier of the AI model used (e.g., "gpt-4")
461            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
462            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
463            cost_details: Cost information for the model call
464            prompt: Associated prompt template from Langfuse prompt management
465
466        Returns:
467            A LangfuseGeneration object that must be ended with .end() when complete
468
469        Example:
470            ```python
471            generation = langfuse.start_generation(
472                name="answer-generation",
473                model="gpt-4",
474                input={"prompt": "Explain quantum computing"},
475                model_parameters={"temperature": 0.7}
476            )
477            try:
478                # Call model API
479                response = llm.generate(...)
480
481                generation.update(
482                    output=response.text,
483                    usage_details={
484                        "prompt_tokens": response.usage.prompt_tokens,
485                        "completion_tokens": response.usage.completion_tokens
486                    }
487                )
488            finally:
489                generation.end()
490            ```
491        """
492        if trace_context:
493            trace_id = trace_context.get("trace_id", None)
494            parent_span_id = trace_context.get("parent_span_id", None)
495
496            if trace_id:
497                remote_parent_span = self._create_remote_parent_span(
498                    trace_id=trace_id, parent_span_id=parent_span_id
499                )
500
501                with otel_trace_api.use_span(
502                    cast(otel_trace_api.Span, remote_parent_span)
503                ):
504                    otel_span = self._otel_tracer.start_span(name=name)
505                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
506
507                    return LangfuseGeneration(
508                        otel_span=otel_span,
509                        langfuse_client=self,
510                        input=input,
511                        output=output,
512                        metadata=metadata,
513                        version=version,
514                        level=level,
515                        status_message=status_message,
516                        completion_start_time=completion_start_time,
517                        model=model,
518                        model_parameters=model_parameters,
519                        usage_details=usage_details,
520                        cost_details=cost_details,
521                        prompt=prompt,
522                    )
523
524        otel_span = self._otel_tracer.start_span(name=name)
525
526        return LangfuseGeneration(
527            otel_span=otel_span,
528            langfuse_client=self,
529            input=input,
530            output=output,
531            metadata=metadata,
532            version=version,
533            level=level,
534            status_message=status_message,
535            completion_start_time=completion_start_time,
536            model=model,
537            model_parameters=model_parameters,
538            usage_details=usage_details,
539            cost_details=cost_details,
540            prompt=prompt,
541        )

Create a new generation span for model generations.

This method creates a specialized span for tracking model generations. It includes additional fields specific to model generations such as model name, token usage, and cost details.

The created generation span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A LangfuseGeneration object that must be ended with .end() when complete

Example:
generation = langfuse.start_generation(
    name="answer-generation",
    model="gpt-4",
    input={"prompt": "Explain quantum computing"},
    model_parameters={"temperature": 0.7}
)
try:
    # Call model API
    response = llm.generate(...)

    generation.update(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
finally:
    generation.end()
def start_as_current_generation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None, end_on_exit: Optional[bool] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseGeneration]:
543    def start_as_current_generation(
544        self,
545        *,
546        trace_context: Optional[TraceContext] = None,
547        name: str,
548        input: Optional[Any] = None,
549        output: Optional[Any] = None,
550        metadata: Optional[Any] = None,
551        version: Optional[str] = None,
552        level: Optional[SpanLevel] = None,
553        status_message: Optional[str] = None,
554        completion_start_time: Optional[datetime] = None,
555        model: Optional[str] = None,
556        model_parameters: Optional[Dict[str, MapValue]] = None,
557        usage_details: Optional[Dict[str, int]] = None,
558        cost_details: Optional[Dict[str, float]] = None,
559        prompt: Optional[PromptClient] = None,
560        end_on_exit: Optional[bool] = None,
561    ) -> _AgnosticContextManager[LangfuseGeneration]:
562        """Create a new generation span and set it as the current span in a context manager.
563
564        This method creates a specialized span for model generations and sets it as the
565        current span within a context manager. Use this method with a 'with' statement to
566        automatically handle the generation span lifecycle within a code block.
567
568        The created generation span will be the child of the current span in the context.
569
570        Args:
571            trace_context: Optional context for connecting to an existing trace
572            name: Name of the generation operation
573            input: Input data for the model (e.g., prompts)
574            output: Output from the model (e.g., completions)
575            metadata: Additional metadata to associate with the generation
576            version: Version identifier for the model or component
577            level: Importance level of the generation (info, warning, error)
578            status_message: Optional status message for the generation
579            completion_start_time: When the model started generating the response
580            model: Name/identifier of the AI model used (e.g., "gpt-4")
581            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
582            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
583            cost_details: Cost information for the model call
584            prompt: Associated prompt template from Langfuse prompt management
585            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
586
587        Returns:
588            A context manager that yields a LangfuseGeneration
589
590        Example:
591            ```python
592            with langfuse.start_as_current_generation(
593                name="answer-generation",
594                model="gpt-4",
595                input={"prompt": "Explain quantum computing"}
596            ) as generation:
597                # Call model API
598                response = llm.generate(...)
599
600                # Update with results
601                generation.update(
602                    output=response.text,
603                    usage_details={
604                        "prompt_tokens": response.usage.prompt_tokens,
605                        "completion_tokens": response.usage.completion_tokens
606                    }
607                )
608            ```
609        """
610        if trace_context:
611            trace_id = trace_context.get("trace_id", None)
612            parent_span_id = trace_context.get("parent_span_id", None)
613
614            if trace_id:
615                remote_parent_span = self._create_remote_parent_span(
616                    trace_id=trace_id, parent_span_id=parent_span_id
617                )
618
619                return cast(
620                    _AgnosticContextManager[LangfuseGeneration],
621                    self._create_span_with_parent_context(
622                        as_type="generation",
623                        name=name,
624                        remote_parent_span=remote_parent_span,
625                        parent=None,
626                        end_on_exit=end_on_exit,
627                        input=input,
628                        output=output,
629                        metadata=metadata,
630                        version=version,
631                        level=level,
632                        status_message=status_message,
633                        completion_start_time=completion_start_time,
634                        model=model,
635                        model_parameters=model_parameters,
636                        usage_details=usage_details,
637                        cost_details=cost_details,
638                        prompt=prompt,
639                    ),
640                )
641
642        return cast(
643            _AgnosticContextManager[LangfuseGeneration],
644            self._start_as_current_otel_span_with_processed_media(
645                as_type="generation",
646                name=name,
647                end_on_exit=end_on_exit,
648                input=input,
649                output=output,
650                metadata=metadata,
651                version=version,
652                level=level,
653                status_message=status_message,
654                completion_start_time=completion_start_time,
655                model=model,
656                model_parameters=model_parameters,
657                usage_details=usage_details,
658                cost_details=cost_details,
659                prompt=prompt,
660            ),
661        )

Create a new generation span and set it as the current span in a context manager.

This method creates a specialized span for model generations and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the generation span lifecycle within a code block.

The created generation span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
  • end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:

A context manager that yields a LangfuseGeneration

Example:
with langfuse.start_as_current_generation(
    name="answer-generation",
    model="gpt-4",
    input={"prompt": "Explain quantum computing"}
) as generation:
    # Call model API
    response = llm.generate(...)

    # Update with results
    generation.update(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
def update_current_generation( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> None:
780    def update_current_generation(
781        self,
782        *,
783        name: Optional[str] = None,
784        input: Optional[Any] = None,
785        output: Optional[Any] = None,
786        metadata: Optional[Any] = None,
787        version: Optional[str] = None,
788        level: Optional[SpanLevel] = None,
789        status_message: Optional[str] = None,
790        completion_start_time: Optional[datetime] = None,
791        model: Optional[str] = None,
792        model_parameters: Optional[Dict[str, MapValue]] = None,
793        usage_details: Optional[Dict[str, int]] = None,
794        cost_details: Optional[Dict[str, float]] = None,
795        prompt: Optional[PromptClient] = None,
796    ) -> None:
797        """Update the current active generation span with new information.
798
799        This method updates the current generation span in the active context with
800        additional information. It's useful for adding output, usage stats, or other
801        details that become available during or after model generation.
802
803        Args:
804            name: The generation name
805            input: Updated input data for the model
806            output: Output from the model (e.g., completions)
807            metadata: Additional metadata to associate with the generation
808            version: Version identifier for the model or component
809            level: Importance level of the generation (info, warning, error)
810            status_message: Optional status message for the generation
811            completion_start_time: When the model started generating the response
812            model: Name/identifier of the AI model used (e.g., "gpt-4")
813            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
814            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
815            cost_details: Cost information for the model call
816            prompt: Associated prompt template from Langfuse prompt management
817
818        Example:
819            ```python
820            with langfuse.start_as_current_generation(name="answer-query") as generation:
821                # Initial setup and API call
822                response = llm.generate(...)
823
824                # Update with results that weren't available at creation time
825                langfuse.update_current_generation(
826                    output=response.text,
827                    usage_details={
828                        "prompt_tokens": response.usage.prompt_tokens,
829                        "completion_tokens": response.usage.completion_tokens
830                    }
831                )
832            ```
833        """
834        if not self._tracing_enabled:
835            langfuse_logger.debug(
836                "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode."
837            )
838            return
839
840        current_otel_span = self._get_current_otel_span()
841
842        if current_otel_span is not None:
843            generation = LangfuseGeneration(
844                otel_span=current_otel_span, langfuse_client=self
845            )
846
847            if name:
848                current_otel_span.update_name(name)
849
850            generation.update(
851                input=input,
852                output=output,
853                metadata=metadata,
854                version=version,
855                level=level,
856                status_message=status_message,
857                completion_start_time=completion_start_time,
858                model=model,
859                model_parameters=model_parameters,
860                usage_details=usage_details,
861                cost_details=cost_details,
862                prompt=prompt,
863            )

Update the current active generation span with new information.

This method updates the current generation span in the active context with additional information. It's useful for adding output, usage stats, or other details that become available during or after model generation.

Arguments:
  • name: The generation name
  • input: Updated input data for the model
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation:
    # Initial setup and API call
    response = llm.generate(...)

    # Update with results that weren't available at creation time
    langfuse.update_current_generation(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
def update_current_span( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> None:
865    def update_current_span(
866        self,
867        *,
868        name: Optional[str] = None,
869        input: Optional[Any] = None,
870        output: Optional[Any] = None,
871        metadata: Optional[Any] = None,
872        version: Optional[str] = None,
873        level: Optional[SpanLevel] = None,
874        status_message: Optional[str] = None,
875    ) -> None:
876        """Update the current active span with new information.
877
878        This method updates the current span in the active context with
879        additional information. It's useful for adding outputs or metadata
880        that become available during execution.
881
882        Args:
883            name: The span name
884            input: Updated input data for the operation
885            output: Output data from the operation
886            metadata: Additional metadata to associate with the span
887            version: Version identifier for the code or component
888            level: Importance level of the span (info, warning, error)
889            status_message: Optional status message for the span
890
891        Example:
892            ```python
893            with langfuse.start_as_current_span(name="process-data") as span:
894                # Initial processing
895                result = process_first_part()
896
897                # Update with intermediate results
898                langfuse.update_current_span(metadata={"intermediate_result": result})
899
900                # Continue processing
901                final_result = process_second_part(result)
902
903                # Final update
904                langfuse.update_current_span(output=final_result)
905            ```
906        """
907        if not self._tracing_enabled:
908            langfuse_logger.debug(
909                "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode."
910            )
911            return
912
913        current_otel_span = self._get_current_otel_span()
914
915        if current_otel_span is not None:
916            span = LangfuseSpan(
917                otel_span=current_otel_span,
918                langfuse_client=self,
919                environment=self._environment,
920            )
921
922            if name:
923                current_otel_span.update_name(name)
924
925            span.update(
926                input=input,
927                output=output,
928                metadata=metadata,
929                version=version,
930                level=level,
931                status_message=status_message,
932            )

Update the current active span with new information.

This method updates the current span in the active context with additional information. It's useful for adding outputs or metadata that become available during execution.

Arguments:
  • name: The span name
  • input: Updated input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Example:
with langfuse.start_as_current_span(name="process-data") as span:
    # Initial processing
    result = process_first_part()

    # Update with intermediate results
    langfuse.update_current_span(metadata={"intermediate_result": result})

    # Continue processing
    final_result = process_second_part(result)

    # Final update
    langfuse.update_current_span(output=final_result)
def update_current_trace( self, *, name: Optional[str] = None, user_id: Optional[str] = None, session_id: Optional[str] = None, version: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, tags: Optional[List[str]] = None, public: Optional[bool] = None) -> None:
 934    def update_current_trace(
 935        self,
 936        *,
 937        name: Optional[str] = None,
 938        user_id: Optional[str] = None,
 939        session_id: Optional[str] = None,
 940        version: Optional[str] = None,
 941        input: Optional[Any] = None,
 942        output: Optional[Any] = None,
 943        metadata: Optional[Any] = None,
 944        tags: Optional[List[str]] = None,
 945        public: Optional[bool] = None,
 946    ) -> None:
 947        """Update the current trace with additional information.
 948
 949        This method updates the Langfuse trace that the current span belongs to. It's useful for
 950        adding trace-level metadata like user ID, session ID, or tags that apply to
 951        the entire Langfuse trace rather than just a single observation.
 952
 953        Args:
 954            name: Updated name for the Langfuse trace
 955            user_id: ID of the user who initiated the Langfuse trace
 956            session_id: Session identifier for grouping related Langfuse traces
 957            version: Version identifier for the application or service
 958            input: Input data for the overall Langfuse trace
 959            output: Output data from the overall Langfuse trace
 960            metadata: Additional metadata to associate with the Langfuse trace
 961            tags: List of tags to categorize the Langfuse trace
 962            public: Whether the Langfuse trace should be publicly accessible
 963
 964        Example:
 965            ```python
 966            with langfuse.start_as_current_span(name="handle-request") as span:
 967                # Get user information
 968                user = authenticate_user(request)
 969
 970                # Update trace with user context
 971                langfuse.update_current_trace(
 972                    user_id=user.id,
 973                    session_id=request.session_id,
 974                    tags=["production", "web-app"]
 975                )
 976
 977                # Continue processing
 978                response = process_request(request)
 979
 980                # Update span with results
 981                span.update(output=response)
 982            ```
 983        """
 984        if not self._tracing_enabled:
 985            langfuse_logger.debug(
 986                "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode."
 987            )
 988            return
 989
 990        current_otel_span = self._get_current_otel_span()
 991
 992        if current_otel_span is not None:
 993            span = LangfuseSpan(
 994                otel_span=current_otel_span,
 995                langfuse_client=self,
 996                environment=self._environment,
 997            )
 998
 999            span.update_trace(
1000                name=name,
1001                user_id=user_id,
1002                session_id=session_id,
1003                version=version,
1004                input=input,
1005                output=output,
1006                metadata=metadata,
1007                tags=tags,
1008                public=public,
1009            )

Update the current trace with additional information.

