langfuse
Langfuse Python SDK
Installation
The SDK was rewritten in v3 and released in June 2025. Refer to the v3 migration guide for instructions on updating your code.
pip install langfuse
Docs
Please see our docs for detailed information on this SDK.
1""".. include:: ../README.md""" 2 3from ._client import client as _client_module 4from ._client.attributes import LangfuseOtelSpanAttributes 5from ._client.constants import ObservationTypeLiteral 6from ._client.get_client import get_client 7from ._client.observe import observe 8from ._client.span import ( 9 LangfuseEvent, 10 LangfuseGeneration, 11 LangfuseSpan, 12 LangfuseAgent, 13 LangfuseTool, 14 LangfuseChain, 15 LangfuseEmbedding, 16 LangfuseEvaluator, 17 LangfuseRetriever, 18 LangfuseGuardrail, 19) 20 21Langfuse = _client_module.Langfuse 22 23__all__ = [ 24 "Langfuse", 25 "get_client", 26 "observe", 27 "ObservationTypeLiteral", 28 "LangfuseSpan", 29 "LangfuseGeneration", 30 "LangfuseEvent", 31 "LangfuseOtelSpanAttributes", 32 "LangfuseAgent", 33 "LangfuseTool", 34 "LangfuseChain", 35 "LangfuseEmbedding", 36 "LangfuseEvaluator", 37 "LangfuseRetriever", 38 "LangfuseGuardrail", 39]
100class Langfuse: 101 """Main client for Langfuse tracing and platform features. 102 103 This class provides an interface for creating and managing traces, spans, 104 and generations in Langfuse as well as interacting with the Langfuse API. 105 106 The client features a thread-safe singleton pattern for each unique public API key, 107 ensuring consistent trace context propagation across your application. It implements 108 efficient batching of spans with configurable flush settings and includes background 109 thread management for media uploads and score ingestion. 110 111 Configuration is flexible through either direct parameters or environment variables, 112 with graceful fallbacks and runtime configuration updates. 113 114 Attributes: 115 api: Synchronous API client for Langfuse backend communication 116 async_api: Asynchronous API client for Langfuse backend communication 117 langfuse_tracer: Internal LangfuseTracer instance managing OpenTelemetry components 118 119 Parameters: 120 public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable. 121 secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable. 122 host (Optional[str]): The Langfuse API host URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_HOST environment variable. 123 timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds. 124 httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created. 125 debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable. 126 tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable. 127 flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable. 128 flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable. 129 environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. 130 release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release. 131 media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable. 132 sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable. 133 mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API. 134 blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (`metadata.scope.name`) 135 additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well. 136 tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees. 137 138 Example: 139 ```python 140 from langfuse.otel import Langfuse 141 142 # Initialize the client (reads from env vars if not provided) 143 langfuse = Langfuse( 144 public_key="your-public-key", 145 secret_key="your-secret-key", 146 host="https://cloud.langfuse.com", # Optional, default shown 147 ) 148 149 # Create a trace span 150 with langfuse.start_as_current_span(name="process-query") as span: 151 # Your application code here 152 153 # Create a nested generation span for an LLM call 154 with span.start_as_current_generation( 155 name="generate-response", 156 model="gpt-4", 157 input={"query": "Tell me about AI"}, 158 model_parameters={"temperature": 0.7, "max_tokens": 500} 159 ) as generation: 160 # Generate response here 161 response = "AI is a field of computer science..." 162 163 generation.update( 164 output=response, 165 usage_details={"prompt_tokens": 10, "completion_tokens": 50}, 166 cost_details={"total_cost": 0.0023} 167 ) 168 169 # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL) 170 generation.score(name="relevance", value=0.95, data_type="NUMERIC") 171 ``` 172 """ 173 174 _resources: Optional[LangfuseResourceManager] = None 175 _mask: Optional[MaskFunction] = None 176 _otel_tracer: otel_trace_api.Tracer 177 178 def __init__( 179 self, 180 *, 181 public_key: Optional[str] = None, 182 secret_key: Optional[str] = None, 183 host: Optional[str] = None, 184 timeout: Optional[int] = None, 185 httpx_client: Optional[httpx.Client] = None, 186 debug: bool = False, 187 tracing_enabled: Optional[bool] = True, 188 flush_at: Optional[int] = None, 189 flush_interval: Optional[float] = None, 190 environment: Optional[str] = None, 191 release: Optional[str] = None, 192 media_upload_thread_count: Optional[int] = None, 193 sample_rate: Optional[float] = None, 194 mask: Optional[MaskFunction] = None, 195 blocked_instrumentation_scopes: Optional[List[str]] = None, 196 additional_headers: Optional[Dict[str, str]] = None, 197 tracer_provider: Optional[TracerProvider] = None, 198 ): 199 self._host = host or cast( 200 str, os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com") 201 ) 202 self._environment = environment or cast( 203 str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT) 204 ) 205 self._project_id: Optional[str] = None 206 sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0)) 207 if not 0.0 <= sample_rate <= 1.0: 208 raise ValueError( 209 f"Sample rate must be between 0.0 and 1.0, got {sample_rate}" 210 ) 211 212 timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5)) 213 214 self._tracing_enabled = ( 215 tracing_enabled 216 and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false" 217 ) 218 if not self._tracing_enabled: 219 langfuse_logger.info( 220 "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API." 221 ) 222 223 debug = ( 224 debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true") 225 ) 226 if debug: 227 logging.basicConfig( 228 format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" 229 ) 230 langfuse_logger.setLevel(logging.DEBUG) 231 232 public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY) 233 if public_key is None: 234 langfuse_logger.warning( 235 "Authentication error: Langfuse client initialized without public_key. Client will be disabled. " 236 "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. " 237 ) 238 self._otel_tracer = otel_trace_api.NoOpTracer() 239 return 240 241 secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY) 242 if secret_key is None: 243 langfuse_logger.warning( 244 "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. " 245 "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. " 246 ) 247 self._otel_tracer = otel_trace_api.NoOpTracer() 248 return 249 250 if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true": 251 langfuse_logger.warning( 252 "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI." 253 ) 254 255 # Initialize api and tracer if requirements are met 256 self._resources = LangfuseResourceManager( 257 public_key=public_key, 258 secret_key=secret_key, 259 host=self._host, 260 timeout=timeout, 261 environment=environment, 262 release=release, 263 flush_at=flush_at, 264 flush_interval=flush_interval, 265 httpx_client=httpx_client, 266 media_upload_thread_count=media_upload_thread_count, 267 sample_rate=sample_rate, 268 mask=mask, 269 tracing_enabled=self._tracing_enabled, 270 blocked_instrumentation_scopes=blocked_instrumentation_scopes, 271 additional_headers=additional_headers, 272 tracer_provider=tracer_provider, 273 ) 274 self._mask = self._resources.mask 275 276 self._otel_tracer = ( 277 self._resources.tracer 278 if self._tracing_enabled and self._resources.tracer is not None 279 else otel_trace_api.NoOpTracer() 280 ) 281 self.api = self._resources.api 282 self.async_api = self._resources.async_api 283 284 def start_span( 285 self, 286 *, 287 trace_context: Optional[TraceContext] = None, 288 name: str, 289 input: Optional[Any] = None, 290 output: Optional[Any] = None, 291 metadata: Optional[Any] = None, 292 version: Optional[str] = None, 293 level: Optional[SpanLevel] = None, 294 status_message: Optional[str] = None, 295 ) -> LangfuseSpan: 296 """Create a new span for tracing a unit of work. 297 298 This method creates a new span but does not set it as the current span in the 299 context. To create and use a span within a context, use start_as_current_span(). 