This method updates the Langfuse trace that the current span belongs to. It's useful for adding trace-level metadata like user ID, session ID, or tags that apply to the entire Langfuse trace rather than just a single observation.

Arguments:
  • name: Updated name for the Langfuse trace
  • user_id: ID of the user who initiated the Langfuse trace
  • session_id: Session identifier for grouping related Langfuse traces
  • version: Version identifier for the application or service
  • input: Input data for the overall Langfuse trace
  • output: Output data from the overall Langfuse trace
  • metadata: Additional metadata to associate with the Langfuse trace
  • tags: List of tags to categorize the Langfuse trace
  • public: Whether the Langfuse trace should be publicly accessible
Example:
with langfuse.start_as_current_span(name="handle-request") as span:
    # Get user information
    user = authenticate_user(request)

    # Update trace with user context
    langfuse.update_current_trace(
        user_id=user.id,
        session_id=request.session_id,
        tags=["production", "web-app"]
    )

    # Continue processing
    response = process_request(request)

    # Update span with results
    span.update(output=response)
def create_event( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseEvent:
1011    def create_event(
1012        self,
1013        *,
1014        trace_context: Optional[TraceContext] = None,
1015        name: str,
1016        input: Optional[Any] = None,
1017        output: Optional[Any] = None,
1018        metadata: Optional[Any] = None,
1019        version: Optional[str] = None,
1020        level: Optional[SpanLevel] = None,
1021        status_message: Optional[str] = None,
1022    ) -> LangfuseEvent:
1023        """Create a new Langfuse observation of type 'EVENT'.
1024
1025        The created Langfuse Event observation will be the child of the current span in the context.
1026
1027        Args:
1028            trace_context: Optional context for connecting to an existing trace
1029            name: Name of the span (e.g., function or operation name)
1030            input: Input data for the operation (can be any JSON-serializable object)
1031            output: Output data from the operation (can be any JSON-serializable object)
1032            metadata: Additional metadata to associate with the span
1033            version: Version identifier for the code or component
1034            level: Importance level of the span (info, warning, error)
1035            status_message: Optional status message for the span
1036
1037        Returns:
1038            The Langfuse Event object
1039
1040        Example:
1041            ```python
1042            event = langfuse.create_event(name="process-event")
1043            ```
1044        """
1045        timestamp = time_ns()
1046
1047        if trace_context:
1048            trace_id = trace_context.get("trace_id", None)
1049            parent_span_id = trace_context.get("parent_span_id", None)
1050
1051            if trace_id:
1052                remote_parent_span = self._create_remote_parent_span(
1053                    trace_id=trace_id, parent_span_id=parent_span_id
1054                )
1055
1056                with otel_trace_api.use_span(
1057                    cast(otel_trace_api.Span, remote_parent_span)
1058                ):
1059                    otel_span = self._otel_tracer.start_span(
1060                        name=name, start_time=timestamp
1061                    )
1062                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
1063
1064                    return cast(
1065                        LangfuseEvent,
1066                        LangfuseEvent(
1067                            otel_span=otel_span,
1068                            langfuse_client=self,
1069                            environment=self._environment,
1070                            input=input,
1071                            output=output,
1072                            metadata=metadata,
1073                            version=version,
1074                            level=level,
1075                            status_message=status_message,
1076                        ).end(end_time=timestamp),
1077                    )
1078
1079        otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp)
1080
1081        return cast(
1082            LangfuseEvent,
1083            LangfuseEvent(
1084                otel_span=otel_span,
1085                langfuse_client=self,
1086                environment=self._environment,
1087                input=input,
1088                output=output,
1089                metadata=metadata,
1090                version=version,
1091                level=level,
1092                status_message=status_message,
1093            ).end(end_time=timestamp),
1094        )

Create a new Langfuse observation of type 'EVENT'.

The created Langfuse Event observation will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

The Langfuse Event object

Example:
event = langfuse.create_event(name="process-event")
@staticmethod
def create_trace_id(*, seed: Optional[str] = None) -> str:
1183    @staticmethod
1184    def create_trace_id(*, seed: Optional[str] = None) -> str:
1185        """Create a unique trace ID for use with Langfuse.
1186
1187        This method generates a unique trace ID for use with various Langfuse APIs.
1188        It can either generate a random ID or create a deterministic ID based on
1189        a seed string.
1190
1191        Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes.
1192        This method ensures the generated ID meets this requirement. If you need to
1193        correlate an external ID with a Langfuse trace ID, use the external ID as the
1194        seed to get a valid, deterministic Langfuse trace ID.
1195
1196        Args:
1197            seed: Optional string to use as a seed for deterministic ID generation.
1198                 If provided, the same seed will always produce the same ID.
1199                 If not provided, a random ID will be generated.
1200
1201        Returns:
1202            A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
1203
1204        Example:
1205            ```python
1206            # Generate a random trace ID
1207            trace_id = langfuse.create_trace_id()
1208
1209            # Generate a deterministic ID based on a seed
1210            session_trace_id = langfuse.create_trace_id(seed="session-456")
1211
1212            # Correlate an external ID with a Langfuse trace ID
1213            external_id = "external-system-123456"
1214            correlated_trace_id = langfuse.create_trace_id(seed=external_id)
1215
1216            # Use the ID with trace context
1217            with langfuse.start_as_current_span(
1218                name="process-request",
1219                trace_context={"trace_id": trace_id}
1220            ) as span:
1221                # Operation will be part of the specific trace
1222                pass
1223            ```
1224        """
1225        if not seed:
1226            trace_id_int = RandomIdGenerator().generate_trace_id()
1227
1228            return Langfuse._format_otel_trace_id(trace_id_int)
1229
1230        return sha256(seed.encode("utf-8")).digest()[:16].hex()

Create a unique trace ID for use with Langfuse.

This method generates a unique trace ID for use with various Langfuse APIs. It can either generate a random ID or create a deterministic ID based on a seed string.

Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. This method ensures the generated ID meets this requirement. If you need to correlate an external ID with a Langfuse trace ID, use the external ID as the seed to get a valid, deterministic Langfuse trace ID.

Arguments:
  • seed: Optional string to use as a seed for deterministic ID generation. If provided, the same seed will always produce the same ID. If not provided, a random ID will be generated.
Returns:

A 32-character lowercase hexadecimal string representing the Langfuse trace ID.

Example:
# Generate a random trace ID
trace_id = langfuse.create_trace_id()

# Generate a deterministic ID based on a seed
session_trace_id = langfuse.create_trace_id(seed="session-456")

# Correlate an external ID with a Langfuse trace ID
external_id = "external-system-123456"
correlated_trace_id = langfuse.create_trace_id(seed=external_id)

# Use the ID with trace context
with langfuse.start_as_current_span(
    name="process-request",
    trace_context={"trace_id": trace_id}
) as span:
    # Operation will be part of the specific trace
    pass
def create_score( self, *, name: str, value: Union[float, str], session_id: Optional[str] = None, dataset_run_id: Optional[str] = None, trace_id: Optional[str] = None, observation_id: Optional[str] = None, score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None, metadata: Optional[Any] = None) -> None:
1306    def create_score(
1307        self,
1308        *,
1309        name: str,
1310        value: Union[float, str],
1311        session_id: Optional[str] = None,
1312        dataset_run_id: Optional[str] = None,
1313        trace_id: Optional[str] = None,
1314        observation_id: Optional[str] = None,
1315        score_id: Optional[str] = None,
1316        data_type: Optional[ScoreDataType] = None,
1317        comment: Optional[str] = None,
1318        config_id: Optional[str] = None,
1319        metadata: Optional[Any] = None,
1320    ) -> None:
1321        """Create a score for a specific trace or observation.
1322
1323        This method creates a score for evaluating a Langfuse trace or observation. Scores can be
1324        used to track quality metrics, user feedback, or automated evaluations.
1325
1326        Args:
1327            name: Name of the score (e.g., "relevance", "accuracy")
1328            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1329            session_id: ID of the Langfuse session to associate the score with
1330            dataset_run_id: ID of the Langfuse dataset run to associate the score with
1331            trace_id: ID of the Langfuse trace to associate the score with
1332            observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
1333            score_id: Optional custom ID for the score (auto-generated if not provided)
1334            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1335            comment: Optional comment or explanation for the score
1336            config_id: Optional ID of a score config defined in Langfuse
1337            metadata: Optional metadata to be attached to the score
1338
1339        Example:
1340            ```python
1341            # Create a numeric score for accuracy
1342            langfuse.create_score(
1343                name="accuracy",
1344                value=0.92,
1345                trace_id="abcdef1234567890abcdef1234567890",
1346                data_type="NUMERIC",
1347                comment="High accuracy with minor irrelevant details"
1348            )
1349
1350            # Create a categorical score for sentiment
1351            langfuse.create_score(
1352                name="sentiment",
1353                value="positive",
1354                trace_id="abcdef1234567890abcdef1234567890",
1355                observation_id="abcdef1234567890",
1356                data_type="CATEGORICAL"
1357            )
1358            ```
1359        """
1360        if not self._tracing_enabled:
1361            return
1362
1363        score_id = score_id or self._create_observation_id()
1364
1365        try:
1366            new_body = ScoreBody(
1367                id=score_id,
1368                sessionId=session_id,
1369                datasetRunId=dataset_run_id,
1370                traceId=trace_id,
1371                observationId=observation_id,
1372                name=name,
1373                value=value,
1374                dataType=data_type,  # type: ignore
1375                comment=comment,
1376                configId=config_id,
1377                environment=self._environment,
1378                metadata=metadata,
1379            )
1380
1381            event = {
1382                "id": self.create_trace_id(),
1383                "type": "score-create",
1384                "timestamp": _get_timestamp(),
1385                "body": new_body,
1386            }
1387
1388            if self._resources is not None:
1389                # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar
1390                force_sample = (
1391                    not self._is_valid_trace_id(trace_id) if trace_id else True
1392                )
1393
1394                self._resources.add_score_task(
1395                    event,
1396                    force_sample=force_sample,
1397                )
1398
1399        except Exception as e:
1400            langfuse_logger.exception(
1401                f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}"
1402            )

Create a score for a specific trace or observation.

This method creates a score for evaluating a Langfuse trace or observation. Scores can be used to track quality metrics, user feedback, or automated evaluations.

Arguments:
  • name: Name of the score (e.g., "relevance", "accuracy")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • session_id: ID of the Langfuse session to associate the score with
  • dataset_run_id: ID of the Langfuse dataset run to associate the score with
  • trace_id: ID of the Langfuse trace to associate the score with
  • observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
  • metadata: Optional metadata to be attached to the score
Example:
# Create a numeric score for accuracy
langfuse.create_score(
    name="accuracy",
    value=0.92,
    trace_id="abcdef1234567890abcdef1234567890",
    data_type="NUMERIC",
    comment="High accuracy with minor irrelevant details"
)

# Create a categorical score for sentiment
langfuse.create_score(
    name="sentiment",
    value="positive",
    trace_id="abcdef1234567890abcdef1234567890",
    observation_id="abcdef1234567890",
    data_type="CATEGORICAL"
)
def score_current_span( self, *, name: str, value: Union[float, str], score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None) -> None:
1428    def score_current_span(
1429        self,
1430        *,
1431        name: str,
1432        value: Union[float, str],
1433        score_id: Optional[str] = None,
1434        data_type: Optional[ScoreDataType] = None,
1435        comment: Optional[str] = None,
1436        config_id: Optional[str] = None,
1437    ) -> None:
1438        """Create a score for the current active span.
1439
1440        This method scores the currently active span in the context. It's a convenient
1441        way to score the current operation without needing to know its trace and span IDs.
1442
1443        Args:
1444            name: Name of the score (e.g., "relevance", "accuracy")
1445            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1446            score_id: Optional custom ID for the score (auto-generated if not provided)
1447            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1448            comment: Optional comment or explanation for the score
1449            config_id: Optional ID of a score config defined in Langfuse
1450
1451        Example:
1452            ```python
1453            with langfuse.start_as_current_generation(name="answer-query") as generation:
1454                # Generate answer
1455                response = generate_answer(...)
1456                generation.update(output=response)
1457
1458                # Score the generation
1459                langfuse.score_current_span(
1460                    name="relevance",
1461                    value=0.85,
1462                    data_type="NUMERIC",
1463                    comment="Mostly relevant but contains some tangential information"
1464                )
1465            ```
1466        """
1467        current_span = self._get_current_otel_span()
1468
1469        if current_span is not None:
1470            trace_id = self._get_otel_trace_id(current_span)
1471            observation_id = self._get_otel_span_id(current_span)
1472
1473            langfuse_logger.info(
1474                f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}"
1475            )
1476
1477            self.create_score(
1478                trace_id=trace_id,
1479                observation_id=observation_id,
1480                name=name,
1481                value=cast(str, value),
1482                score_id=score_id,
1483                data_type=cast(Literal["CATEGORICAL"], data_type),
1484                comment=comment,
1485                config_id=config_id,
1486            )

Create a score for the current active span.

This method scores the currently active span in the context. It's a convenient way to score the current operation without needing to know its trace and span IDs.

Arguments:
  • name: Name of the score (e.g., "relevance", "accuracy")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation:
    # Generate answer
    response = generate_answer(...)
    generation.update(output=response)

    # Score the generation
    langfuse.score_current_span(
        name="relevance",
        value=0.85,
        data_type="NUMERIC",
        comment="Mostly relevant but contains some tangential information"
    )
def score_current_trace( self, *, name: str, value: Union[float, str], score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None) -> None:
1512    def score_current_trace(
1513        self,
1514        *,
1515        name: str,
1516        value: Union[float, str],
1517        score_id: Optional[str] = None,
1518        data_type: Optional[ScoreDataType] = None,
1519        comment: Optional[str] = None,
1520        config_id: Optional[str] = None,
1521    ) -> None:
1522        """Create a score for the current trace.
1523
1524        This method scores the trace of the currently active span. Unlike score_current_span,
1525        this method associates the score with the entire trace rather than a specific span.
1526        It's useful for scoring overall performance or quality of the entire operation.
1527
1528        Args:
1529            name: Name of the score (e.g., "user_satisfaction", "overall_quality")
1530            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
1531            score_id: Optional custom ID for the score (auto-generated if not provided)
1532            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
1533            comment: Optional comment or explanation for the score
1534            config_id: Optional ID of a score config defined in Langfuse
1535
1536        Example:
1537            ```python
1538            with langfuse.start_as_current_span(name="process-user-request") as span:
1539                # Process request
1540                result = process_complete_request()
1541                span.update(output=result)
1542
1543                # Score the overall trace
1544                langfuse.score_current_trace(
1545                    name="overall_quality",
1546                    value=0.95,
1547                    data_type="NUMERIC",
1548                    comment="High quality end-to-end response"
1549                )
1550            ```
1551        """
1552        current_span = self._get_current_otel_span()
1553
1554        if current_span is not None:
1555            trace_id = self._get_otel_trace_id(current_span)
1556
1557            langfuse_logger.info(
1558                f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}"
1559            )
1560
1561            self.create_score(
1562                trace_id=trace_id,
1563                name=name,
1564                value=cast(str, value),
1565                score_id=score_id,
1566                data_type=cast(Literal["CATEGORICAL"], data_type),
1567                comment=comment,
1568                config_id=config_id,
1569            )

Create a score for the current trace.