300 301 The created span will be the child of the current span in the context. 302 303 Args: 304 trace_context: Optional context for connecting to an existing trace 305 name: Name of the span (e.g., function or operation name) 306 input: Input data for the operation (can be any JSON-serializable object) 307 output: Output data from the operation (can be any JSON-serializable object) 308 metadata: Additional metadata to associate with the span 309 version: Version identifier for the code or component 310 level: Importance level of the span (info, warning, error) 311 status_message: Optional status message for the span 312 313 Returns: 314 A LangfuseSpan object that must be ended with .end() when the operation completes 315 316 Example: 317 ```python 318 span = langfuse.start_span(name="process-data") 319 try: 320 # Do work 321 span.update(output="result") 322 finally: 323 span.end() 324 ``` 325 """ 326 return self.start_observation( 327 trace_context=trace_context, 328 name=name, 329 as_type="span", 330 input=input, 331 output=output, 332 metadata=metadata, 333 version=version, 334 level=level, 335 status_message=status_message, 336 ) 337 338 def start_as_current_span( 339 self, 340 *, 341 trace_context: Optional[TraceContext] = None, 342 name: str, 343 input: Optional[Any] = None, 344 output: Optional[Any] = None, 345 metadata: Optional[Any] = None, 346 version: Optional[str] = None, 347 level: Optional[SpanLevel] = None, 348 status_message: Optional[str] = None, 349 end_on_exit: Optional[bool] = None, 350 ) -> _AgnosticContextManager[LangfuseSpan]: 351 """Create a new span and set it as the current span in a context manager. 352 353 This method creates a new span and sets it as the current span within a context 354 manager. Use this method with a 'with' statement to automatically handle span 355 lifecycle within a code block. 356 357 The created span will be the child of the current span in the context. 358 359 Args: 360 trace_context: Optional context for connecting to an existing trace 361 name: Name of the span (e.g., function or operation name) 362 input: Input data for the operation (can be any JSON-serializable object) 363 output: Output data from the operation (can be any JSON-serializable object) 364 metadata: Additional metadata to associate with the span 365 version: Version identifier for the code or component 366 level: Importance level of the span (info, warning, error) 367 status_message: Optional status message for the span 368 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 369 370 Returns: 371 A context manager that yields a LangfuseSpan 372 373 Example: 374 ```python 375 with langfuse.start_as_current_span(name="process-query") as span: 376 # Do work 377 result = process_data() 378 span.update(output=result) 379 380 # Create a child span automatically 381 with span.start_as_current_span(name="sub-operation") as child_span: 382 # Do sub-operation work 383 child_span.update(output="sub-result") 384 ``` 385 """ 386 return self.start_as_current_observation( 387 trace_context=trace_context, 388 name=name, 389 as_type="span", 390 input=input, 391 output=output, 392 metadata=metadata, 393 version=version, 394 level=level, 395 status_message=status_message, 396 end_on_exit=end_on_exit, 397 ) 398 399 @overload 400 def start_observation( 401 self, 402 *, 403 trace_context: Optional[TraceContext] = None, 404 name: str, 405 as_type: Literal["generation"], 406 input: Optional[Any] = None, 407 output: Optional[Any] = None, 408 metadata: Optional[Any] = None, 409 version: Optional[str] = None, 410 level: Optional[SpanLevel] = None, 411 status_message: Optional[str] = None, 412 completion_start_time: Optional[datetime] = None, 413 model: Optional[str] = None, 414 model_parameters: Optional[Dict[str, MapValue]] = None, 415 usage_details: Optional[Dict[str, int]] = None, 416 cost_details: Optional[Dict[str, float]] = None, 417 prompt: Optional[PromptClient] = None, 418 ) -> LangfuseGeneration: ... 419 420 @overload 421 def start_observation( 422 self, 423 *, 424 trace_context: Optional[TraceContext] = None, 425 name: str, 426 as_type: Literal["span"] = "span", 427 input: Optional[Any] = None, 428 output: Optional[Any] = None, 429 metadata: Optional[Any] = None, 430 version: Optional[str] = None, 431 level: Optional[SpanLevel] = None, 432 status_message: Optional[str] = None, 433 ) -> LangfuseSpan: ... 434 435 @overload 436 def start_observation( 437 self, 438 *, 439 trace_context: Optional[TraceContext] = None, 440 name: str, 441 as_type: Literal["agent"], 442 input: Optional[Any] = None, 443 output: Optional[Any] = None, 444 metadata: Optional[Any] = None, 445 version: Optional[str] = None, 446 level: Optional[SpanLevel] = None, 447 status_message: Optional[str] = None, 448 ) -> LangfuseAgent: ... 449 450 @overload 451 def start_observation( 452 self, 453 *, 454 trace_context: Optional[TraceContext] = None, 455 name: str, 456 as_type: Literal["tool"], 457 input: Optional[Any] = None, 458 output: Optional[Any] = None, 459 metadata: Optional[Any] = None, 460 version: Optional[str] = None, 461 level: Optional[SpanLevel] = None, 462 status_message: Optional[str] = None, 463 ) -> LangfuseTool: ... 464 465 @overload 466 def start_observation( 467 self, 468 *, 469 trace_context: Optional[TraceContext] = None, 470 name: str, 471 as_type: Literal["chain"], 472 input: Optional[Any] = None, 473 output: Optional[Any] = None, 474 metadata: Optional[Any] = None, 475 version: Optional[str] = None, 476 level: Optional[SpanLevel] = None, 477 status_message: Optional[str] = None, 478 ) -> LangfuseChain: ... 479 480 @overload 481 def start_observation( 482 self, 483 *, 484 trace_context: Optional[TraceContext] = None, 485 name: str, 486 as_type: Literal["retriever"], 487 input: Optional[Any] = None, 488 output: Optional[Any] = None, 489 metadata: Optional[Any] = None, 490 version: Optional[str] = None, 491 level: Optional[SpanLevel] = None, 492 status_message: Optional[str] = None, 493 ) -> LangfuseRetriever: ... 494 495 @overload 496 def start_observation( 497 self, 498 *, 499 trace_context: Optional[TraceContext] = None, 500 name: str, 501 as_type: Literal["evaluator"], 502 input: Optional[Any] = None, 503 output: Optional[Any] = None, 504 metadata: Optional[Any] = None, 505 version: Optional[str] = None, 506 level: Optional[SpanLevel] = None, 507 status_message: Optional[str] = None, 508 ) -> LangfuseEvaluator: ... 509 510 @overload 511 def start_observation( 512 self, 513 *, 514 trace_context: Optional[TraceContext] = None, 515 name: str, 516 as_type: Literal["embedding"], 517 input: Optional[Any] = None, 518 output: Optional[Any] = None, 519 metadata: Optional[Any] = None, 520 version: Optional[str] = None, 521 level: Optional[SpanLevel] = None, 522 status_message: Optional[str] = None, 523 completion_start_time: Optional[datetime] = None, 524 model: Optional[str] = None, 525 model_parameters: Optional[Dict[str, MapValue]] = None, 526 usage_details: Optional[Dict[str, int]] = None, 527 cost_details: Optional[Dict[str, float]] = None, 528 prompt: Optional[PromptClient] = None, 529 ) -> LangfuseEmbedding: ... 530 531 @overload 532 def start_observation( 533 self, 534 *, 535 trace_context: Optional[TraceContext] = None, 536 name: str, 537 as_type: Literal["guardrail"], 538 input: Optional[Any] = None, 539 output: Optional[Any] = None, 540 metadata: Optional[Any] = None, 541 version: Optional[str] = None, 542 level: Optional[SpanLevel] = None, 543 status_message: Optional[str] = None, 544 ) -> LangfuseGuardrail: ... 