This method scores the trace of the currently active span. Unlike score_current_span, this method associates the score with the entire trace rather than a specific span. It's useful for scoring overall performance or quality of the entire operation.

Arguments:
  • name: Name of the score (e.g., "user_satisfaction", "overall_quality")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_span(name="process-user-request") as span:
    # Process request
    result = process_complete_request()
    span.update(output=result)

    # Score the overall trace
    langfuse.score_current_trace(
        name="overall_quality",
        value=0.95,
        data_type="NUMERIC",
        comment="High quality end-to-end response"
    )
def flush(self) -> None:
1571    def flush(self) -> None:
1572        """Force flush all pending spans and events to the Langfuse API.
1573
1574        This method manually flushes any pending spans, scores, and other events to the
1575        Langfuse API. It's useful in scenarios where you want to ensure all data is sent
1576        before proceeding, without waiting for the automatic flush interval.
1577
1578        Example:
1579            ```python
1580            # Record some spans and scores
1581            with langfuse.start_as_current_span(name="operation") as span:
1582                # Do work...
1583                pass
1584
1585            # Ensure all data is sent to Langfuse before proceeding
1586            langfuse.flush()
1587
1588            # Continue with other work
1589            ```
1590        """
1591        if self._resources is not None:
1592            self._resources.flush()

Force flush all pending spans and events to the Langfuse API.

This method manually flushes any pending spans, scores, and other events to the Langfuse API. It's useful in scenarios where you want to ensure all data is sent before proceeding, without waiting for the automatic flush interval.

Example:
# Record some spans and scores
with langfuse.start_as_current_span(name="operation") as span:
    # Do work...
    pass

# Ensure all data is sent to Langfuse before proceeding
langfuse.flush()

# Continue with other work
def shutdown(self) -> None:
1594    def shutdown(self) -> None:
1595        """Shut down the Langfuse client and flush all pending data.
1596
1597        This method cleanly shuts down the Langfuse client, ensuring all pending data
1598        is flushed to the API and all background threads are properly terminated.
1599
1600        It's important to call this method when your application is shutting down to
1601        prevent data loss and resource leaks. For most applications, using the client
1602        as a context manager or relying on the automatic shutdown via atexit is sufficient.
1603
1604        Example:
1605            ```python
1606            # Initialize Langfuse
1607            langfuse = Langfuse(public_key="...", secret_key="...")
1608
1609            # Use Langfuse throughout your application
1610            # ...
1611
1612            # When application is shutting down
1613            langfuse.shutdown()
1614            ```
1615        """
1616        if self._resources is not None:
1617            self._resources.shutdown()

Shut down the Langfuse client and flush all pending data.

This method cleanly shuts down the Langfuse client, ensuring all pending data is flushed to the API and all background threads are properly terminated.

It's important to call this method when your application is shutting down to prevent data loss and resource leaks. For most applications, using the client as a context manager or relying on the automatic shutdown via atexit is sufficient.

Example:
# Initialize Langfuse
langfuse = Langfuse(public_key="...", secret_key="...")

# Use Langfuse throughout your application
# ...

# When application is shutting down
langfuse.shutdown()
def get_current_trace_id(self) -> Optional[str]:
1619    def get_current_trace_id(self) -> Optional[str]:
1620        """Get the trace ID of the current active span.
1621
1622        This method retrieves the trace ID from the currently active span in the context.
1623        It can be used to get the trace ID for referencing in logs, external systems,
1624        or for creating related operations.
1625
1626        Returns:
1627            The current trace ID as a 32-character lowercase hexadecimal string,
1628            or None if there is no active span.
1629
1630        Example:
1631            ```python
1632            with langfuse.start_as_current_span(name="process-request") as span:
1633                # Get the current trace ID for reference
1634                trace_id = langfuse.get_current_trace_id()
1635
1636                # Use it for external correlation
1637                log.info(f"Processing request with trace_id: {trace_id}")
1638
1639                # Or pass to another system
1640                external_system.process(data, trace_id=trace_id)
1641            ```
1642        """
1643        if not self._tracing_enabled:
1644            langfuse_logger.debug(
1645                "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode."
1646            )
1647            return None
1648
1649        current_otel_span = self._get_current_otel_span()
1650
1651        return self._get_otel_trace_id(current_otel_span) if current_otel_span else None

Get the trace ID of the current active span.

This method retrieves the trace ID from the currently active span in the context. It can be used to get the trace ID for referencing in logs, external systems, or for creating related operations.

Returns:

The current trace ID as a 32-character lowercase hexadecimal string, or None if there is no active span.

Example:
with langfuse.start_as_current_span(name="process-request") as span:
    # Get the current trace ID for reference
    trace_id = langfuse.get_current_trace_id()

    # Use it for external correlation
    log.info(f"Processing request with trace_id: {trace_id}")

    # Or pass to another system
    external_system.process(data, trace_id=trace_id)
def get_current_observation_id(self) -> Optional[str]:
1653    def get_current_observation_id(self) -> Optional[str]:
1654        """Get the observation ID (span ID) of the current active span.
1655
1656        This method retrieves the observation ID from the currently active span in the context.
1657        It can be used to get the observation ID for referencing in logs, external systems,
1658        or for creating scores or other related operations.
1659
1660        Returns:
1661            The current observation ID as a 16-character lowercase hexadecimal string,
1662            or None if there is no active span.
1663
1664        Example:
1665            ```python
1666            with langfuse.start_as_current_span(name="process-user-query") as span:
1667                # Get the current observation ID
1668                observation_id = langfuse.get_current_observation_id()
1669
1670                # Store it for later reference
1671                cache.set(f"query_{query_id}_observation", observation_id)
1672
1673                # Process the query...
1674            ```
1675        """
1676        if not self._tracing_enabled:
1677            langfuse_logger.debug(
1678                "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode."
1679            )
1680            return None
1681
1682        current_otel_span = self._get_current_otel_span()
1683
1684        return self._get_otel_span_id(current_otel_span) if current_otel_span else None

Get the observation ID (span ID) of the current active span.

This method retrieves the observation ID from the currently active span in the context. It can be used to get the observation ID for referencing in logs, external systems, or for creating scores or other related operations.

Returns:

The current observation ID as a 16-character lowercase hexadecimal string, or None if there is no active span.

Example:
with langfuse.start_as_current_span(name="process-user-query") as span:
    # Get the current observation ID
    observation_id = langfuse.get_current_observation_id()

    # Store it for later reference
    cache.set(f"query_{query_id}_observation", observation_id)

    # Process the query...
def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
1697    def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
1698        """Get the URL to view a trace in the Langfuse UI.
1699
1700        This method generates a URL that links directly to a trace in the Langfuse UI.
1701        It's useful for providing links in logs, notifications, or debugging tools.
1702
1703        Args:
1704            trace_id: Optional trace ID to generate a URL for. If not provided,
1705                     the trace ID of the current active span will be used.
1706
1707        Returns:
1708            A URL string pointing to the trace in the Langfuse UI,
1709            or None if the project ID couldn't be retrieved or no trace ID is available.
1710
1711        Example:
1712            ```python
1713            # Get URL for the current trace
1714            with langfuse.start_as_current_span(name="process-request") as span:
1715                trace_url = langfuse.get_trace_url()
1716                log.info(f"Processing trace: {trace_url}")
1717
1718            # Get URL for a specific trace
1719            specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
1720            send_notification(f"Review needed for trace: {specific_trace_url}")
1721            ```
1722        """
1723        project_id = self._get_project_id()
1724        final_trace_id = trace_id or self.get_current_trace_id()
1725
1726        return (
1727            f"{self._host}/project/{project_id}/traces/{final_trace_id}"
1728            if project_id and final_trace_id
1729            else None
1730        )

Get the URL to view a trace in the Langfuse UI.

This method generates a URL that links directly to a trace in the Langfuse UI. It's useful for providing links in logs, notifications, or debugging tools.

Arguments:
  • trace_id: Optional trace ID to generate a URL for. If not provided, the trace ID of the current active span will be used.
Returns:

A URL string pointing to the trace in the Langfuse UI, or None if the project ID couldn't be retrieved or no trace ID is available.

Example:
# Get URL for the current trace
with langfuse.start_as_current_span(name="process-request") as span:
    trace_url = langfuse.get_trace_url()
    log.info(f"Processing trace: {trace_url}")

# Get URL for a specific trace
specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
send_notification(f"Review needed for trace: {specific_trace_url}")
def get_dataset( self, name: str, *, fetch_items_page_size: Optional[int] = 50) -> langfuse._client.datasets.DatasetClient:
1732    def get_dataset(
1733        self, name: str, *, fetch_items_page_size: Optional[int] = 50
1734    ) -> "DatasetClient":
1735        """Fetch a dataset by its name.
1736
1737        Args:
1738            name (str): The name of the dataset to fetch.
1739            fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
1740
1741        Returns:
1742            DatasetClient: The dataset with the given name.
1743        """
1744        try:
1745            langfuse_logger.debug(f"Getting datasets {name}")
1746            dataset = self.api.datasets.get(dataset_name=name)
1747
1748            dataset_items = []
1749            page = 1
1750
1751            while True:
1752                new_items = self.api.dataset_items.list(
1753                    dataset_name=self._url_encode(name, is_url_param=True),
1754                    page=page,
1755                    limit=fetch_items_page_size,
1756                )
1757                dataset_items.extend(new_items.data)
1758
1759                if new_items.meta.total_pages <= page:
1760                    break
1761
1762                page += 1
1763
1764            items = [DatasetItemClient(i, langfuse=self) for i in dataset_items]
1765
1766            return DatasetClient(dataset, items=items)
1767
1768        except Error as e:
1769            handle_fern_exception(e)
1770            raise e

Fetch a dataset by its name.

Arguments:
  • name (str): The name of the dataset to fetch.
  • fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:

DatasetClient: The dataset with the given name.

def auth_check(self) -> bool:
1772    def auth_check(self) -> bool:
1773        """Check if the provided credentials (public and secret key) are valid.
1774
1775        Raises:
1776            Exception: If no projects were found for the provided credentials.
1777
1778        Note:
1779            This method is blocking. It is discouraged to use it in production code.
1780        """
1781        try:
1782            projects = self.api.projects.get()
1783            langfuse_logger.debug(
1784                f"Auth check successful, found {len(projects.data)} projects"
1785            )
1786            if len(projects.data) == 0:
1787                raise Exception(
1788                    "Auth check failed, no project found for the keys provided."
1789                )
1790            return True
1791
1792        except AttributeError as e:
1793            langfuse_logger.warning(
1794                f"Auth check failed: Client not properly initialized. Error: {e}"
1795            )
1796            return False
1797
1798        except Error as e:
1799            handle_fern_exception(e)
1800            raise e

Check if the provided credentials (public and secret key) are valid.

Raises:
  • Exception: If no projects were found for the provided credentials.
Note:

This method is blocking. It is discouraged to use it in production code.

def create_dataset( self, *, name: str, description: Optional[str] = None, metadata: Optional[Any] = None) -> langfuse.api.resources.commons.types.dataset.Dataset:
1802    def create_dataset(
1803        self,
1804        *,
1805        name: str,
1806        description: Optional[str] = None,
1807        metadata: Optional[Any] = None,
1808    ) -> Dataset:
1809        """Create a dataset with the given name on Langfuse.
1810
1811        Args:
1812            name: Name of the dataset to create.
1813            description: Description of the dataset. Defaults to None.
1814            metadata: Additional metadata. Defaults to None.
1815
1816        Returns:
1817            Dataset: The created dataset as returned by the Langfuse API.
1818        """
1819        try:
1820            body = CreateDatasetRequest(
1821                name=name, description=description, metadata=metadata
1822            )
1823            langfuse_logger.debug(f"Creating datasets {body}")
1824
1825            return self.api.datasets.create(request=body)
1826
1827        except Error as e:
1828            handle_fern_exception(e)
1829            raise e

Create a dataset with the given name on Langfuse.

Arguments:
  • name: Name of the dataset to create.
  • description: Description of the dataset. Defaults to None.
  • metadata: Additional metadata. Defaults to None.
Returns:

Dataset: The created dataset as returned by the Langfuse API.

def create_dataset_item( self, *, dataset_name: str, input: Optional[Any] = None, expected_output: Optional[Any] = None, metadata: Optional[Any] = None, source_trace_id: Optional[str] = None, source_observation_id: Optional[str] = None, status: Optional[langfuse.api.resources.commons.types.dataset_status.DatasetStatus] = None, id: Optional[str] = None) -> langfuse.api.resources.commons.types.dataset_item.DatasetItem:
1831    def create_dataset_item(
1832        self,
1833        *,
1834        dataset_name: str,
1835        input: Optional[Any] = None,
1836        expected_output: Optional[Any] = None,
1837        metadata: Optional[Any] = None,
1838        source_trace_id: Optional[str] = None,
1839        source_observation_id: Optional[str] = None,
1840        status: Optional[DatasetStatus] = None,
1841        id: Optional[str] = None,
1842    ) -> DatasetItem:
1843        """Create a dataset item.
1844
1845        Upserts if an item with id already exists.
1846
1847        Args:
1848            dataset_name: Name of the dataset in which the dataset item should be created.
1849            input: Input data. Defaults to None. Can contain any dict, list or scalar.
1850            expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
1851            metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
1852            source_trace_id: Id of the source trace. Defaults to None.
1853            source_observation_id: Id of the source observation. Defaults to None.
1854            status: Status of the dataset item. Defaults to ACTIVE for newly created items.
1855            id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
1856
1857        Returns:
1858            DatasetItem: The created dataset item as returned by the Langfuse API.
1859
1860        Example:
1861            ```python
1862            from langfuse import Langfuse
1863
1864            langfuse = Langfuse()
1865
1866            # Uploading items to the Langfuse dataset named "capital_cities"
1867            langfuse.create_dataset_item(
1868                dataset_name="capital_cities",
1869                input={"input": {"country": "Italy"}},
1870                expected_output={"expected_output": "Rome"},
1871                metadata={"foo": "bar"}
1872            )
1873            ```
1874        """
1875        try:
1876            body = CreateDatasetItemRequest(
1877                datasetName=dataset_name,
1878                input=input,
1879                expectedOutput=expected_output,
1880                metadata=metadata,
1881                sourceTraceId=source_trace_id,
1882                sourceObservationId=source_observation_id,
1883                status=status,
1884                id=id,
1885            )
1886            langfuse_logger.debug(f"Creating dataset item {body}")
1887            return self.api.dataset_items.create(request=body)
1888        except Error as e:
1889            handle_fern_exception(e)
1890            raise e

Create a dataset item.

Upserts if an item with id already exists.

Arguments:
  • dataset_name: Name of the dataset in which the dataset item should be created.
  • input: Input data. Defaults to None. Can contain any dict, list or scalar.
  • expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
  • metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
  • source_trace_id: Id of the source trace. Defaults to None.
  • source_observation_id: Id of the source observation. Defaults to None.
  • status: Status of the dataset item. Defaults to ACTIVE for newly created items.
  • id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:

DatasetItem: The created dataset item as returned by the Langfuse API.

Example:
from langfuse import Langfuse

langfuse = Langfuse()

# Uploading items to the Langfuse dataset named "capital_cities"
langfuse.create_dataset_item(
    dataset_name="capital_cities",
    input={"input": {"country": "Italy"}},
    expected_output={"expected_output": "Rome"},
    metadata={"foo": "bar"}
)
def resolve_media_references( self, *, obj: Any, resolve_with: Literal['base64_data_uri'], max_depth: int = 10, content_fetch_timeout_seconds: int = 5) -> Any:
1892    def resolve_media_references(
1893        self,
1894        *,
1895        obj: Any,
1896        resolve_with: Literal["base64_data_uri"],
1897        max_depth: int = 10,
1898        content_fetch_timeout_seconds: int = 5,
1899    ) -> Any:
1900        """Replace media reference strings in an object with base64 data URIs.
1901
1902        This method recursively traverses an object (up to max_depth) looking for media reference strings
1903        in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using
1904        the provided Langfuse client and replaces the reference string with a base64 data URI.
1905
1906        If fetching media content fails for a reference string, a warning is logged and the reference
1907        string is left unchanged.
1908
1909        Args:
1910            obj: The object to process. Can be a primitive value, array, or nested object.
1911                If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
1912            resolve_with: The representation of the media content to replace the media reference string with.
1913                Currently only "base64_data_uri" is supported.
1914            max_depth: int: The maximum depth to traverse the object. Default is 10.
1915            content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
1916
1917        Returns:
1918            A deep copy of the input object with all media references replaced with base64 data URIs where possible.
1919            If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
1920
1921        Example:
1922            obj = {
1923                "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@",
1924                "nested": {
1925                    "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@"
1926                }
1927            }
1928
1929            result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
1930
1931            # Result:
1932            # {
1933            #     "image": "...",
1934            #     "nested": {
1935            #         "pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
1936            #     }
1937            # }
1938        """
1939        return LangfuseMedia.resolve_media_references(
1940            langfuse_client=self,
1941            obj=obj,
1942            resolve_with=resolve_with,
1943            max_depth=max_depth,
1944            content_fetch_timeout_seconds=content_fetch_timeout_seconds,
1945        )

Replace media reference strings in an object with base64 data URIs.

This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.

If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.

Arguments:
  • obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
  • resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
  • max_depth: int: The maximum depth to traverse the object. Default is 10.
  • content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
Returns:

A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.

Example:

obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }

result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)

Result:

{

"image": "...",

"nested": {

"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."

}

}

def get_prompt( self, name: str, *, version: Optional[int] = None, label: Optional[str] = None, type: Literal['chat', 'text'] = 'text', cache_ttl_seconds: Optional[int] = None, fallback: Union[List[langfuse.model.ChatMessageDict], NoneType, str] = None, max_retries: Optional[int] = None, fetch_timeout_seconds: Optional[int] = None) -> Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient]:
1975    def get_prompt(
1976        self,
1977        name: str,
1978        *,
1979        version: Optional[int] = None,
1980        label: Optional[str] = None,
1981        type: Literal["chat", "text"] = "text",
1982        cache_ttl_seconds: Optional[int] = None,
1983        fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None,
1984        max_retries: Optional[int] = None,
1985        fetch_timeout_seconds: Optional[int] = None,
1986    ) -> PromptClient:
1987        """Get a prompt.
1988
1989        This method attempts to fetch the requested prompt from the local cache. If the prompt is not found
1990        in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again
1991        and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will
1992        return the expired prompt as a fallback.
1993
1994        Args:
1995            name (str): The name of the prompt to retrieve.
1996
1997        Keyword Args:
1998            version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
1999            label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
2000            cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a
2001            keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0.
2002            type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text".
2003            fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None.
2004            max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds.
2005            fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
2006
2007        Returns:
2008            The prompt object retrieved from the cache or directly fetched if not cached or expired of type
2009            - TextPromptClient, if type argument is 'text'.
2010            - ChatPromptClient, if type argument is 'chat'.
2011
2012        Raises:
2013            Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
2014            expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
2015        """
2016        if self._resources is None:
2017            raise Error(
2018                "SDK is not correctly initalized. Check the init logs for more details."
2019            )
2020        if version is not None and label is not None:
2021            raise ValueError("Cannot specify both version and label at the same time.")
2022
2023        if not name:
2024            raise ValueError("Prompt name cannot be empty.")
2025
2026        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
2027        bounded_max_retries = self._get_bounded_max_retries(
2028            max_retries, default_max_retries=2, max_retries_upper_bound=4
2029        )
2030
2031        langfuse_logger.debug(f"Getting prompt '{cache_key}'")
2032        cached_prompt = self._resources.prompt_cache.get(cache_key)
2033
2034        if cached_prompt is None or cache_ttl_seconds == 0:
2035            langfuse_logger.debug(
2036                f"Prompt '{cache_key}' not found in cache or caching disabled."
2037            )
2038            try:
2039                return self._fetch_prompt_and_update_cache(
2040                    name,
2041                    version=version,
2042                    label=label,
2043                    ttl_seconds=cache_ttl_seconds,
2044                    max_retries=bounded_max_retries,
2045                    fetch_timeout_seconds=fetch_timeout_seconds,
2046                )
2047            except Exception as e:
2048                if fallback:
2049                    langfuse_logger.warning(
2050                        f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}"
2051                    )
2052
2053                    fallback_client_args: Dict[str, Any] = {
2054                        "name": name,
2055                        "prompt": fallback,
2056                        "type": type,
2057                        "version": version or 0,
2058                        "config": {},
2059                        "labels": [label] if label else [],
2060                        "tags": [],
2061                    }
2062
2063                    if type == "text":
2064                        return TextPromptClient(
2065                            prompt=Prompt_Text(**fallback_client_args),
2066                            is_fallback=True,
2067                        )
2068
2069                    if type == "chat":
2070                        return ChatPromptClient(
2071                            prompt=Prompt_Chat(**fallback_client_args),
2072                            is_fallback=True,
2073                        )
2074
2075                raise e
2076
2077        if cached_prompt.is_expired():
2078            langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.")
2079            try:
2080                # refresh prompt in background thread, refresh_prompt deduplicates tasks
2081                langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.")
2082
2083                def refresh_task() -> None:
2084                    self._fetch_prompt_and_update_cache(
2085                        name,
2086                        version=version,
2087                        label=label,
2088                        ttl_seconds=cache_ttl_seconds,
2089                        max_retries=bounded_max_retries,
2090                        fetch_timeout_seconds=fetch_timeout_seconds,
2091                    )
2092
2093                self._resources.prompt_cache.add_refresh_prompt_task(
2094                    cache_key,
2095                    refresh_task,
2096                )
2097                langfuse_logger.debug(
2098                    f"Returning stale prompt '{cache_key}' from cache."
2099                )
2100                # return stale prompt
2101                return cached_prompt.value
2102
2103            except Exception as e:
2104                langfuse_logger.warning(
2105                    f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}"
2106                )
2107                # creation of refresh prompt task failed, return stale prompt
2108                return cached_prompt.value
2109
2110        return cached_prompt.value

Get a prompt.

This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.

Arguments:
  • name (str): The name of the prompt to retrieve.
Keyword Args:

version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the production label is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the production label is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.

Returns:

The prompt object retrieved from the cache or directly fetched if not cached or expired of type

  • TextPromptClient, if type argument is 'text'.
  • ChatPromptClient, if type argument is 'chat'.
Raises:
  • Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
  • expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
def create_prompt( self, *, name: str, prompt: Union[str, List[Union[langfuse.model.ChatMessageDict, langfuse.model.ChatMessageWithPlaceholdersDict_Message, langfuse.model.ChatMessageWithPlaceholdersDict_Placeholder]]], labels: List[str] = [], tags: Optional[List[str]] = None, type: Optional[Literal['chat', 'text']] = 'text', config: Optional[Any] = None, commit_message: Optional[str] = None) -> Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient]:
2204    def create_prompt(
2205        self,
2206        *,
2207        name: str,
2208        prompt: Union[
2209            str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]]
2210        ],
2211        labels: List[str] = [],
2212        tags: Optional[List[str]] = None,
2213        type: Optional[Literal["chat", "text"]] = "text",
2214        config: Optional[Any] = None,
2215        commit_message: Optional[str] = None,
2216    ) -> PromptClient:
2217        """Create a new prompt in Langfuse.
2218
2219        Keyword Args:
2220            name : The name of the prompt to be created.
2221            prompt : The content of the prompt to be created.
2222            is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead.
2223            labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label.
2224            tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt.
2225            config: Additional structured data to be saved with the prompt. Defaults to None.
2226            type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text".
2227            commit_message: Optional string describing the change.
2228
2229        Returns:
2230            TextPromptClient: The prompt if type argument is 'text'.
2231            ChatPromptClient: The prompt if type argument is 'chat'.
2232        """
2233        try:
2234            langfuse_logger.debug(f"Creating prompt {name=}, {labels=}")
2235
2236            if type == "chat":
2237                if not isinstance(prompt, list):
2238                    raise ValueError(
2239                        "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes."
2240                    )
2241                request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = (
2242                    CreatePromptRequest_Chat(
2243                        name=name,
2244                        prompt=cast(Any, prompt),
2245                        labels=labels,
2246                        tags=tags,
2247                        config=config or {},
2248                        commitMessage=commit_message,
2249                        type="chat",
2250                    )
2251                )
2252                server_prompt = self.api.prompts.create(request=request)
2253
2254                if self._resources is not None:
2255                    self._resources.prompt_cache.invalidate(name)
2256
2257                return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt))
2258
2259            if not isinstance(prompt, str):
2260                raise ValueError("For 'text' type, 'prompt' must be a string.")
2261
2262            request = CreatePromptRequest_Text(
2263                name=name,
2264                prompt=prompt,
2265                labels=labels,
2266                tags=tags,
2267                config=config or {},
2268                commitMessage=commit_message,
2269                type="text",
2270            )
2271
2272            server_prompt = self.api.prompts.create(request=request)
2273
2274            if self._resources is not None:
2275                self._resources.prompt_cache.invalidate(name)
2276
2277            return TextPromptClient(prompt=cast(Prompt_Text, server_prompt))
2278
2279        except Error as e:
2280            handle_fern_exception(e)
2281            raise e

Create a new prompt in Langfuse.

Keyword Args:

name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.

Returns:

TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.

def update_prompt(self, *, name: str, version: int, new_labels: List[str] = []) -> Any:
2283    def update_prompt(
2284        self,
2285        *,
2286        name: str,
2287        version: int,
2288        new_labels: List[str] = [],
2289    ) -> Any:
2290        """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
2291
2292        Args:
2293            name (str): The name of the prompt to update.
2294            version (int): The version number of the prompt to update.
2295            new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
2296
2297        Returns:
2298            Prompt: The updated prompt from the Langfuse API.
2299
2300        """
2301        updated_prompt = self.api.prompt_version.update(
2302            name=name,
2303            version=version,
2304            new_labels=new_labels,
2305        )
2306
2307        if self._resources is not None:
2308            self._resources.prompt_cache.invalidate(name)
2309
2310        return updated_prompt

Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.

Arguments:
  • name (str): The name of the prompt to update.
  • version (int): The version number of the prompt to update.
  • new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:

Prompt: The updated prompt from the Langfuse API.

def get_client(*, public_key: Optional[str] = None) -> Langfuse:
  9def get_client(*, public_key: Optional[str] = None) -> Langfuse:
 10    """Get or create a Langfuse client instance.
 11
 12    Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups,
 13    providing a public_key is required. Multi-project support is experimental - see Langfuse docs.
 14
 15    Behavior:
 16    - Single project: Returns existing client or creates new one
 17    - Multi-project: Requires public_key to return specific client
 18    - No public_key in multi-project: Returns disabled client to prevent data leakage
 19
 20    The function uses a singleton pattern per public_key to conserve resources and maintain state.
 21
 22    Args:
 23        public_key (Optional[str]): Project identifier
 24            - With key: Returns client for that project
 25            - Without key: Returns single client or disabled client if multiple exist
 26
 27    Returns:
 28        Langfuse: Client instance in one of three states:
 29            1. Client for specified public_key
 30            2. Default client for single-project setup
 31            3. Disabled client when multiple projects exist without key
 32
 33    Security:
 34        Disables tracing when multiple projects exist without explicit key to prevent
 35        cross-project data leakage. Multi-project setups are experimental.
 36
 37    Example:
 38        ```python
 39        # Single project
 40        client = get_client()  # Default client
 41
 42        # In multi-project usage:
 43        client_a = get_client(public_key="project_a_key")  # Returns project A's client
 44        client_b = get_client(public_key="project_b_key")  # Returns project B's client
 45
 46        # Without specific key in multi-project setup:
 47        client = get_client()  # Returns disabled client for safety
 48        ```
 49    """
 50    with LangfuseResourceManager._lock:
 51        active_instances = LangfuseResourceManager._instances
 52
 53        if not public_key:
 54            if len(active_instances) == 0:
 55                # No clients initialized yet, create default instance
 56                return Langfuse()
 57
 58            if len(active_instances) == 1:
 59                # Only one client exists, safe to use without specifying key
 60                instance = list(active_instances.values())[0]
 61
 62                # Initialize with the credentials bound to the instance
 63                # This is important if the original instance was instantiated
 64                # via constructor arguments
 65                return Langfuse(
 66                    public_key=instance.public_key,
 67                    secret_key=instance.secret_key,
 68                    host=instance.host,
 69                    tracing_enabled=instance.tracing_enabled,
 70                )
 71
 72            else:
 73                # Multiple clients exist but no key specified - disable tracing
 74                # to prevent cross-project data leakage
 75                langfuse_logger.warning(
 76                    "No 'langfuse_public_key' passed to decorated function, but multiple langfuse clients are instantiated in current process. Skipping tracing for this function to avoid cross-project leakage."
 77                )
 78                return Langfuse(
 79                    tracing_enabled=False, public_key="fake", secret_key="fake"
 80                )
 81
 82        else:
 83            # Specific key provided, look up existing instance
 84            target_instance: Optional[LangfuseResourceManager] = active_instances.get(
 85                public_key, None
 86            )
 87
 88            if target_instance is None:
 89                # No instance found with this key - client not initialized properly
 90                langfuse_logger.warning(
 91                    f"No Langfuse client with public key {public_key} has been initialized. Skipping tracing for decorated function."
 92                )
 93                return Langfuse(
 94                    tracing_enabled=False, public_key="fake", secret_key="fake"
 95                )
 96
 97            # target_instance is guaranteed to be not None at this point
 98            return Langfuse(
 99                public_key=public_key,
100                secret_key=target_instance.secret_key,
101                host=target_instance.host,
102                tracing_enabled=target_instance.tracing_enabled,
103            )

Get or create a Langfuse client instance.

Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, providing a public_key is required. Multi-project support is experimental - see Langfuse docs.

Behavior:

  • Single project: Returns existing client or creates new one
  • Multi-project: Requires public_key to return specific client
  • No public_key in multi-project: Returns disabled client to prevent data leakage

The function uses a singleton pattern per public_key to conserve resources and maintain state.

Arguments:
  • public_key (Optional[str]): Project identifier
    • With key: Returns client for that project
    • Without key: Returns single client or disabled client if multiple exist
Returns:

Langfuse: Client instance in one of three states: 1. Client for specified public_key 2. Default client for single-project setup 3. Disabled client when multiple projects exist without key

Security:

Disables tracing when multiple projects exist without explicit key to prevent cross-project data leakage. Multi-project setups are experimental.

Example:
# Single project
client = get_client()  # Default client

# In multi-project usage:
client_a = get_client(public_key="project_a_key")  # Returns project A's client
client_b = get_client(public_key="project_b_key")  # Returns project B's client

# Without specific key in multi-project setup:
client = get_client()  # Returns disabled client for safety
def observe( func: Optional[~F] = None, *, name: Optional[str] = None, as_type: Optional[Literal['generation']] = None, capture_input: Optional[bool] = None, capture_output: Optional[bool] = None, transform_to_string: Optional[Callable[[Iterable], str]] = None) -> Union[~F, Callable[[~F], ~F]]:
 75    def observe(
 76        self,
 77        func: Optional[F] = None,
 78        *,
 79        name: Optional[str] = None,
 80        as_type: Optional[Literal["generation"]] = None,
 81        capture_input: Optional[bool] = None,
 82        capture_output: Optional[bool] = None,
 83        transform_to_string: Optional[Callable[[Iterable], str]] = None,
 84    ) -> Union[F, Callable[[F], F]]:
 85        """Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.
 86
 87        This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates
 88        spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator
 89        intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.
 90
 91        Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application,
 92        enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.
 93
 94        Args:
 95            func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
 96            name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
 97            as_type (Optional[Literal["generation"]]): Set to "generation" to create a specialized LLM generation span
 98                    with model metrics support, suitable for tracking language model outputs.
 99
100        Returns:
101            Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.
102
103        Example:
104            For general function tracing with automatic naming:
105            ```python
106            @observe()
107            def process_user_request(user_id, query):
108                # Function is automatically traced with name "process_user_request"
109                return get_response(query)
110            ```
111
112            For language model generation tracking:
113            ```python
114            @observe(name="answer-generation", as_type="generation")
115            async def generate_answer(query):
116                # Creates a generation-type span with extended LLM metrics
117                response = await openai.chat.completions.create(
118                    model="gpt-4",
119                    messages=[{"role": "user", "content": query}]
120                )
121                return response.choices[0].message.content
122            ```
123
124            For trace context propagation between functions:
125            ```python
126            @observe()
127            def main_process():
128                # Parent span is created
129                return sub_process()  # Child span automatically connected to parent
130
131            @observe()
132            def sub_process():
133                # Automatically becomes a child span of main_process
134                return "result"
135            ```
136
137        Raises:
138            Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
139
140        Notes:
141            - The decorator preserves the original function's signature, docstring, and return type.
142            - Proper parent-child relationships between spans are automatically maintained.
143            - Special keyword arguments can be passed to control tracing:
144              - langfuse_trace_id: Explicitly set the trace ID for this function call
145              - langfuse_parent_observation_id: Explicitly set the parent span ID
146              - langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
147            - For async functions, the decorator returns an async function wrapper.
148            - For sync functions, the decorator returns a synchronous wrapper.
149        """
150        function_io_capture_enabled = os.environ.get(
151            LANGFUSE_OBSERVE_DECORATOR_IO_CAPTURE_ENABLED, "True"
152        ).lower() not in ("false", "0")
153
154        should_capture_input = (
155            capture_input if capture_input is not None else function_io_capture_enabled
156        )
157
158        should_capture_output = (
159            capture_output
160            if capture_output is not None
161            else function_io_capture_enabled
162        )
163
164        def decorator(func: F) -> F:
165            return (
166                self._async_observe(
167                    func,
168                    name=name,
169                    as_type=as_type,
170                    capture_input=should_capture_input,
171                    capture_output=should_capture_output,
172                    transform_to_string=transform_to_string,
173                )
174                if asyncio.iscoroutinefunction(func)
175                else self._sync_observe(
176                    func,
177                    name=name,
178                    as_type=as_type,
179                    capture_input=should_capture_input,
180                    capture_output=should_capture_output,
181                    transform_to_string=transform_to_string,
182                )
183            )
184
185        """Handle decorator with or without parentheses.
186        
187        This logic enables the decorator to work both with and without parentheses:
188        - @observe - Python passes the function directly to the decorator
189        - @observe() - Python calls the decorator first, which must return a function decorator
190        
191        When called without arguments (@observe), the func parameter contains the function to decorate,
192        so we directly apply the decorator to it. When called with parentheses (@observe()), 
193        func is None, so we return the decorator function itself for Python to apply in the next step.
194        """
195        if func is None:
196            return decorator
197        else:
198            return decorator(func)

Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.

This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.

Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.

Arguments:
  • func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
  • name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
  • as_type (Optional[Literal["generation"]]): Set to "generation" to create a specialized LLM generation span with model metrics support, suitable for tracking language model outputs.
Returns:

Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.

Example:

For general function tracing with automatic naming:

@observe()
def process_user_request(user_id, query):
    # Function is automatically traced with name "process_user_request"
    return get_response(query)

For language model generation tracking:

@observe(name="answer-generation", as_type="generation")
async def generate_answer(query):
    # Creates a generation-type span with extended LLM metrics
    response = await openai.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": query}]
    )
    return response.choices[0].message.content

For trace context propagation between functions:

@observe()
def main_process():
    # Parent span is created
    return sub_process()  # Child span automatically connected to parent

@observe()
def sub_process():
    # Automatically becomes a child span of main_process
    return "result"
Raises:
  • Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
Notes:
  • The decorator preserves the original function's signature, docstring, and return type.
  • Proper parent-child relationships between spans are automatically maintained.
  • Special keyword arguments can be passed to control tracing:
    • langfuse_trace_id: Explicitly set the trace ID for this function call
    • langfuse_parent_observation_id: Explicitly set the parent span ID
    • langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
  • For async functions, the decorator returns an async function wrapper.
  • For sync functions, the decorator returns a synchronous wrapper.
class LangfuseSpan(langfuse._client.span.LangfuseSpanWrapper):
516class LangfuseSpan(LangfuseSpanWrapper):
517    """Standard span implementation for general operations in Langfuse.
518
519    This class represents a general-purpose span that can be used to trace
520    any operation in your application. It extends the base LangfuseSpanWrapper
521    with specific methods for creating child spans, generations, and updating
522    span-specific attributes.
523    """
524
525    def __init__(
526        self,
527        *,
528        otel_span: otel_trace_api.Span,
529        langfuse_client: "Langfuse",
530        input: Optional[Any] = None,
531        output: Optional[Any] = None,
532        metadata: Optional[Any] = None,
533        environment: Optional[str] = None,
534        version: Optional[str] = None,
535        level: Optional[SpanLevel] = None,
536        status_message: Optional[str] = None,
537    ):
538        """Initialize a new LangfuseSpan.
539
540        Args:
541            otel_span: The OpenTelemetry span to wrap
542            langfuse_client: Reference to the parent Langfuse client
543            input: Input data for the span (any JSON-serializable object)
544            output: Output data from the span (any JSON-serializable object)
545            metadata: Additional metadata to associate with the span
546            environment: The tracing environment
547            version: Version identifier for the code or component
548            level: Importance level of the span (info, warning, error)
549            status_message: Optional status message for the span
550        """
551        super().__init__(
552            otel_span=otel_span,
553            as_type="span",
554            langfuse_client=langfuse_client,
555            input=input,
556            output=output,
557            metadata=metadata,
558            environment=environment,
559            version=version,
560            level=level,
561            status_message=status_message,
562        )
563
564    def update(
565        self,
566        *,
567        name: Optional[str] = None,
568        input: Optional[Any] = None,
569        output: Optional[Any] = None,
570        metadata: Optional[Any] = None,
571        version: Optional[str] = None,
572        level: Optional[SpanLevel] = None,
573        status_message: Optional[str] = None,
574        **kwargs: Any,
575    ) -> "LangfuseSpan":
576        """Update this span with new information.
577
578        This method updates the span with new information that becomes available
579        during execution, such as outputs, metadata, or status changes.
580
581        Args:
582            name: Span name
583            input: Updated input data for the operation
584            output: Output data from the operation
585            metadata: Additional metadata to associate with the span
586            version: Version identifier for the code or component
587            level: Importance level of the span (info, warning, error)
588            status_message: Optional status message for the span
589            **kwargs: Additional keyword arguments (ignored)
590
591        Example:
592            ```python
593            span = langfuse.start_span(name="process-data")
594            try:
595                # Do work
596                result = process_data()
597                span.update(output=result, metadata={"processing_time": 350})
598            finally:
599                span.end()
600            ```
601        """
602        if not self._otel_span.is_recording():
603            return self
604
605        processed_input = self._process_media_and_apply_mask(
606            data=input, field="input", span=self._otel_span
607        )
608        processed_output = self._process_media_and_apply_mask(
609            data=output, field="output", span=self._otel_span
610        )
611        processed_metadata = self._process_media_and_apply_mask(
612            data=metadata, field="metadata", span=self._otel_span
613        )
614
615        if name:
616            self._otel_span.update_name(name)
617
618        attributes = create_span_attributes(
619            input=processed_input,
620            output=processed_output,
621            metadata=processed_metadata,
622            version=version,
623            level=level,
624            status_message=status_message,
625        )
626
627        self._otel_span.set_attributes(attributes=attributes)
628
629        return self
630
631    def start_span(
632        self,
633        name: str,
634        input: Optional[Any] = None,
635        output: Optional[Any] = None,
636        metadata: Optional[Any] = None,
637        version: Optional[str] = None,
638        level: Optional[SpanLevel] = None,
639        status_message: Optional[str] = None,
640    ) -> "LangfuseSpan":
641        """Create a new child span.
642
643        This method creates a new child span with this span as the parent.
644        Unlike start_as_current_span(), this method does not set the new span
645        as the current span in the context.
646
647        Args:
648            name: Name of the span (e.g., function or operation name)
649            input: Input data for the operation
650            output: Output data from the operation
651            metadata: Additional metadata to associate with the span
652            version: Version identifier for the code or component
653            level: Importance level of the span (info, warning, error)
654            status_message: Optional status message for the span
655
656        Returns:
657            A new LangfuseSpan that must be ended with .end() when complete
658
659        Example:
660            ```python
661            parent_span = langfuse.start_span(name="process-request")
662            try:
663                # Create a child span
664                child_span = parent_span.start_span(name="validate-input")
665                try:
666                    # Do validation work
667                    validation_result = validate(request_data)
668                    child_span.update(output=validation_result)
669                finally:
670                    child_span.end()
671
672                # Continue with parent span
673                result = process_validated_data(validation_result)
674                parent_span.update(output=result)
675            finally:
676                parent_span.end()
677            ```
678        """
679        with otel_trace_api.use_span(self._otel_span):
680            new_otel_span = self._langfuse_client._otel_tracer.start_span(name=name)
681
682        return LangfuseSpan(
683            otel_span=new_otel_span,
684            langfuse_client=self._langfuse_client,
685            environment=self._environment,
686            input=input,
687            output=output,
688            metadata=metadata,
689            version=version,
690            level=level,
691            status_message=status_message,
692        )
693
694    def start_as_current_span(
695        self,
696        *,
697        name: str,
698        input: Optional[Any] = None,
699        output: Optional[Any] = None,
700        metadata: Optional[Any] = None,
701        version: Optional[str] = None,
702        level: Optional[SpanLevel] = None,
703        status_message: Optional[str] = None,
704    ) -> _AgnosticContextManager["LangfuseSpan"]:
705        """Create a new child span and set it as the current span in a context manager.
706
707        This method creates a new child span and sets it as the current span within
708        a context manager. It should be used with a 'with' statement to automatically
709        manage the span's lifecycle.
710
711        Args:
712            name: Name of the span (e.g., function or operation name)
713            input: Input data for the operation
714            output: Output data from the operation
715            metadata: Additional metadata to associate with the span
716            version: Version identifier for the code or component
717            level: Importance level of the span (info, warning, error)
718            status_message: Optional status message for the span
719
720        Returns:
721            A context manager that yields a new LangfuseSpan
722
723        Example:
724            ```python
725            with langfuse.start_as_current_span(name="process-request") as parent_span:
726                # Parent span is active here
727
728                # Create a child span with context management
729                with parent_span.start_as_current_span(name="validate-input") as child_span:
730                    # Child span is active here
731                    validation_result = validate(request_data)
732                    child_span.update(output=validation_result)
733
734                # Back to parent span context
735                result = process_validated_data(validation_result)
736                parent_span.update(output=result)
737            ```
738        """
739        return cast(
740            _AgnosticContextManager["LangfuseSpan"],
741            self._langfuse_client._create_span_with_parent_context(
742                name=name,
743                as_type="span",
744                remote_parent_span=None,
745                parent=self._otel_span,
746                input=input,
747                output=output,
748                metadata=metadata,
749                version=version,
750                level=level,
751                status_message=status_message,
752            ),
753        )
754
755    def start_generation(
756        self,
757        *,
758        name: str,
759        input: Optional[Any] = None,
760        output: Optional[Any] = None,
761        metadata: Optional[Any] = None,
762        version: Optional[str] = None,
763        level: Optional[SpanLevel] = None,
764        status_message: Optional[str] = None,
765        completion_start_time: Optional[datetime] = None,
766        model: Optional[str] = None,
767        model_parameters: Optional[Dict[str, MapValue]] = None,
768        usage_details: Optional[Dict[str, int]] = None,
769        cost_details: Optional[Dict[str, float]] = None,
770        prompt: Optional[PromptClient] = None,
771    ) -> "LangfuseGeneration":
772        """Create a new child generation span.
773
774        This method creates a new child generation span with this span as the parent.
775        Generation spans are specialized for AI/LLM operations and include additional
776        fields for model information, usage stats, and costs.
777
778        Unlike start_as_current_generation(), this method does not set the new span
779        as the current span in the context.
780
781        Args:
782            name: Name of the generation operation
783            input: Input data for the model (e.g., prompts)
784            output: Output from the model (e.g., completions)
785            metadata: Additional metadata to associate with the generation
786            version: Version identifier for the model or component
787            level: Importance level of the generation (info, warning, error)
788            status_message: Optional status message for the generation
789            completion_start_time: When the model started generating the response
790            model: Name/identifier of the AI model used (e.g., "gpt-4")
791            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
792            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
793            cost_details: Cost information for the model call
794            prompt: Associated prompt template from Langfuse prompt management
795
796        Returns:
797            A new LangfuseGeneration that must be ended with .end() when complete
798
799        Example:
800            ```python
801            span = langfuse.start_span(name="process-query")
802            try:
803                # Create a generation child span
804                generation = span.start_generation(
805                    name="generate-answer",
806                    model="gpt-4",
807                    input={"prompt": "Explain quantum computing"}
808                )
809                try:
810                    # Call model API
811                    response = llm.generate(...)
812
813                    generation.update(
814                        output=response.text,
815                        usage_details={
816                            "prompt_tokens": response.usage.prompt_tokens,
817                            "completion_tokens": response.usage.completion_tokens
818                        }
819                    )
820                finally:
821                    generation.end()
822
823                # Continue with parent span
824                span.update(output={"answer": response.text, "source": "gpt-4"})
825            finally:
826                span.end()
827            ```
828        """
829        with otel_trace_api.use_span(self._otel_span):
830            new_otel_span = self._langfuse_client._otel_tracer.start_span(name=name)
831
832        return LangfuseGeneration(
833            otel_span=new_otel_span,
834            langfuse_client=self._langfuse_client,
835            environment=self._environment,
836            input=input,
837            output=output,
838            metadata=metadata,
839            version=version,
840            level=level,
841            status_message=status_message,
842            completion_start_time=completion_start_time,
843            model=model,
844            model_parameters=model_parameters,
845            usage_details=usage_details,
846            cost_details=cost_details,
847            prompt=prompt,
848        )
849
850    def start_as_current_generation(
851        self,
852        *,
853        name: str,
854        input: Optional[Any] = None,
855        output: Optional[Any] = None,
856        metadata: Optional[Any] = None,
857        version: Optional[str] = None,
858        level: Optional[SpanLevel] = None,
859        status_message: Optional[str] = None,
860        completion_start_time: Optional[datetime] = None,
861        model: Optional[str] = None,
862        model_parameters: Optional[Dict[str, MapValue]] = None,
863        usage_details: Optional[Dict[str, int]] = None,
864        cost_details: Optional[Dict[str, float]] = None,
865        prompt: Optional[PromptClient] = None,
866    ) -> _AgnosticContextManager["LangfuseGeneration"]:
867        """Create a new child generation span and set it as the current span in a context manager.
868
869        This method creates a new child generation span and sets it as the current span
870        within a context manager. Generation spans are specialized for AI/LLM operations
871        and include additional fields for model information, usage stats, and costs.
872
873        Args:
874            name: Name of the generation operation
875            input: Input data for the model (e.g., prompts)
876            output: Output from the model (e.g., completions)
877            metadata: Additional metadata to associate with the generation
878            version: Version identifier for the model or component
879            level: Importance level of the generation (info, warning, error)
880            status_message: Optional status message for the generation
881            completion_start_time: When the model started generating the response
882            model: Name/identifier of the AI model used (e.g., "gpt-4")
883            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
884            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
885            cost_details: Cost information for the model call
886            prompt: Associated prompt template from Langfuse prompt management
887
888        Returns:
889            A context manager that yields a new LangfuseGeneration
890
891        Example:
892            ```python
893            with langfuse.start_as_current_span(name="process-request") as span:
894                # Prepare data
895                query = preprocess_user_query(user_input)
896
897                # Create a generation span with context management
898                with span.start_as_current_generation(
899                    name="generate-answer",
900                    model="gpt-4",
901                    input={"query": query}
902                ) as generation:
903                    # Generation span is active here
904                    response = llm.generate(query)
905
906                    # Update with results
907                    generation.update(
908                        output=response.text,
909                        usage_details={
910                            "prompt_tokens": response.usage.prompt_tokens,
911                            "completion_tokens": response.usage.completion_tokens
912                        }
913                    )
914
915                # Back to parent span context
916                span.update(output={"answer": response.text, "source": "gpt-4"})
917            ```
918        """
919        return cast(
920            _AgnosticContextManager["LangfuseGeneration"],
921            self._langfuse_client._create_span_with_parent_context(
922                name=name,
923                as_type="generation",
924                remote_parent_span=None,
925                parent=self._otel_span,
926                input=input,
927                output=output,
928                metadata=metadata,
929                version=version,
930                level=level,
931                status_message=status_message,
932                completion_start_time=completion_start_time,
933                model=model,
934                model_parameters=model_parameters,
935                usage_details=usage_details,
936                cost_details=cost_details,
937                prompt=prompt,
938            ),
939        )
940
941    def create_event(
942        self,
943        *,
944        name: str,
945        input: Optional[Any] = None,
946        output: Optional[Any] = None,
947        metadata: Optional[Any] = None,
948        version: Optional[str] = None,
949        level: Optional[SpanLevel] = None,
950        status_message: Optional[str] = None,
951    ) -> "LangfuseEvent":
952        """Create a new Langfuse observation of type 'EVENT'.
953
954        Args:
955            name: Name of the span (e.g., function or operation name)
956            input: Input data for the operation (can be any JSON-serializable object)
957            output: Output data from the operation (can be any JSON-serializable object)
958            metadata: Additional metadata to associate with the span
959            version: Version identifier for the code or component
960            level: Importance level of the span (info, warning, error)
961            status_message: Optional status message for the span
962
963        Returns:
964            The LangfuseEvent object
965
966        Example:
967            ```python
968            event = langfuse.create_event(name="process-event")
969            ```
970        """
971        timestamp = time_ns()
972
973        with otel_trace_api.use_span(self._otel_span):
974            new_otel_span = self._langfuse_client._otel_tracer.start_span(
975                name=name, start_time=timestamp
976            )
977
978        return cast(
979            "LangfuseEvent",
980            LangfuseEvent(
981                otel_span=new_otel_span,
982                langfuse_client=self._langfuse_client,
983                input=input,
984                output=output,
985                metadata=metadata,
986                environment=self._environment,
987                version=version,
988                level=level,
989                status_message=status_message,
990            ).end(end_time=timestamp),
991        )