545 546 def start_observation( 547 self, 548 *, 549 trace_context: Optional[TraceContext] = None, 550 name: str, 551 as_type: ObservationTypeLiteralNoEvent = "span", 552 input: Optional[Any] = None, 553 output: Optional[Any] = None, 554 metadata: Optional[Any] = None, 555 version: Optional[str] = None, 556 level: Optional[SpanLevel] = None, 557 status_message: Optional[str] = None, 558 completion_start_time: Optional[datetime] = None, 559 model: Optional[str] = None, 560 model_parameters: Optional[Dict[str, MapValue]] = None, 561 usage_details: Optional[Dict[str, int]] = None, 562 cost_details: Optional[Dict[str, float]] = None, 563 prompt: Optional[PromptClient] = None, 564 ) -> Union[ 565 LangfuseSpan, 566 LangfuseGeneration, 567 LangfuseAgent, 568 LangfuseTool, 569 LangfuseChain, 570 LangfuseRetriever, 571 LangfuseEvaluator, 572 LangfuseEmbedding, 573 LangfuseGuardrail, 574 ]: 575 """Create a new observation of the specified type. 576 577 This method creates a new observation but does not set it as the current span in the 578 context. To create and use an observation within a context, use start_as_current_observation(). 579 580 Args: 581 trace_context: Optional context for connecting to an existing trace 582 name: Name of the observation 583 as_type: Type of observation to create (defaults to "span") 584 input: Input data for the operation 585 output: Output data from the operation 586 metadata: Additional metadata to associate with the observation 587 version: Version identifier for the code or component 588 level: Importance level of the observation 589 status_message: Optional status message for the observation 590 completion_start_time: When the model started generating (for generation types) 591 model: Name/identifier of the AI model used (for generation types) 592 model_parameters: Parameters used for the model (for generation types) 593 usage_details: Token usage information (for generation types) 594 cost_details: Cost information (for generation types) 595 prompt: Associated prompt template (for generation types) 596 597 Returns: 598 An observation object of the appropriate type that must be ended with .end() 599 """ 600 if trace_context: 601 trace_id = trace_context.get("trace_id", None) 602 parent_span_id = trace_context.get("parent_span_id", None) 603 604 if trace_id: 605 remote_parent_span = self._create_remote_parent_span( 606 trace_id=trace_id, parent_span_id=parent_span_id 607 ) 608 609 with otel_trace_api.use_span( 610 cast(otel_trace_api.Span, remote_parent_span) 611 ): 612 otel_span = self._otel_tracer.start_span(name=name) 613 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 614 615 return self._create_observation_from_otel_span( 616 otel_span=otel_span, 617 as_type=as_type, 618 input=input, 619 output=output, 620 metadata=metadata, 621 version=version, 622 level=level, 623 status_message=status_message, 624 completion_start_time=completion_start_time, 625 model=model, 626 model_parameters=model_parameters, 627 usage_details=usage_details, 628 cost_details=cost_details, 629 prompt=prompt, 630 ) 631 632 otel_span = self._otel_tracer.start_span(name=name) 633 634 return self._create_observation_from_otel_span( 635 otel_span=otel_span, 636 as_type=as_type, 637 input=input, 638 output=output, 639 metadata=metadata, 640 version=version, 641 level=level, 642 status_message=status_message, 643 completion_start_time=completion_start_time, 644 model=model, 645 model_parameters=model_parameters, 646 usage_details=usage_details, 647 cost_details=cost_details, 648 prompt=prompt, 649 ) 650 651 def _create_observation_from_otel_span( 652 self, 653 *, 654 otel_span: otel_trace_api.Span, 655 as_type: ObservationTypeLiteralNoEvent, 656 input: Optional[Any] = None, 657 output: Optional[Any] = None, 658 metadata: Optional[Any] = None, 659 version: Optional[str] = None, 660 level: Optional[SpanLevel] = None, 661 status_message: Optional[str] = None, 662 completion_start_time: Optional[datetime] = None, 663 model: Optional[str] = None, 664 model_parameters: Optional[Dict[str, MapValue]] = None, 665 usage_details: Optional[Dict[str, int]] = None, 666 cost_details: Optional[Dict[str, float]] = None, 667 prompt: Optional[PromptClient] = None, 668 ) -> Union[ 669 LangfuseSpan, 670 LangfuseGeneration, 671 LangfuseAgent, 672 LangfuseTool, 673 LangfuseChain, 674 LangfuseRetriever, 675 LangfuseEvaluator, 676 LangfuseEmbedding, 677 LangfuseGuardrail, 678 ]: 679 """Create the appropriate observation type from an OTEL span.""" 680 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 681 observation_class = self._get_span_class(as_type) 682 # Type ignore to prevent overloads of internal _get_span_class function, 683 # issue is that LangfuseEvent could be returned and that classes have diff. args 684 return observation_class( # type: ignore[return-value,call-arg] 685 otel_span=otel_span, 686 langfuse_client=self, 687 environment=self._environment, 688 input=input, 689 output=output, 690 metadata=metadata, 691 version=version, 692 level=level, 693 status_message=status_message, 694 completion_start_time=completion_start_time, 695 model=model, 696 model_parameters=model_parameters, 697 usage_details=usage_details, 698 cost_details=cost_details, 699 prompt=prompt, 700 ) 701 else: 702 # For other types (e.g. span, guardrail), create appropriate class without generation properties 703 observation_class = self._get_span_class(as_type) 704 # Type ignore to prevent overloads of internal _get_span_class function, 705 # issue is that LangfuseEvent could be returned and that classes have diff. args 706 return observation_class( # type: ignore[return-value,call-arg] 707 otel_span=otel_span, 708 langfuse_client=self, 709 environment=self._environment, 710 input=input, 711 output=output, 712 metadata=metadata, 713 version=version, 714 level=level, 715 status_message=status_message, 716 ) 717 # span._observation_type = as_type 718 # span._otel_span.set_attribute("langfuse.observation.type", as_type) 719 # return span 720 721 def start_generation( 722 self, 723 *, 724 trace_context: Optional[TraceContext] = None, 725 name: str, 726 input: Optional[Any] = None, 727 output: Optional[Any] = None, 728 metadata: Optional[Any] = None, 729 version: Optional[str] = None, 730 level: Optional[SpanLevel] = None, 731 status_message: Optional[str] = None, 732 completion_start_time: Optional[datetime] = None, 733 model: Optional[str] = None, 734 model_parameters: Optional[Dict[str, MapValue]] = None, 735 usage_details: Optional[Dict[str, int]] = None, 736 cost_details: Optional[Dict[str, float]] = None, 737 prompt: Optional[PromptClient] = None, 738 ) -> LangfuseGeneration: 739 """[DEPRECATED] Create a new generation span for model generations. 740 741 DEPRECATED: This method is deprecated and will be removed in a future version. 742 Use start_observation(as_type='generation') instead. 743 744 This method creates a specialized span for tracking model generations. 745 It includes additional fields specific to model generations such as model name, 746 token usage, and cost details. 747 748 The created generation span will be the child of the current span in the context. 749 750 Args: 751 trace_context: Optional context for connecting to an existing trace 752 name: Name of the generation operation 753 input: Input data for the model (e.g., prompts) 754 output: Output from the model (e.g., completions) 755 metadata: Additional metadata to associate with the generation 756 version: Version identifier for the model or component 757 level: Importance level of the generation (info, warning, error) 758 status_message: Optional status message for the generation 759 completion_start_time: When the model started generating the response 760 model: Name/identifier of the AI model used (e.g., "gpt-4") 761 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 762 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 763 cost_details: Cost information for the model call 764 prompt: Associated prompt template from Langfuse prompt management 765 766 Returns: 767 A LangfuseGeneration object that must be ended with .end() when complete 768 769 Example: 770 ```python 771 generation = langfuse.start_generation( 772 name="answer-generation", 773 model="gpt-4", 774 input={"prompt": "Explain quantum computing"}, 775 model_parameters={"temperature": 0.7} 776 ) 777 try: 778 # Call model API 779 response = llm.generate(...) 