Standard span implementation for general operations in Langfuse.

This class represents a general-purpose span that can be used to trace any operation in your application. It extends the base LangfuseSpanWrapper with specific methods for creating child spans, generations, and updating span-specific attributes.

LangfuseSpan( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None)
525    def __init__(
526        self,
527        *,
528        otel_span: otel_trace_api.Span,
529        langfuse_client: "Langfuse",
530        input: Optional[Any] = None,
531        output: Optional[Any] = None,
532        metadata: Optional[Any] = None,
533        environment: Optional[str] = None,
534        version: Optional[str] = None,
535        level: Optional[SpanLevel] = None,
536        status_message: Optional[str] = None,
537    ):
538        """Initialize a new LangfuseSpan.
539
540        Args:
541            otel_span: The OpenTelemetry span to wrap
542            langfuse_client: Reference to the parent Langfuse client
543            input: Input data for the span (any JSON-serializable object)
544            output: Output data from the span (any JSON-serializable object)
545            metadata: Additional metadata to associate with the span
546            environment: The tracing environment
547            version: Version identifier for the code or component
548            level: Importance level of the span (info, warning, error)
549            status_message: Optional status message for the span
550        """
551        super().__init__(
552            otel_span=otel_span,
553            as_type="span",
554            langfuse_client=langfuse_client,
555            input=input,
556            output=output,
557            metadata=metadata,
558            environment=environment,
559            version=version,
560            level=level,
561            status_message=status_message,
562        )

Initialize a new LangfuseSpan.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the span (any JSON-serializable object)
  • output: Output data from the span (any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • environment: The tracing environment
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
def update( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, **kwargs: Any) -> LangfuseSpan:
564    def update(
565        self,
566        *,
567        name: Optional[str] = None,
568        input: Optional[Any] = None,
569        output: Optional[Any] = None,
570        metadata: Optional[Any] = None,
571        version: Optional[str] = None,
572        level: Optional[SpanLevel] = None,
573        status_message: Optional[str] = None,
574        **kwargs: Any,
575    ) -> "LangfuseSpan":
576        """Update this span with new information.
577
578        This method updates the span with new information that becomes available
579        during execution, such as outputs, metadata, or status changes.
580
581        Args:
582            name: Span name
583            input: Updated input data for the operation
584            output: Output data from the operation
585            metadata: Additional metadata to associate with the span
586            version: Version identifier for the code or component
587            level: Importance level of the span (info, warning, error)
588            status_message: Optional status message for the span
589            **kwargs: Additional keyword arguments (ignored)
590
591        Example:
592            ```python
593            span = langfuse.start_span(name="process-data")
594            try:
595                # Do work
596                result = process_data()
597                span.update(output=result, metadata={"processing_time": 350})
598            finally:
599                span.end()
600            ```
601        """
602        if not self._otel_span.is_recording():
603            return self
604
605        processed_input = self._process_media_and_apply_mask(
606            data=input, field="input", span=self._otel_span
607        )
608        processed_output = self._process_media_and_apply_mask(
609            data=output, field="output", span=self._otel_span
610        )
611        processed_metadata = self._process_media_and_apply_mask(
612            data=metadata, field="metadata", span=self._otel_span
613        )
614
615        if name:
616            self._otel_span.update_name(name)
617
618        attributes = create_span_attributes(
619            input=processed_input,
620            output=processed_output,
621            metadata=processed_metadata,
622            version=version,
623            level=level,
624            status_message=status_message,
625        )
626
627        self._otel_span.set_attributes(attributes=attributes)
628
629        return self

Update this span with new information.

This method updates the span with new information that becomes available during execution, such as outputs, metadata, or status changes.

Arguments:
  • name: Span name
  • input: Updated input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
  • **kwargs: Additional keyword arguments (ignored)
Example:
span = langfuse.start_span(name="process-data")
try:
    # Do work
    result = process_data()
    span.update(output=result, metadata={"processing_time": 350})
finally:
    span.end()
def start_span( self, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseSpan:
631    def start_span(
632        self,
633        name: str,
634        input: Optional[Any] = None,
635        output: Optional[Any] = None,
636        metadata: Optional[Any] = None,
637        version: Optional[str] = None,
638        level: Optional[SpanLevel] = None,
639        status_message: Optional[str] = None,
640    ) -> "LangfuseSpan":
641        """Create a new child span.
642
643        This method creates a new child span with this span as the parent.
644        Unlike start_as_current_span(), this method does not set the new span
645        as the current span in the context.
646
647        Args:
648            name: Name of the span (e.g., function or operation name)
649            input: Input data for the operation
650            output: Output data from the operation
651            metadata: Additional metadata to associate with the span
652            version: Version identifier for the code or component
653            level: Importance level of the span (info, warning, error)
654            status_message: Optional status message for the span
655
656        Returns:
657            A new LangfuseSpan that must be ended with .end() when complete
658
659        Example:
660            ```python
661            parent_span = langfuse.start_span(name="process-request")
662            try:
663                # Create a child span
664                child_span = parent_span.start_span(name="validate-input")
665                try:
666                    # Do validation work
667                    validation_result = validate(request_data)
668                    child_span.update(output=validation_result)
669                finally:
670                    child_span.end()
671
672                # Continue with parent span
673                result = process_validated_data(validation_result)
674                parent_span.update(output=result)
675            finally:
676                parent_span.end()
677            ```
678        """
679        with otel_trace_api.use_span(self._otel_span):
680            new_otel_span = self._langfuse_client._otel_tracer.start_span(name=name)
681
682        return LangfuseSpan(
683            otel_span=new_otel_span,
684            langfuse_client=self._langfuse_client,
685            environment=self._environment,
686            input=input,
687            output=output,
688            metadata=metadata,
689            version=version,
690            level=level,
691            status_message=status_message,
692        )

Create a new child span.

This method creates a new child span with this span as the parent. Unlike start_as_current_span(), this method does not set the new span as the current span in the context.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A new LangfuseSpan that must be ended with .end() when complete

Example:
parent_span = langfuse.start_span(name="process-request")
try:
    # Create a child span
    child_span = parent_span.start_span(name="validate-input")
    try:
        # Do validation work
        validation_result = validate(request_data)
        child_span.update(output=validation_result)
    finally:
        child_span.end()

    # Continue with parent span
    result = process_validated_data(validation_result)
    parent_span.update(output=result)
finally:
    parent_span.end()
def start_as_current_span( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseSpan]:
694    def start_as_current_span(
695        self,
696        *,
697        name: str,
698        input: Optional[Any] = None,
699        output: Optional[Any] = None,
700        metadata: Optional[Any] = None,
701        version: Optional[str] = None,
702        level: Optional[SpanLevel] = None,
703        status_message: Optional[str] = None,
704    ) -> _AgnosticContextManager["LangfuseSpan"]:
705        """Create a new child span and set it as the current span in a context manager.
706
707        This method creates a new child span and sets it as the current span within
708        a context manager. It should be used with a 'with' statement to automatically
709        manage the span's lifecycle.
710
711        Args:
712            name: Name of the span (e.g., function or operation name)
713            input: Input data for the operation
714            output: Output data from the operation
715            metadata: Additional metadata to associate with the span
716            version: Version identifier for the code or component
717            level: Importance level of the span (info, warning, error)
718            status_message: Optional status message for the span
719
720        Returns:
721            A context manager that yields a new LangfuseSpan
722
723        Example:
724            ```python
725            with langfuse.start_as_current_span(name="process-request") as parent_span:
726                # Parent span is active here
727
728                # Create a child span with context management
729                with parent_span.start_as_current_span(name="validate-input") as child_span:
730                    # Child span is active here
731                    validation_result = validate(request_data)
732                    child_span.update(output=validation_result)
733
734                # Back to parent span context
735                result = process_validated_data(validation_result)
736                parent_span.update(output=result)
737            ```
738        """
739        return cast(
740            _AgnosticContextManager["LangfuseSpan"],
741            self._langfuse_client._create_span_with_parent_context(
742                name=name,
743                as_type="span",
744                remote_parent_span=None,
745                parent=self._otel_span,
746                input=input,
747                output=output,
748                metadata=metadata,
749                version=version,
750                level=level,
751                status_message=status_message,
752            ),
753        )

Create a new child span and set it as the current span in a context manager.