780 781 generation.update( 782 output=response.text, 783 usage_details={ 784 "prompt_tokens": response.usage.prompt_tokens, 785 "completion_tokens": response.usage.completion_tokens 786 } 787 ) 788 finally: 789 generation.end() 790 ``` 791 """ 792 warnings.warn( 793 "start_generation is deprecated and will be removed in a future version. " 794 "Use start_observation(as_type='generation') instead.", 795 DeprecationWarning, 796 stacklevel=2, 797 ) 798 return self.start_observation( 799 trace_context=trace_context, 800 name=name, 801 as_type="generation", 802 input=input, 803 output=output, 804 metadata=metadata, 805 version=version, 806 level=level, 807 status_message=status_message, 808 completion_start_time=completion_start_time, 809 model=model, 810 model_parameters=model_parameters, 811 usage_details=usage_details, 812 cost_details=cost_details, 813 prompt=prompt, 814 ) 815 816 def start_as_current_generation( 817 self, 818 *, 819 trace_context: Optional[TraceContext] = None, 820 name: str, 821 input: Optional[Any] = None, 822 output: Optional[Any] = None, 823 metadata: Optional[Any] = None, 824 version: Optional[str] = None, 825 level: Optional[SpanLevel] = None, 826 status_message: Optional[str] = None, 827 completion_start_time: Optional[datetime] = None, 828 model: Optional[str] = None, 829 model_parameters: Optional[Dict[str, MapValue]] = None, 830 usage_details: Optional[Dict[str, int]] = None, 831 cost_details: Optional[Dict[str, float]] = None, 832 prompt: Optional[PromptClient] = None, 833 end_on_exit: Optional[bool] = None, 834 ) -> _AgnosticContextManager[LangfuseGeneration]: 835 """[DEPRECATED] Create a new generation span and set it as the current span in a context manager. 836 837 DEPRECATED: This method is deprecated and will be removed in a future version. 838 Use start_as_current_observation(as_type='generation') instead. 839 840 This method creates a specialized span for model generations and sets it as the 841 current span within a context manager. Use this method with a 'with' statement to 842 automatically handle the generation span lifecycle within a code block. 843 844 The created generation span will be the child of the current span in the context. 845 846 Args: 847 trace_context: Optional context for connecting to an existing trace 848 name: Name of the generation operation 849 input: Input data for the model (e.g., prompts) 850 output: Output from the model (e.g., completions) 851 metadata: Additional metadata to associate with the generation 852 version: Version identifier for the model or component 853 level: Importance level of the generation (info, warning, error) 854 status_message: Optional status message for the generation 855 completion_start_time: When the model started generating the response 856 model: Name/identifier of the AI model used (e.g., "gpt-4") 857 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 858 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 859 cost_details: Cost information for the model call 860 prompt: Associated prompt template from Langfuse prompt management 861 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 862 863 Returns: 864 A context manager that yields a LangfuseGeneration 865 866 Example: 867 ```python 868 with langfuse.start_as_current_generation( 869 name="answer-generation", 870 model="gpt-4", 871 input={"prompt": "Explain quantum computing"} 872 ) as generation: 873 # Call model API 874 response = llm.generate(...) 875 876 # Update with results 877 generation.update( 878 output=response.text, 879 usage_details={ 880 "prompt_tokens": response.usage.prompt_tokens, 881 "completion_tokens": response.usage.completion_tokens 882 } 883 ) 884 ``` 885 """ 886 warnings.warn( 887 "start_as_current_generation is deprecated and will be removed in a future version. " 888 "Use start_as_current_observation(as_type='generation') instead.", 889 DeprecationWarning, 890 stacklevel=2, 891 ) 892 return self.start_as_current_observation( 893 trace_context=trace_context, 894 name=name, 895 as_type="generation", 896 input=input, 897 output=output, 898 metadata=metadata, 899 version=version, 900 level=level, 901 status_message=status_message, 902 completion_start_time=completion_start_time, 903 model=model, 904 model_parameters=model_parameters, 905 usage_details=usage_details, 906 cost_details=cost_details, 907 prompt=prompt, 908 end_on_exit=end_on_exit, 909 ) 910 911 @overload 912 def start_as_current_observation( 913 self, 914 *, 915 trace_context: Optional[TraceContext] = None, 916 name: str, 917 as_type: Literal["generation"], 918 input: Optional[Any] = None, 919 output: Optional[Any] = None, 920 metadata: Optional[Any] = None, 921 version: Optional[str] = None, 922 level: Optional[SpanLevel] = None, 923 status_message: Optional[str] = None, 924 completion_start_time: Optional[datetime] = None, 925 model: Optional[str] = None, 926 model_parameters: Optional[Dict[str, MapValue]] = None, 927 usage_details: Optional[Dict[str, int]] = None, 928 cost_details: Optional[Dict[str, float]] = None, 929 prompt: Optional[PromptClient] = None, 930 end_on_exit: Optional[bool] = None, 931 ) -> _AgnosticContextManager[LangfuseGeneration]: ... 932 933 @overload 934 def start_as_current_observation( 935 self, 936 *, 937 trace_context: Optional[TraceContext] = None, 938 name: str, 939 as_type: Literal["span"] = "span", 940 input: Optional[Any] = None, 941 output: Optional[Any] = None, 942 metadata: Optional[Any] = None, 943 version: Optional[str] = None, 944 level: Optional[SpanLevel] = None, 945 status_message: Optional[str] = None, 946 end_on_exit: Optional[bool] = None, 947 ) -> _AgnosticContextManager[LangfuseSpan]: ... 948 949 @overload 950 def start_as_current_observation( 951 self, 952 *, 953 trace_context: Optional[TraceContext] = None, 954 name: str, 955 as_type: Literal["agent"], 956 input: Optional[Any] = None, 957 output: Optional[Any] = None, 958 metadata: Optional[Any] = None, 959 version: Optional[str] = None, 960 level: Optional[SpanLevel] = None, 961 status_message: Optional[str] = None, 962 end_on_exit: Optional[bool] = None, 963 ) -> _AgnosticContextManager[LangfuseAgent]: ... 964 965 @overload 966 def start_as_current_observation( 967 self, 968 *, 969 trace_context: Optional[TraceContext] = None, 970 name: str, 971 as_type: Literal["tool"], 972 input: Optional[Any] = None, 973 output: Optional[Any] = None, 974 metadata: Optional[Any] = None, 975 version: Optional[str] = None, 976 level: Optional[SpanLevel] = None, 977 status_message: Optional[str] = None, 978 end_on_exit: Optional[bool] = None, 979 ) -> _AgnosticContextManager[LangfuseTool]: ... 980 981 @overload 982 def start_as_current_observation( 983 self, 984 *, 985 trace_context: Optional[TraceContext] = None, 986 name: str, 987 as_type: Literal["chain"], 988 input: Optional[Any] = None, 989 output: Optional[Any] = None, 990 metadata: Optional[Any] = None, 991 version: Optional[str] = None, 992 level: Optional[SpanLevel] = None, 993 status_message: Optional[str] = None, 994 end_on_exit: Optional[bool] = None, 995 ) -> _AgnosticContextManager[LangfuseChain]: ... 996 997 @overload 998 def start_as_current_observation( 999 self, 1000 *, 1001 trace_context: Optional[TraceContext] = None, 1002 name: str, 1003 as_type: Literal["retriever"], 1004 input: Optional[Any] = None, 1005 output: Optional[Any] = None, 1006 metadata: Optional[Any] = None, 1007 version: Optional[str] = None, 1008 level: Optional[SpanLevel] = None, 1009 status_message: Optional[str] = None, 1010 end_on_exit: Optional[bool] = None, 1011 ) -> _AgnosticContextManager[LangfuseRetriever]: ... 1012 1013 @overload 1014 def start_as_current_observation( 1015 self, 1016 *, 1017 trace_context: Optional[TraceContext] = None, 1018 name: str, 1019 as_type: Literal["evaluator"], 1020 input: Optional[Any] = None, 1021 output: Optional[Any] = None, 1022 metadata: Optional[Any] = None, 1023 version: Optional[str] = None, 1024 level: Optional[SpanLevel] = None, 1025 status_message: Optional[str] = None, 1026 end_on_exit: Optional[bool] = None, 1027 ) -> _AgnosticContextManager[LangfuseEvaluator]: ... 1028 1029 @overload 1030 def start_as_current_observation( 1031 self, 1032 *, 1033 trace_context: Optional[TraceContext] = None, 1034 name: str, 1035 as_type: Literal["embedding"], 1036 input: Optional[Any] = None, 1037 output: Optional[Any] = None, 1038 metadata: Optional[Any] = None, 1039 version: Optional[str] = None, 1040 level: Optional[SpanLevel] = None, 1041 status_message: Optional[str] = None, 1042 completion_start_time: Optional[datetime] = None, 1043 model: Optional[str] = None, 1044 model_parameters: Optional[Dict[str, MapValue]] = None, 1045 usage_details: Optional[Dict[str, int]] = None, 1046 cost_details: Optional[Dict[str, float]] = None, 1047 prompt: Optional[PromptClient] = None, 1048 end_on_exit: Optional[bool] = None, 1049 ) -> _AgnosticContextManager[LangfuseEmbedding]: ... 1050 1051 @overload 1052 def start_as_current_observation( 1053 self, 1054 *, 1055 trace_context: Optional[TraceContext] = None, 1056 name: str, 1057 as_type: Literal["guardrail"], 1058 input: Optional[Any] = None, 1059 output: Optional[Any] = None, 1060 metadata: Optional[Any] = None, 1061 version: Optional[str] = None, 1062 level: Optional[SpanLevel] = None, 1063 status_message: Optional[str] = None, 1064 end_on_exit: Optional[bool] = None, 1065 ) -> _AgnosticContextManager[LangfuseGuardrail]: ... 1066 1067 def start_as_current_observation( 1068 self, 1069 *, 1070 trace_context: Optional[TraceContext] = None, 1071 name: str, 1072 as_type: ObservationTypeLiteralNoEvent = "span", 1073 input: Optional[Any] = None, 1074 output: Optional[Any] = None, 1075 metadata: Optional[Any] = None, 1076 version: Optional[str] = None, 1077 level: Optional[SpanLevel] = None, 1078 status_message: Optional[str] = None, 1079 completion_start_time: Optional[datetime] = None, 1080 model: Optional[str] = None, 1081 model_parameters: Optional[Dict[str, MapValue]] = None, 1082 usage_details: Optional[Dict[str, int]] = None, 1083 cost_details: Optional[Dict[str, float]] = None, 1084 prompt: Optional[PromptClient] = None, 1085 end_on_exit: Optional[bool] = None, 1086 ) -> Union[ 1087 _AgnosticContextManager[LangfuseGeneration], 1088 _AgnosticContextManager[LangfuseSpan], 1089 _AgnosticContextManager[LangfuseAgent], 1090 _AgnosticContextManager[LangfuseTool], 1091 _AgnosticContextManager[LangfuseChain], 1092 _AgnosticContextManager[LangfuseRetriever], 1093 _AgnosticContextManager[LangfuseEvaluator], 1094 _AgnosticContextManager[LangfuseEmbedding], 1095 _AgnosticContextManager[LangfuseGuardrail], 1096 ]: 1097 """Create a new observation and set it as the current span in a context manager. 1098 1099 This method creates a new observation of the specified type and sets it as the 1100 current span within a context manager. Use this method with a 'with' statement to 1101 automatically handle the observation lifecycle within a code block. 1102 1103 The created observation will be the child of the current span in the context. 1104 1105 Args: 1106 trace_context: Optional context for connecting to an existing trace 1107 name: Name of the observation (e.g., function or operation name) 1108 as_type: Type of observation to create (defaults to "span") 1109 input: Input data for the operation (can be any JSON-serializable object) 1110 output: Output data from the operation (can be any JSON-serializable object) 1111 metadata: Additional metadata to associate with the observation 1112 version: Version identifier for the code or component 1113 level: Importance level of the observation (info, warning, error) 1114 status_message: Optional status message for the observation 1115 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 1116 1117 The following parameters are available when as_type is: "generation" or "embedding". 1118 completion_start_time: When the model started generating the response 1119 model: Name/identifier of the AI model used (e.g., "gpt-4") 1120 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1121 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1122 cost_details: Cost information for the model call 1123 prompt: Associated prompt template from Langfuse prompt management 1124 1125 Returns: 1126 A context manager that yields the appropriate observation type based on as_type 1127 1128 Example: 1129 ```python 1130 # Create a span 1131 with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: 1132 # Do work 1133 result = process_data() 1134 span.update(output=result) 1135 1136 # Create a child span automatically 1137 with span.start_as_current_span(name="sub-operation") as child_span: 1138 # Do sub-operation work 1139 child_span.update(output="sub-result") 1140 1141 # Create a tool observation 1142 with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: 1143 # Do tool work 1144 results = search_web(query) 1145 tool.update(output=results) 1146 1147 # Create a generation observation 1148 with langfuse.start_as_current_observation( 1149 name="answer-generation", 1150 as_type="generation", 1151 model="gpt-4" 1152 ) as generation: 1153 # Generate answer 1154 response = llm.generate(...) 1155 generation.update(output=response) 1156 ``` 1157 """ 1158 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 1159 if trace_context: 1160 trace_id = trace_context.get("trace_id", None) 1161 parent_span_id = trace_context.get("parent_span_id", None) 1162 1163 if trace_id: 1164 remote_parent_span = self._create_remote_parent_span( 1165 trace_id=trace_id, parent_span_id=parent_span_id 1166 ) 1167 1168 return cast( 1169 Union[ 1170 _AgnosticContextManager[LangfuseGeneration], 1171 _AgnosticContextManager[LangfuseEmbedding], 1172 ], 1173 self._create_span_with_parent_context( 1174 as_type=as_type, 1175 name=name, 1176 remote_parent_span=remote_parent_span, 1177 parent=None, 1178 end_on_exit=end_on_exit, 1179 input=input, 1180 output=output, 1181 metadata=metadata, 1182 version=version, 1183 level=level, 1184 status_message=status_message, 1185 completion_start_time=completion_start_time, 1186 model=model, 1187 model_parameters=model_parameters, 1188 usage_details=usage_details, 1189 cost_details=cost_details, 1190 prompt=prompt, 1191 ), 1192 ) 1193 1194 return cast( 1195 Union[ 1196 _AgnosticContextManager[LangfuseGeneration], 1197 _AgnosticContextManager[LangfuseEmbedding], 1198 ], 1199 self._start_as_current_otel_span_with_processed_media( 1200 as_type=as_type, 1201 name=name, 1202 end_on_exit=end_on_exit, 1203 input=input, 1204 output=output, 1205 metadata=metadata, 1206 version=version, 1207 level=level, 1208 status_message=status_message, 1209 completion_start_time=completion_start_time, 1210 model=model, 1211 model_parameters=model_parameters, 1212 usage_details=usage_details, 1213 cost_details=cost_details, 1214 prompt=prompt, 1215 ), 1216 ) 1217 1218 if as_type in get_observation_types_list(ObservationTypeSpanLike): 1219 if trace_context: 1220 trace_id = trace_context.get("trace_id", None) 1221 parent_span_id = trace_context.get("parent_span_id", None) 1222 1223 if trace_id: 1224 remote_parent_span = self._create_remote_parent_span( 1225 trace_id=trace_id, parent_span_id=parent_span_id 1226 ) 1227 1228 return cast( 1229 Union[ 1230 _AgnosticContextManager[LangfuseSpan], 1231 _AgnosticContextManager[LangfuseAgent], 1232 _AgnosticContextManager[LangfuseTool], 1233 _AgnosticContextManager[LangfuseChain], 1234 _AgnosticContextManager[LangfuseRetriever], 1235 _AgnosticContextManager[LangfuseEvaluator], 1236 _AgnosticContextManager[LangfuseGuardrail], 1237 ], 1238 self._create_span_with_parent_context( 1239 as_type=as_type, 1240 name=name, 1241 remote_parent_span=remote_parent_span, 1242 parent=None, 1243 end_on_exit=end_on_exit, 1244 input=input, 1245 output=output, 1246 metadata=metadata, 1247 version=version, 1248 level=level, 1249 status_message=status_message, 1250 ), 1251 ) 1252 1253 return cast( 1254 Union[ 1255 _AgnosticContextManager[LangfuseSpan], 1256 _AgnosticContextManager[LangfuseAgent], 1257 _AgnosticContextManager[LangfuseTool], 1258 _AgnosticContextManager[LangfuseChain], 1259 _AgnosticContextManager[LangfuseRetriever], 1260 _AgnosticContextManager[LangfuseEvaluator], 1261 _AgnosticContextManager[LangfuseGuardrail], 1262 ], 1263 self._start_as_current_otel_span_with_processed_media( 1264 as_type=as_type, 1265 name=name, 1266 end_on_exit=end_on_exit, 1267 input=input, 1268 output=output, 1269 metadata=metadata, 1270 version=version, 1271 level=level, 1272 status_message=status_message, 1273 ), 1274 ) 1275 1276 # This should never be reached since all valid types are handled above 1277 langfuse_logger.warning( 1278 f"Unknown observation type: {as_type}, falling back to span" 1279 ) 1280 return self._start_as_current_otel_span_with_processed_media( 1281 as_type="span", 1282 name=name, 1283 