This method creates a new child span and sets it as the current span within a context manager. It should be used with a 'with' statement to automatically manage the span's lifecycle.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A context manager that yields a new LangfuseSpan

Example:
with langfuse.start_as_current_span(name="process-request") as parent_span:
    # Parent span is active here

    # Create a child span with context management
    with parent_span.start_as_current_span(name="validate-input") as child_span:
        # Child span is active here
        validation_result = validate(request_data)
        child_span.update(output=validation_result)

    # Back to parent span context
    result = process_validated_data(validation_result)
    parent_span.update(output=result)
def start_generation( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> LangfuseGeneration:
755    def start_generation(
756        self,
757        *,
758        name: str,
759        input: Optional[Any] = None,
760        output: Optional[Any] = None,
761        metadata: Optional[Any] = None,
762        version: Optional[str] = None,
763        level: Optional[SpanLevel] = None,
764        status_message: Optional[str] = None,
765        completion_start_time: Optional[datetime] = None,
766        model: Optional[str] = None,
767        model_parameters: Optional[Dict[str, MapValue]] = None,
768        usage_details: Optional[Dict[str, int]] = None,
769        cost_details: Optional[Dict[str, float]] = None,
770        prompt: Optional[PromptClient] = None,
771    ) -> "LangfuseGeneration":
772        """Create a new child generation span.
773
774        This method creates a new child generation span with this span as the parent.
775        Generation spans are specialized for AI/LLM operations and include additional
776        fields for model information, usage stats, and costs.
777
778        Unlike start_as_current_generation(), this method does not set the new span
779        as the current span in the context.
780
781        Args:
782            name: Name of the generation operation
783            input: Input data for the model (e.g., prompts)
784            output: Output from the model (e.g., completions)
785            metadata: Additional metadata to associate with the generation
786            version: Version identifier for the model or component
787            level: Importance level of the generation (info, warning, error)
788            status_message: Optional status message for the generation
789            completion_start_time: When the model started generating the response
790            model: Name/identifier of the AI model used (e.g., "gpt-4")
791            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
792            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
793            cost_details: Cost information for the model call
794            prompt: Associated prompt template from Langfuse prompt management
795
796        Returns:
797            A new LangfuseGeneration that must be ended with .end() when complete
798
799        Example:
800            ```python
801            span = langfuse.start_span(name="process-query")
802            try:
803                # Create a generation child span
804                generation = span.start_generation(
805                    name="generate-answer",
806                    model="gpt-4",
807                    input={"prompt": "Explain quantum computing"}
808                )
809                try:
810                    # Call model API
811                    response = llm.generate(...)
812
813                    generation.update(
814                        output=response.text,
815                        usage_details={
816                            "prompt_tokens": response.usage.prompt_tokens,
817                            "completion_tokens": response.usage.completion_tokens
818                        }
819                    )
820                finally:
821                    generation.end()
822
823                # Continue with parent span
824                span.update(output={"answer": response.text, "source": "gpt-4"})
825            finally:
826                span.end()
827            ```
828        """
829        with otel_trace_api.use_span(self._otel_span):
830            new_otel_span = self._langfuse_client._otel_tracer.start_span(name=name)
831
832        return LangfuseGeneration(
833            otel_span=new_otel_span,
834            langfuse_client=self._langfuse_client,
835            environment=self._environment,
836            input=input,
837            output=output,
838            metadata=metadata,
839            version=version,
840            level=level,
841            status_message=status_message,
842            completion_start_time=completion_start_time,
843            model=model,
844            model_parameters=model_parameters,
845            usage_details=usage_details,
846            cost_details=cost_details,
847            prompt=prompt,
848        )

Create a new child generation span.

This method creates a new child generation span with this span as the parent. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.

Unlike start_as_current_generation(), this method does not set the new span as the current span in the context.

Arguments:
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A new LangfuseGeneration that must be ended with .end() when complete

Example:
span = langfuse.start_span(name="process-query")
try:
    # Create a generation child span
    generation = span.start_generation(
        name="generate-answer",
        model="gpt-4",
        input={"prompt": "Explain quantum computing"}
    )
    try:
        # Call model API
        response = llm.generate(...)

        generation.update(
            output=response.text,
            usage_details={
                "prompt_tokens": response.usage.prompt_tokens,
                "completion_tokens": response.usage.completion_tokens
            }
        )
    finally:
        generation.end()

    # Continue with parent span
    span.update(output={"answer": response.text, "source": "gpt-4"})
finally:
    span.end()
def start_as_current_generation( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseGeneration]:
850    def start_as_current_generation(
851        self,
852        *,
853        name: str,
854        input: Optional[Any] = None,
855        output: Optional[Any] = None,
856        metadata: Optional[Any] = None,
857        version: Optional[str] = None,
858        level: Optional[SpanLevel] = None,
859        status_message: Optional[str] = None,
860        completion_start_time: Optional[datetime] = None,
861        model: Optional[str] = None,
862        model_parameters: Optional[Dict[str, MapValue]] = None,
863        usage_details: Optional[Dict[str, int]] = None,
864        cost_details: Optional[Dict[str, float]] = None,
865        prompt: Optional[PromptClient] = None,
866    ) -> _AgnosticContextManager["LangfuseGeneration"]:
867        """Create a new child generation span and set it as the current span in a context manager.
868
869        This method creates a new child generation span and sets it as the current span
870        within a context manager. Generation spans are specialized for AI/LLM operations
871        and include additional fields for model information, usage stats, and costs.
872
873        Args:
874            name: Name of the generation operation
875            input: Input data for the model (e.g., prompts)
876            output: Output from the model (e.g., completions)
877            metadata: Additional metadata to associate with the generation
878            version: Version identifier for the model or component
879            level: Importance level of the generation (info, warning, error)
880            status_message: Optional status message for the generation
881            completion_start_time: When the model started generating the response
882            model: Name/identifier of the AI model used (e.g., "gpt-4")
883            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
884            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
885            cost_details: Cost information for the model call
886            prompt: Associated prompt template from Langfuse prompt management
887
888        Returns:
889            A context manager that yields a new LangfuseGeneration
890
891        Example:
892            ```python
893            with langfuse.start_as_current_span(name="process-request") as span:
894                # Prepare data
895                query = preprocess_user_query(user_input)
896
897                # Create a generation span with context management
898                with span.start_as_current_generation(
899                    name="generate-answer",
900                    model="gpt-4",
901                    input={"query": query}
902                ) as generation:
903                    # Generation span is active here
904                    response = llm.generate(query)
905
906                    # Update with results
907                    generation.update(
908                        output=response.text,
909                        usage_details={
910                            "prompt_tokens": response.usage.prompt_tokens,
911                            "completion_tokens": response.usage.completion_tokens
912                        }
913                    )
914
915                # Back to parent span context
916                span.update(output={"answer": response.text, "source": "gpt-4"})
917            ```
918        """
919        return cast(
920            _AgnosticContextManager["LangfuseGeneration"],
921            self._langfuse_client._create_span_with_parent_context(
922                name=name,
923                as_type="generation",
924                remote_parent_span=None,
925                parent=self._otel_span,
926                input=input,
927                output=output,
928                metadata=metadata,
929                version=version,
930                level=level,
931                status_message=status_message,
932                completion_start_time=completion_start_time,
933                model=model,
934                model_parameters=model_parameters,
935                usage_details=usage_details,
936                cost_details=cost_details,
937                prompt=prompt,
938            ),
939        )

Create a new child generation span and set it as the current span in a context manager.

This method creates a new child generation span and sets it as the current span within a context manager. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.

Arguments:
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A context manager that yields a new LangfuseGeneration

Example:
with langfuse.start_as_current_span(name="process-request") as span:
    # Prepare data
    query = preprocess_user_query(user_input)

    # Create a generation span with context management
    with span.start_as_current_generation(
        name="generate-answer",
        model="gpt-4",
        input={"query": query}
    ) as generation:
        # Generation span is active here
        response = llm.generate(query)

        # Update with results
        generation.update(
            output=response.text,
            usage_details={
                "prompt_tokens": response.usage.prompt_tokens,
                "completion_tokens": response.usage.completion_tokens
            }
        )

    # Back to parent span context
    span.update(output={"answer": response.text, "source": "gpt-4"})
def create_event( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseEvent:
941    def create_event(
942        self,
943        *,
944        name: str,
945        input: Optional[Any] = None,
946        output: Optional[Any] = None,
947        metadata: Optional[Any] = None,
948        version: Optional[str] = None,
949        level: Optional[SpanLevel] = None,
950        status_message: Optional[str] = None,
951    ) -> "LangfuseEvent":
952        """Create a new Langfuse observation of type 'EVENT'.
953
954        Args:
955            name: Name of the span (e.g., function or operation name)
956            input: Input data for the operation (can be any JSON-serializable object)
957            output: Output data from the operation (can be any JSON-serializable object)
958            metadata: Additional metadata to associate with the span
959            version: Version identifier for the code or component
960            level: Importance level of the span (info, warning, error)
961            status_message: Optional status message for the span
962
963        Returns:
964            The LangfuseEvent object
965
966        Example:
967            ```python
968            event = langfuse.create_event(name="process-event")
969            ```
970        """
971        timestamp = time_ns()
972
973        with otel_trace_api.use_span(self._otel_span):
974            new_otel_span = self._langfuse_client._otel_tracer.start_span(
975                name=name, start_time=timestamp
976            )
977
978        return cast(
979            "LangfuseEvent",
980            LangfuseEvent(
981                otel_span=new_otel_span,
982                langfuse_client=self._langfuse_client,
983                input=input,
984                output=output,
985                metadata=metadata,
986                environment=self._environment,
987                version=version,
988                level=level,
989                status_message=status_message,
990            ).end(end_time=timestamp),
991        )

Create a new Langfuse observation of type 'EVENT'.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

The LangfuseEvent object

Example:
event = langfuse.create_event(name="process-event")
Inherited Members
langfuse._client.span.LangfuseSpanWrapper
trace_id
id
end
update_trace
score
score_trace
class LangfuseGeneration(langfuse._client.span.LangfuseSpanWrapper):
 994class LangfuseGeneration(LangfuseSpanWrapper):
 995    """Specialized span implementation for AI model generations in Langfuse.
 996
 997    This class represents a generation span specifically designed for tracking
 998    AI/LLM operations. It extends the base LangfuseSpanWrapper with specialized
 999    attributes for model details, token usage, and costs.
1000    """
1001
1002    def __init__(
1003        self,
1004        *,
1005        otel_span: otel_trace_api.Span,
1006        langfuse_client: "Langfuse",
1007        input: Optional[Any] = None,
1008        output: Optional[Any] = None,
1009        metadata: Optional[Any] = None,
1010        environment: Optional[str] = None,
1011        version: Optional[str] = None,
1012        level: Optional[SpanLevel] = None,
1013        status_message: Optional[str] = None,
1014        completion_start_time: Optional[datetime] = None,
1015        model: Optional[str] = None,
1016        model_parameters: Optional[Dict[str, MapValue]] = None,
1017        usage_details: Optional[Dict[str, int]] = None,
1018        cost_details: Optional[Dict[str, float]] = None,
1019        prompt: Optional[PromptClient] = None,
1020    ):
1021        """Initialize a new LangfuseGeneration span.
1022
1023        Args:
1024            otel_span: The OpenTelemetry span to wrap
1025            langfuse_client: Reference to the parent Langfuse client
1026            input: Input data for the generation (e.g., prompts)
1027            output: Output from the generation (e.g., completions)
1028            metadata: Additional metadata to associate with the generation
1029            environment: The tracing environment
1030            version: Version identifier for the model or component
1031            level: Importance level of the generation (info, warning, error)
1032            status_message: Optional status message for the generation
1033            completion_start_time: When the model started generating the response
1034            model: Name/identifier of the AI model used (e.g., "gpt-4")
1035            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1036            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1037            cost_details: Cost information for the model call
1038            prompt: Associated prompt template from Langfuse prompt management
1039        """
1040        super().__init__(
1041            otel_span=otel_span,
1042            as_type="generation",
1043            langfuse_client=langfuse_client,
1044            input=input,
1045            output=output,
1046            metadata=metadata,
1047            environment=environment,
1048            version=version,
1049            level=level,
1050            status_message=status_message,
1051            completion_start_time=completion_start_time,
1052            model=model,
1053            model_parameters=model_parameters,
1054            usage_details=usage_details,
1055            cost_details=cost_details,
1056            prompt=prompt,
1057        )
1058
1059    def update(
1060        self,
1061        *,
1062        name: Optional[str] = None,
1063        input: Optional[Any] = None,
1064        output: Optional[Any] = None,
1065        metadata: Optional[Any] = None,
1066        version: Optional[str] = None,
1067        level: Optional[SpanLevel] = None,
1068        status_message: Optional[str] = None,
1069        completion_start_time: Optional[datetime] = None,
1070        model: Optional[str] = None,
1071        model_parameters: Optional[Dict[str, MapValue]] = None,
1072        usage_details: Optional[Dict[str, int]] = None,
1073        cost_details: Optional[Dict[str, float]] = None,
1074        prompt: Optional[PromptClient] = None,
1075        **kwargs: Dict[str, Any],
1076    ) -> "LangfuseGeneration":
1077        """Update this generation span with new information.
1078
1079        This method updates the generation span with new information that becomes
1080        available during or after the model generation, such as model outputs,
1081        token usage statistics, or cost details.
1082
1083        Args:
1084            name: The generation name
1085            input: Updated input data for the model
1086            output: Output from the model (e.g., completions)
1087            metadata: Additional metadata to associate with the generation
1088            version: Version identifier for the model or component
1089            level: Importance level of the generation (info, warning, error)
1090            status_message: Optional status message for the generation
1091            completion_start_time: When the model started generating the response
1092            model: Name/identifier of the AI model used (e.g., "gpt-4")
1093            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1094            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1095            cost_details: Cost information for the model call
1096            prompt: Associated prompt template from Langfuse prompt management
1097            **kwargs: Additional keyword arguments (ignored)
1098
1099        Example:
1100            ```python
1101            generation = langfuse.start_generation(
1102                name="answer-generation",
1103                model="gpt-4",
1104                input={"prompt": "Explain quantum computing"}
1105            )
1106            try:
1107                # Call model API
1108                response = llm.generate(...)
1109
1110                # Update with results
1111                generation.update(
1112                    output=response.text,
1113                    usage_details={
1114                        "prompt_tokens": response.usage.prompt_tokens,
1115                        "completion_tokens": response.usage.completion_tokens,
1116                        "total_tokens": response.usage.total_tokens
1117                    },
1118                    cost_details={
1119                        "total_cost": 0.0035
1120                    }
1121                )
1122            finally:
1123                generation.end()
1124            ```
1125        """
1126        if not self._otel_span.is_recording():
1127            return self
1128
1129        processed_input = self._process_media_and_apply_mask(
1130            data=input, field="input", span=self._otel_span
1131        )
1132        processed_output = self._process_media_and_apply_mask(
1133            data=output, field="output", span=self._otel_span
1134        )
1135        processed_metadata = self._process_media_and_apply_mask(
1136            data=metadata, field="metadata", span=self._otel_span
1137        )
1138
1139        if name:
1140            self._otel_span.update_name(name)
1141
1142        attributes = create_generation_attributes(
1143            input=processed_input,
1144            output=processed_output,
1145            metadata=processed_metadata,
1146            version=version,
1147            level=level,
1148            status_message=status_message,
1149            completion_start_time=completion_start_time,
1150            model=model,
1151            model_parameters=model_parameters,
1152            usage_details=usage_details,
1153            cost_details=cost_details,
1154            prompt=prompt,
1155        )
1156
1157        self._otel_span.set_attributes(attributes=attributes)
1158
1159        return self

Specialized span implementation for AI model generations in Langfuse.