end_on_exit=end_on_exit, 1284 input=input, 1285 output=output, 1286 metadata=metadata, 1287 version=version, 1288 level=level, 1289 status_message=status_message, 1290 ) 1291 1292 def _get_span_class( 1293 self, 1294 as_type: ObservationTypeLiteral, 1295 ) -> Union[ 1296 Type[LangfuseAgent], 1297 Type[LangfuseTool], 1298 Type[LangfuseChain], 1299 Type[LangfuseRetriever], 1300 Type[LangfuseEvaluator], 1301 Type[LangfuseEmbedding], 1302 Type[LangfuseGuardrail], 1303 Type[LangfuseGeneration], 1304 Type[LangfuseEvent], 1305 Type[LangfuseSpan], 1306 ]: 1307 """Get the appropriate span class based on as_type.""" 1308 normalized_type = as_type.lower() 1309 1310 if normalized_type == "agent": 1311 return LangfuseAgent 1312 elif normalized_type == "tool": 1313 return LangfuseTool 1314 elif normalized_type == "chain": 1315 return LangfuseChain 1316 elif normalized_type == "retriever": 1317 return LangfuseRetriever 1318 elif normalized_type == "evaluator": 1319 return LangfuseEvaluator 1320 elif normalized_type == "embedding": 1321 return LangfuseEmbedding 1322 elif normalized_type == "guardrail": 1323 return LangfuseGuardrail 1324 elif normalized_type == "generation": 1325 return LangfuseGeneration 1326 elif normalized_type == "event": 1327 return LangfuseEvent 1328 elif normalized_type == "span": 1329 return LangfuseSpan 1330 else: 1331 return LangfuseSpan 1332 1333 @_agnosticcontextmanager 1334 def _create_span_with_parent_context( 1335 self, 1336 *, 1337 name: str, 1338 parent: Optional[otel_trace_api.Span] = None, 1339 remote_parent_span: Optional[otel_trace_api.Span] = None, 1340 as_type: ObservationTypeLiteralNoEvent, 1341 end_on_exit: Optional[bool] = None, 1342 input: Optional[Any] = None, 1343 output: Optional[Any] = None, 1344 metadata: Optional[Any] = None, 1345 version: Optional[str] = None, 1346 level: Optional[SpanLevel] = None, 1347 status_message: Optional[str] = None, 1348 completion_start_time: Optional[datetime] = None, 1349 model: Optional[str] = None, 1350 model_parameters: Optional[Dict[str, MapValue]] = None, 1351 usage_details: Optional[Dict[str, int]] = None, 1352 cost_details: Optional[Dict[str, float]] = None, 1353 prompt: Optional[PromptClient] = None, 1354 ) -> Any: 1355 parent_span = parent or cast(otel_trace_api.Span, remote_parent_span) 1356 1357 with otel_trace_api.use_span(parent_span): 1358 with self._start_as_current_otel_span_with_processed_media( 1359 name=name, 1360 as_type=as_type, 1361 end_on_exit=end_on_exit, 1362 input=input, 1363 output=output, 1364 metadata=metadata, 1365 version=version, 1366 level=level, 1367 status_message=status_message, 1368 completion_start_time=completion_start_time, 1369 model=model, 1370 model_parameters=model_parameters, 1371 usage_details=usage_details, 1372 cost_details=cost_details, 1373 prompt=prompt, 1374 ) as langfuse_span: 1375 if remote_parent_span is not None: 1376 langfuse_span._otel_span.set_attribute( 1377 LangfuseOtelSpanAttributes.AS_ROOT, True 1378 ) 1379 1380 yield langfuse_span 1381 1382 @_agnosticcontextmanager 1383 def _start_as_current_otel_span_with_processed_media( 1384 self, 1385 *, 1386 name: str, 1387 as_type: Optional[ObservationTypeLiteralNoEvent] = None, 1388 end_on_exit: Optional[bool] = None, 1389 input: Optional[Any] = None, 1390 output: Optional[Any] = None, 1391 metadata: Optional[Any] = None, 1392 version: Optional[str] = None, 1393 level: Optional[SpanLevel] = None, 1394 status_message: Optional[str] = None, 1395 completion_start_time: Optional[datetime] = None, 1396 model: Optional[str] = None, 1397 model_parameters: Optional[Dict[str, MapValue]] = None, 1398 usage_details: Optional[Dict[str, int]] = None, 1399 cost_details: Optional[Dict[str, float]] = None, 1400 prompt: Optional[PromptClient] = None, 1401 ) -> Any: 1402 with self._otel_tracer.start_as_current_span( 1403 name=name, 1404 end_on_exit=end_on_exit if end_on_exit is not None else True, 1405 ) as otel_span: 1406 span_class = self._get_span_class( 1407 as_type or "generation" 1408 ) # default was "generation" 1409 common_args = { 1410 "otel_span": otel_span, 1411 "langfuse_client": self, 1412 "environment": self._environment, 1413 "input": input, 1414 "output": output, 1415 "metadata": metadata, 1416 "version": version, 1417 "level": level, 1418 "status_message": status_message, 1419 } 1420 1421 if span_class in [ 1422 LangfuseGeneration, 1423 LangfuseEmbedding, 1424 ]: 1425 common_args.update( 1426 { 1427 "completion_start_time": completion_start_time, 1428 "model": model, 1429 "model_parameters": model_parameters, 1430 "usage_details": usage_details, 1431 "cost_details": cost_details, 1432 "prompt": prompt, 1433 } 1434 ) 1435 # For span-like types (span, agent, tool, chain, retriever, evaluator, guardrail), no generation properties needed 1436 1437 yield span_class(**common_args) # type: ignore[arg-type] 1438 1439 def _get_current_otel_span(self) -> Optional[otel_trace_api.Span]: 1440 current_span = otel_trace_api.get_current_span() 1441 1442 if current_span is otel_trace_api.INVALID_SPAN: 1443 langfuse_logger.warning( 1444 "Context error: No active span in current context. Operations that depend on an active span will be skipped. " 1445 "Ensure spans are created with start_as_current_span() or that you're operating within an active span context." 1446 ) 1447 return None 1448 1449 return current_span 1450 1451 def update_current_generation( 1452 self, 1453 *, 1454 name: Optional[str] = None, 1455 input: Optional[Any] = None, 1456 output: Optional[Any] = None, 1457 metadata: Optional[Any] = None, 1458 version: Optional[str] = None, 1459 level: Optional[SpanLevel] = None, 1460 status_message: Optional[str] = None, 1461 completion_start_time: Optional[datetime] = None, 1462 model: Optional[str] = None, 1463 model_parameters: Optional[Dict[str, MapValue]] = None, 1464 usage_details: Optional[Dict[str, int]] = None, 1465 cost_details: Optional[Dict[str, float]] = None, 1466 prompt: Optional[PromptClient] = None, 1467 ) -> None: 1468 """Update the current active generation span with new information. 1469 1470 This method updates the current generation span in the active context with 1471 additional information. It's useful for adding output, usage stats, or other 1472 details that become available during or after model generation. 1473 1474 Args: 1475 name: The generation name 1476 input: Updated input data for the model 1477 output: Output from the model (e.g., completions) 1478 metadata: Additional metadata to associate with the generation 1479 version: Version identifier for the model or component 1480 level: Importance level of the generation (info, warning, error) 1481 status_message: Optional status message for the generation 1482 completion_start_time: When the model started generating the response 1483 model: Name/identifier of the AI model used (e.g., "gpt-4") 1484 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1485 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1486 cost_details: Cost information for the model call 1487 prompt: Associated prompt template from Langfuse prompt management 1488 1489 Example: 1490 ```python 1491 with langfuse.start_as_current_generation(name="answer-query") as generation: 1492 # Initial setup and API call 1493 response = llm.generate(...) 1494 1495 # Update with results that weren't available at creation time 1496 langfuse.update_current_generation( 1497 output=response.text, 1498 usage_details={ 1499 "prompt_tokens": response.usage.prompt_tokens, 1500 "completion_tokens": response.usage.completion_tokens 1501 } 1502 ) 1503 ``` 1504 """ 1505 if not self._tracing_enabled: 1506 langfuse_logger.debug( 1507 "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode." 1508 ) 1509 return 1510 1511 current_otel_span = self._get_current_otel_span() 1512 1513 if current_otel_span is not None: 1514 generation = LangfuseGeneration( 1515 otel_span=current_otel_span, langfuse_client=self 1516 ) 1517 1518 if name: 1519 current_otel_span.update_name(name) 1520 1521 generation.update( 1522 input=input, 1523 output=output, 1524 metadata=metadata, 1525 version=version, 1526 level=level, 1527 status_message=status_message, 1528 completion_start_time=completion_start_time, 1529 model=model, 1530 model_parameters=model_parameters, 1531 usage_details=usage_details, 1532 cost_details=cost_details, 1533 prompt=prompt, 1534 ) 1535 1536 def update_current_span( 1537 self, 1538 *, 1539 name: Optional[str] = None, 1540 input: Optional[Any] = None, 1541 output: Optional[Any] = None, 1542 metadata: Optional[Any] = None, 1543 version: Optional[str] = None, 1544 level: Optional[SpanLevel] = None, 1545 status_message: Optional[str] = None, 1546 ) -> None: 1547 """Update the current active span with new information. 