This class represents a generation span specifically designed for tracking AI/LLM operations. It extends the base LangfuseSpanWrapper with specialized attributes for model details, token usage, and costs.

LangfuseGeneration( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None)
1002    def __init__(
1003        self,
1004        *,
1005        otel_span: otel_trace_api.Span,
1006        langfuse_client: "Langfuse",
1007        input: Optional[Any] = None,
1008        output: Optional[Any] = None,
1009        metadata: Optional[Any] = None,
1010        environment: Optional[str] = None,
1011        version: Optional[str] = None,
1012        level: Optional[SpanLevel] = None,
1013        status_message: Optional[str] = None,
1014        completion_start_time: Optional[datetime] = None,
1015        model: Optional[str] = None,
1016        model_parameters: Optional[Dict[str, MapValue]] = None,
1017        usage_details: Optional[Dict[str, int]] = None,
1018        cost_details: Optional[Dict[str, float]] = None,
1019        prompt: Optional[PromptClient] = None,
1020    ):
1021        """Initialize a new LangfuseGeneration span.
1022
1023        Args:
1024            otel_span: The OpenTelemetry span to wrap
1025            langfuse_client: Reference to the parent Langfuse client
1026            input: Input data for the generation (e.g., prompts)
1027            output: Output from the generation (e.g., completions)
1028            metadata: Additional metadata to associate with the generation
1029            environment: The tracing environment
1030            version: Version identifier for the model or component
1031            level: Importance level of the generation (info, warning, error)
1032            status_message: Optional status message for the generation
1033            completion_start_time: When the model started generating the response
1034            model: Name/identifier of the AI model used (e.g., "gpt-4")
1035            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1036            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1037            cost_details: Cost information for the model call
1038            prompt: Associated prompt template from Langfuse prompt management
1039        """
1040        super().__init__(
1041            otel_span=otel_span,
1042            as_type="generation",
1043            langfuse_client=langfuse_client,
1044            input=input,
1045            output=output,
1046            metadata=metadata,
1047            environment=environment,
1048            version=version,
1049            level=level,
1050            status_message=status_message,
1051            completion_start_time=completion_start_time,
1052            model=model,
1053            model_parameters=model_parameters,
1054            usage_details=usage_details,
1055            cost_details=cost_details,
1056            prompt=prompt,
1057        )

Initialize a new LangfuseGeneration span.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the generation (e.g., prompts)
  • output: Output from the generation (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • environment: The tracing environment
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
def update( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, float, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None, **kwargs: Dict[str, Any]) -> LangfuseGeneration:
1059    def update(
1060        self,
1061        *,
1062        name: Optional[str] = None,
1063        input: Optional[Any] = None,
1064        output: Optional[Any] = None,
1065        metadata: Optional[Any] = None,
1066        version: Optional[str] = None,
1067        level: Optional[SpanLevel] = None,
1068        status_message: Optional[str] = None,
1069        completion_start_time: Optional[datetime] = None,
1070        model: Optional[str] = None,
1071        model_parameters: Optional[Dict[str, MapValue]] = None,
1072        usage_details: Optional[Dict[str, int]] = None,
1073        cost_details: Optional[Dict[str, float]] = None,
1074        prompt: Optional[PromptClient] = None,
1075        **kwargs: Dict[str, Any],
1076    ) -> "LangfuseGeneration":
1077        """Update this generation span with new information.
1078
1079        This method updates the generation span with new information that becomes
1080        available during or after the model generation, such as model outputs,
1081        token usage statistics, or cost details.
1082
1083        Args:
1084            name: The generation name
1085            input: Updated input data for the model
1086            output: Output from the model (e.g., completions)
1087            metadata: Additional metadata to associate with the generation
1088            version: Version identifier for the model or component
1089            level: Importance level of the generation (info, warning, error)
1090            status_message: Optional status message for the generation
1091            completion_start_time: When the model started generating the response
1092            model: Name/identifier of the AI model used (e.g., "gpt-4")
1093            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1094            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1095            cost_details: Cost information for the model call
1096            prompt: Associated prompt template from Langfuse prompt management
1097            **kwargs: Additional keyword arguments (ignored)
1098
1099        Example:
1100            ```python
1101            generation = langfuse.start_generation(
1102                name="answer-generation",
1103                model="gpt-4",
1104                input={"prompt": "Explain quantum computing"}
1105            )
1106            try:
1107                # Call model API
1108                response = llm.generate(...)
1109
1110                # Update with results
1111                generation.update(
1112                    output=response.text,
1113                    usage_details={
1114                        "prompt_tokens": response.usage.prompt_tokens,
1115                        "completion_tokens": response.usage.completion_tokens,
1116                        "total_tokens": response.usage.total_tokens
1117                    },
1118                    cost_details={
1119                        "total_cost": 0.0035
1120                    }
1121                )
1122            finally:
1123                generation.end()
1124            ```
1125        """
1126        if not self._otel_span.is_recording():
1127            return self
1128
1129        processed_input = self._process_media_and_apply_mask(
1130            data=input, field="input", span=self._otel_span
1131        )
1132        processed_output = self._process_media_and_apply_mask(
1133            data=output, field="output", span=self._otel_span
1134        )
1135        processed_metadata = self._process_media_and_apply_mask(
1136            data=metadata, field="metadata", span=self._otel_span
1137        )
1138
1139        if name:
1140            self._otel_span.update_name(name)
1141
1142        attributes = create_generation_attributes(
1143            input=processed_input,
1144            output=processed_output,
1145            metadata=processed_metadata,
1146            version=version,
1147            level=level,
1148            status_message=status_message,
1149            completion_start_time=completion_start_time,
1150            model=model,
1151            model_parameters=model_parameters,
1152            usage_details=usage_details,
1153            cost_details=cost_details,
1154            prompt=prompt,
1155        )
1156
1157        self._otel_span.set_attributes(attributes=attributes)
1158
1159        return self

Update this generation span with new information.

This method updates the generation span with new information that becomes available during or after the model generation, such as model outputs, token usage statistics, or cost details.

Arguments:
  • name: The generation name
  • input: Updated input data for the model
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
  • **kwargs: Additional keyword arguments (ignored)
Example:
generation = langfuse.start_generation(
    name="answer-generation",
    model="gpt-4",
    input={"prompt": "Explain quantum computing"}
)
try:
    # Call model API
    response = llm.generate(...)

    # Update with results
    generation.update(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens,
            "total_tokens": response.usage.total_tokens
        },
        cost_details={
            "total_cost": 0.0035
        }
    )
finally:
    generation.end()
Inherited Members
langfuse._client.span.LangfuseSpanWrapper
trace_id
id
end
update_trace
score
score_trace
class LangfuseEvent(langfuse._client.span.LangfuseSpanWrapper):
1162class LangfuseEvent(LangfuseSpanWrapper):
1163    """Specialized span implementation for Langfuse Events."""
1164
1165    def __init__(
1166        self,
1167        *,
1168        otel_span: otel_trace_api.Span,
1169        langfuse_client: "Langfuse",
1170        input: Optional[Any] = None,
1171        output: Optional[Any] = None,
1172        metadata: Optional[Any] = None,
1173        environment: Optional[str] = None,
1174        version: Optional[str] = None,
1175        level: Optional[SpanLevel] = None,
1176        status_message: Optional[str] = None,
1177    ):
1178        """Initialize a new LangfuseEvent span.
1179
1180        Args:
1181            otel_span: The OpenTelemetry span to wrap
1182            langfuse_client: Reference to the parent Langfuse client
1183            input: Input data for the event
1184            output: Output from the event
1185            metadata: Additional metadata to associate with the generation
1186            environment: The tracing environment
1187            version: Version identifier for the model or component
1188            level: Importance level of the generation (info, warning, error)
1189            status_message: Optional status message for the generation
1190        """
1191        super().__init__(
1192            otel_span=otel_span,
1193            as_type="event",
1194            langfuse_client=langfuse_client,
1195            input=input,
1196            output=output,
1197            metadata=metadata,
1198            environment=environment,
1199            version=version,
1200            level=level,
1201            status_message=status_message,
1202        )

Specialized span implementation for Langfuse Events.

LangfuseEvent( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None)
1165    def __init__(
1166        self,
1167        *,
1168        otel_span: otel_trace_api.Span,
1169        langfuse_client: "Langfuse",
1170        input: Optional[Any] = None,
1171        output: Optional[Any] = None,
1172        metadata: Optional[Any] = None,
1173        environment: Optional[str] = None,
1174        version: Optional[str] = None,
1175        level: Optional[SpanLevel] = None,
1176        status_message: Optional[str] = None,
1177    ):
1178        """Initialize a new LangfuseEvent span.
1179
1180        Args:
1181            otel_span: The OpenTelemetry span to wrap
1182            langfuse_client: Reference to the parent Langfuse client
1183            input: Input data for the event
1184            output: Output from the event
1185            metadata: Additional metadata to associate with the generation
1186            environment: The tracing environment
1187            version: Version identifier for the model or component
1188            level: Importance level of the generation (info, warning, error)
1189            status_message: Optional status message for the generation
1190        """
1191        super().__init__(
1192            otel_span=otel_span,
1193            as_type="event",
1194            langfuse_client=langfuse_client,
1195            input=input,
1196            output=output,
1197            metadata=metadata,
1198            environment=environment,
1199            version=version,
1200            level=level,
1201            status_message=status_message,
1202        )

Initialize a new LangfuseEvent span.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the event
  • output: Output from the event
  • metadata: Additional metadata to associate with the generation
  • environment: The tracing environment
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
Inherited Members
langfuse._client.span.LangfuseSpanWrapper
trace_id
id
end
update_trace
score
score_trace
class LangfuseOtelSpanAttributes:
23class LangfuseOtelSpanAttributes:
24    # Langfuse-Trace attributes
25    TRACE_NAME = "langfuse.trace.name"
26    TRACE_USER_ID = "user.id"
27    TRACE_SESSION_ID = "session.id"
28    TRACE_TAGS = "langfuse.trace.tags"
29    TRACE_PUBLIC = "langfuse.trace.public"
30    TRACE_METADATA = "langfuse.trace.metadata"
31    TRACE_INPUT = "langfuse.trace.input"
32    TRACE_OUTPUT = "langfuse.trace.output"
33
34    # Langfuse-observation attributes
35    OBSERVATION_TYPE = "langfuse.observation.type"
36    OBSERVATION_METADATA = "langfuse.observation.metadata"
37    OBSERVATION_LEVEL = "langfuse.observation.level"
38    OBSERVATION_STATUS_MESSAGE = "langfuse.observation.status_message"
39    OBSERVATION_INPUT = "langfuse.observation.input"
40    OBSERVATION_OUTPUT = "langfuse.observation.output"
41
42    # Langfuse-observation of type Generation attributes
43    OBSERVATION_COMPLETION_START_TIME = "langfuse.observation.completion_start_time"
44    OBSERVATION_MODEL = "langfuse.observation.model.name"
45    OBSERVATION_MODEL_PARAMETERS = "langfuse.observation.model.parameters"
46    OBSERVATION_USAGE_DETAILS = "langfuse.observation.usage_details"
47    OBSERVATION_COST_DETAILS = "langfuse.observation.cost_details"
48    OBSERVATION_PROMPT_NAME = "langfuse.observation.prompt.name"
49    OBSERVATION_PROMPT_VERSION = "langfuse.observation.prompt.version"
50
51    # General
52    ENVIRONMENT = "langfuse.environment"
53    RELEASE = "langfuse.release"
54    VERSION = "langfuse.version"
55
56    # Internal
57    AS_ROOT = "langfuse.internal.as_root"
TRACE_NAME = 'langfuse.trace.name'
TRACE_USER_ID = 'user.id'
TRACE_SESSION_ID = 'session.id'
TRACE_TAGS = 'langfuse.trace.tags'
TRACE_PUBLIC = 'langfuse.trace.public'
TRACE_METADATA = 'langfuse.trace.metadata'
TRACE_INPUT = 'langfuse.trace.input'
TRACE_OUTPUT = 'langfuse.trace.output'
OBSERVATION_TYPE = 'langfuse.observation.type'
OBSERVATION_METADATA = 'langfuse.observation.metadata'
OBSERVATION_LEVEL = 'langfuse.observation.level'
OBSERVATION_STATUS_MESSAGE = 'langfuse.observation.status_message'
OBSERVATION_INPUT = 'langfuse.observation.input'
OBSERVATION_OUTPUT = 'langfuse.observation.output'
OBSERVATION_COMPLETION_START_TIME = 'langfuse.observation.completion_start_time'
OBSERVATION_MODEL = 'langfuse.observation.model.name'
OBSERVATION_MODEL_PARAMETERS = 'langfuse.observation.model.parameters'
OBSERVATION_USAGE_DETAILS = 'langfuse.observation.usage_details'
OBSERVATION_COST_DETAILS = 'langfuse.observation.cost_details'
OBSERVATION_PROMPT_NAME = 'langfuse.observation.prompt.name'
OBSERVATION_PROMPT_VERSION = 'langfuse.observation.prompt.version'
ENVIRONMENT = 'langfuse.environment'
RELEASE = 'langfuse.release'
VERSION = 'langfuse.version'
AS_ROOT = 'langfuse.internal.as_root'