1548 1549 This method updates the current span in the active context with 1550 additional information. It's useful for adding outputs or metadata 1551 that become available during execution. 1552 1553 Args: 1554 name: The span name 1555 input: Updated input data for the operation 1556 output: Output data from the operation 1557 metadata: Additional metadata to associate with the span 1558 version: Version identifier for the code or component 1559 level: Importance level of the span (info, warning, error) 1560 status_message: Optional status message for the span 1561 1562 Example: 1563 ```python 1564 with langfuse.start_as_current_span(name="process-data") as span: 1565 # Initial processing 1566 result = process_first_part() 1567 1568 # Update with intermediate results 1569 langfuse.update_current_span(metadata={"intermediate_result": result}) 1570 1571 # Continue processing 1572 final_result = process_second_part(result) 1573 1574 # Final update 1575 langfuse.update_current_span(output=final_result) 1576 ``` 1577 """ 1578 if not self._tracing_enabled: 1579 langfuse_logger.debug( 1580 "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode." 1581 ) 1582 return 1583 1584 current_otel_span = self._get_current_otel_span() 1585 1586 if current_otel_span is not None: 1587 span = LangfuseSpan( 1588 otel_span=current_otel_span, 1589 langfuse_client=self, 1590 environment=self._environment, 1591 ) 1592 1593 if name: 1594 current_otel_span.update_name(name) 1595 1596 span.update( 1597 input=input, 1598 output=output, 1599 metadata=metadata, 1600 version=version, 1601 level=level, 1602 status_message=status_message, 1603 ) 1604 1605 def update_current_trace( 1606 self, 1607 *, 1608 name: Optional[str] = None, 1609 user_id: Optional[str] = None, 1610 session_id: Optional[str] = None, 1611 version: Optional[str] = None, 1612 input: Optional[Any] = None, 1613 output: Optional[Any] = None, 1614 metadata: Optional[Any] = None, 1615 tags: Optional[List[str]] = None, 1616 public: Optional[bool] = None, 1617 ) -> None: 1618 """Update the current trace with additional information. 1619 1620 This method updates the Langfuse trace that the current span belongs to. It's useful for 1621 adding trace-level metadata like user ID, session ID, or tags that apply to 1622 the entire Langfuse trace rather than just a single observation. 1623 1624 Args: 1625 name: Updated name for the Langfuse trace 1626 user_id: ID of the user who initiated the Langfuse trace 1627 session_id: Session identifier for grouping related Langfuse traces 1628 version: Version identifier for the application or service 1629 input: Input data for the overall Langfuse trace 1630 output: Output data from the overall Langfuse trace 1631 metadata: Additional metadata to associate with the Langfuse trace 1632 tags: List of tags to categorize the Langfuse trace 1633 public: Whether the Langfuse trace should be publicly accessible 1634 1635 Example: 1636 ```python 1637 with langfuse.start_as_current_span(name="handle-request") as span: 1638 # Get user information 1639 user = authenticate_user(request) 1640 1641 # Update trace with user context 1642 langfuse.update_current_trace( 1643 user_id=user.id, 1644 session_id=request.session_id, 1645 tags=["production", "web-app"] 1646 ) 1647 1648 # Continue processing 1649 response = process_request(request) 1650 1651 # Update span with results 1652 span.update(output=response) 1653 ``` 1654 """ 1655 if not self._tracing_enabled: 1656 langfuse_logger.debug( 1657 "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode." 1658 ) 1659 return 1660 1661 current_otel_span = self._get_current_otel_span() 1662 1663 if current_otel_span is not None: 1664 existing_observation_type = current_otel_span.attributes.get( # type: ignore[attr-defined] 1665 LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span" 1666 ) 1667 # We need to preserve the class to keep the corret observation type 1668 span_class = self._get_span_class(existing_observation_type) 1669 span = span_class( 1670 otel_span=current_otel_span, 1671 langfuse_client=self, 1672 environment=self._environment, 1673 ) 1674 1675 span.update_trace( 1676 name=name, 1677 user_id=user_id, 1678 session_id=session_id, 1679 version=version, 1680 input=input, 1681 output=output, 1682 metadata=metadata, 1683 tags=tags, 1684 public=public, 1685 ) 1686 1687 def create_event( 1688 self, 1689 *, 1690 trace_context: Optional[TraceContext] = None, 1691 name: str, 1692 input: Optional[Any] = None, 1693 output: Optional[Any] = None, 1694 metadata: Optional[Any] = None, 1695 version: Optional[str] = None, 1696 level: Optional[SpanLevel] = None, 1697 status_message: Optional[str] = None, 1698 ) -> LangfuseEvent: 1699 """Create a new Langfuse observation of type 'EVENT'. 1700 1701 The created Langfuse Event observation will be the child of the current span in the context. 1702 1703 Args: 1704 trace_context: Optional context for connecting to an existing trace 1705 name: Name of the span (e.g., function or operation name) 1706 input: Input data for the operation (can be any JSON-serializable object) 1707 output: Output data from the operation (can be any JSON-serializable object) 1708 metadata: Additional metadata to associate with the span 1709 version: Version identifier for the code or component 1710 level: Importance level of the span (info, warning, error) 1711 status_message: Optional status message for the span 1712 1713 Returns: 1714 The Langfuse Event object 1715 1716 Example: 1717 ```python 1718 event = langfuse.create_event(name="process-event") 1719 ``` 1720 """ 1721 timestamp = time_ns() 1722 1723 if trace_context: 1724 trace_id = trace_context.get("trace_id", None) 1725 parent_span_id = trace_context.get("parent_span_id", None) 1726 1727 if trace_id: 1728 remote_parent_span = self._create_remote_parent_span( 1729 trace_id=trace_id, parent_span_id=parent_span_id 1730 ) 1731 1732 with otel_trace_api.use_span( 1733 cast(otel_trace_api.Span, remote_parent_span) 1734 ): 1735 otel_span = self._otel_tracer.start_span( 1736 name=name, start_time=timestamp 1737 ) 1738 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 1739 1740 return cast( 1741 LangfuseEvent, 1742 LangfuseEvent( 1743 otel_span=otel_span, 1744 langfuse_client=self, 1745 environment=self._environment, 1746 input=input, 1747 output=output, 1748 metadata=metadata, 1749 version=version, 1750 level=level, 1751 status_message=status_message, 1752 ).end(end_time=timestamp), 1753 ) 1754 1755 otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp) 1756 1757 return cast( 1758 LangfuseEvent, 1759 LangfuseEvent( 1760 otel_span=otel_span, 1761 langfuse_client=self, 1762 environment=self._environment, 1763 input=input, 1764 output=output, 1765 metadata=metadata, 1766 version=version, 1767 level=level, 1768 status_message=status_message, 1769 ).end(end_time=timestamp), 1770 ) 1771 1772 def _create_remote_parent_span( 1773 self, *, trace_id: str, parent_span_id: Optional[str] 1774 ) -> Any: 1775 if not self._is_valid_trace_id(trace_id): 1776 langfuse_logger.warning( 1777 f"Passed trace ID '{trace_id}' is not a valid 32 lowercase hex char Langfuse trace id. Ignoring trace ID." 1778 ) 1779 1780 if parent_span_id and not self._is_valid_span_id(parent_span_id): 1781 langfuse_logger.warning( 1782 f"Passed span ID '{parent_span_id}' is not a valid 16 lowercase hex char Langfuse span id. Ignoring parent span ID." 1783 ) 1784 1785 int_trace_id = int(trace_id, 16) 1786 int_parent_span_id = ( 1787 int(parent_span_id, 16) 1788 if parent_span_id 1789 else RandomIdGenerator().generate_span_id() 1790 ) 1791 1792 span_context = otel_trace_api.SpanContext( 1793 trace_id=int_trace_id, 1794 span_id=int_parent_span_id, 1795 trace_flags=otel_trace_api.TraceFlags(0x01), # mark span as sampled 1796 is_remote=False, 1797 ) 1798 1799 return trace.NonRecordingSpan(span_context) 1800 1801 def _is_valid_trace_id(self, trace_id: str) -> bool: 1802 pattern = r"^[0-9a-f]{32}$" 1803 1804 return bool(re.match(pattern, trace_id)) 1805 1806 def _is_valid_span_id(self, span_id: str) -> bool: 1807 pattern = r"^[0-9a-f]{16}$" 1808 1809 return bool(re.match(pattern, span_id)) 1810 1811 def _create_observation_id(self, *, seed: Optional[str] = None) -> str: 1812 """Create a unique observation ID for use with Langfuse. 1813 1814 This method generates a unique observation ID (span ID in OpenTelemetry terms) 1815 for use with various Langfuse APIs. It can either generate a random ID or 1816 create a deterministic ID based on a seed string. 1817 1818 Observation IDs must be 16 lowercase hexadecimal characters, representing 8 bytes. 1819 This method ensures the generated ID meets this requirement. If you need to 1820 correlate an external ID with a Langfuse observation ID, use the external ID as 1821 the seed to get a valid, deterministic observation ID. 1822 1823 Args: 1824 seed: Optional string to use as a seed for deterministic ID generation. 1825 If provided, the same seed will always produce the same ID. 1826 If not provided, a random ID will be generated. 1827 1828 Returns: 1829 A 16-character lowercase hexadecimal string representing the observation ID. 1830 1831 Example: 1832 ```python 1833 # Generate a random observation ID 1834 obs_id = langfuse.create_observation_id() 1835 1836 # Generate a deterministic ID based on a seed 1837 user_obs_id = langfuse.create_observation_id(seed="user-123-feedback") 1838 1839 # Correlate an external item ID with a Langfuse observation ID 1840 item_id = "item-789012" 1841 correlated_obs_id = langfuse.create_observation_id(seed=item_id) 1842 1843 # Use the ID with Langfuse APIs 1844 langfuse.create_score( 1845 name="relevance", 1846 value=0.95, 1847 trace_id=trace_id, 1848 observation_id=obs_id 1849 ) 1850 ``` 1851 """ 1852 if not seed: 1853 span_id_int = RandomIdGenerator().generate_span_id() 1854 1855 return self._format_otel_span_id(span_id_int) 1856 1857 return sha256(seed.encode("utf-8")).digest()[:8].hex() 1858 1859 @staticmethod 1860 def create_trace_id(*, seed: Optional[str] = None) -> str: 1861 """Create a unique trace ID for use with Langfuse. 1862 1863 This method generates a unique trace ID for use with various Langfuse APIs. 1864 It can either generate a random ID or create a deterministic ID based on 1865 a seed string. 1866 1867 Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. 1868 This method ensures the generated ID meets this requirement. If you need to 1869 correlate an external ID with a Langfuse trace ID, use the external ID as the 1870 seed to get a valid, deterministic Langfuse trace ID. 1871 1872 Args: 1873 seed: Optional string to use as a seed for deterministic ID generation. 1874 If provided, the same seed will always produce the same ID. 1875 If not provided, a random ID will be generated. 1876 1877 Returns: 1878 A 32-character lowercase hexadecimal string representing the Langfuse trace ID. 1879 1880 Example: 1881 ```python 1882 # Generate a random trace ID 1883 trace_id = langfuse.create_trace_id() 1884 1885 # Generate a deterministic ID based on a seed 1886 session_trace_id = langfuse.create_trace_id(seed="session-456") 1887 1888 # Correlate an external ID with a Langfuse trace ID 1889 external_id = "external-system-123456" 1890 correlated_trace_id = langfuse.create_trace_id(seed=external_id) 1891 1892 # Use the ID with trace context 1893 with langfuse.start_as_current_span( 1894 name="process-request", 1895 trace_context={"trace_id": trace_id} 1896 ) as span: 1897 # Operation will be part of the specific trace 1898 pass 1899 ``` 1900 """ 1901 if not seed: 1902 trace_id_int = RandomIdGenerator().generate_trace_id() 1903 1904 return Langfuse._format_otel_trace_id(trace_id_int) 1905 1906 return sha256(seed.encode("utf-8")).digest()[:16].hex() 1907 1908 def _get_otel_trace_id(self, otel_span: otel_trace_api.Span) -> str: 1909 span_context = otel_span.get_span_context() 1910 1911 return self._format_otel_trace_id(span_context.trace_id) 1912 1913 def _get_otel_span_id(self, otel_span: otel_trace_api.Span) -> str: 1914 span_context = otel_span.get_span_context() 1915 1916 return self._format_otel_span_id(span_context.span_id) 1917 1918 @staticmethod 1919 def _format_otel_span_id(span_id_int: int) -> str: 1920 """Format an integer span ID to a 16-character lowercase hex string. 1921 1922 Internal method to convert an OpenTelemetry integer span ID to the standard 1923 W3C Trace Context format (16-character lowercase hex string). 1924 1925 Args: 1926 span_id_int: 64-bit integer representing a span ID 1927 1928 Returns: 1929 A 16-character lowercase hexadecimal string 1930 """ 1931 return format(span_id_int, "016x") 1932 1933 @staticmethod 1934 def _format_otel_trace_id(trace_id_int: int) -> str: 1935 """Format an integer trace ID to a 32-character lowercase hex string. 1936 1937 Internal method to convert an OpenTelemetry integer trace ID to the standard 1938 W3C Trace Context format (32-character lowercase hex string). 1939 1940 Args: 1941 trace_id_int: 128-bit integer representing a trace ID 1942 1943 Returns: 1944 A 32-character lowercase hexadecimal string 1945 """ 1946 return format(trace_id_int, "032x") 1947 1948 @overload 1949 def create_score( 1950 self, 1951 *, 1952 name: str, 1953 value: float, 1954 session_id: Optional[str] = None, 1955 dataset_run_id: Optional[str] = None, 1956 trace_id: Optional[str] = None, 1957 observation_id: Optional[str] = None, 1958 score_id: Optional[str] = None, 1959 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1960 comment: Optional[str] = None, 1961 config_id: Optional[str] = None, 1962 metadata: Optional[Any] = None, 1963 ) -> None: ... 1964 1965 @overload 1966 def create_score( 1967 self, 1968 *, 1969 name: str, 1970 value: str, 1971 session_id: Optional[str] = None, 1972 dataset_run_id: Optional[str] = None, 1973 trace_id: Optional[str] = None, 1974 score_id: Optional[str] = None, 1975 observation_id: Optional[str] = None, 1976 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1977 comment: Optional[str] = None, 1978 config_id: Optional[str] = None, 1979 metadata: Optional[Any] = None, 1980 ) -> None: ... 1981 1982 def create_score( 1983 self, 1984 *, 1985 name: str, 1986 value: Union[float, str], 1987 session_id: Optional[str] = None, 1988 dataset_run_id: Optional[str] = None, 1989 trace_id: Optional[str] = None, 1990 observation_id: Optional[str] = None, 1991 score_id: Optional[str] = None, 1992 data_type: Optional[ScoreDataType] = None, 1993 comment: Optional[str] = None, 1994 config_id: Optional[str] = None, 1995 metadata: Optional[Any] = None, 1996 ) -> None: 1997 """Create a score for a specific trace or observation. 1998 1999 This method creates a score for evaluating a Langfuse trace or observation. Scores can be 2000 used to track quality metrics, user feedback, or automated evaluations. 2001 2002 Args: 2003 name: Name of the score (e.g., "relevance", "accuracy") 2004 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2005 session_id: ID of the Langfuse session to associate the score with 2006 dataset_run_id: ID of the Langfuse dataset run to associate the score with 2007 trace_id: ID of the Langfuse trace to associate the score with 2008 observation_id: Optional ID of the specific observation to score. Trace ID must be provided too. 2009 score_id: Optional custom ID for the score (auto-generated if not provided) 2010 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2011 comment: Optional comment or explanation for the score 2012 config_id: Optional ID of a score config defined in Langfuse 2013 metadata: Optional metadata to be attached to the score 2014 2015 Example: 2016 ```python 2017 # Create a numeric score for accuracy 2018 langfuse.create_score( 2019 name="accuracy", 2020 value=0.92, 2021 trace_id="abcdef1234567890abcdef1234567890", 2022 data_type="NUMERIC", 2023 comment="High accuracy with minor irrelevant details" 2024 ) 2025 2026 # Create a categorical score for sentiment 2027 langfuse.create_score( 2028 name="sentiment", 2029 value="positive", 2030 trace_id="abcdef1234567890abcdef1234567890", 2031 observation_id="abcdef1234567890", 2032 data_type="CATEGORICAL" 2033 ) 2034 ``` 2035 """ 2036 if not self._tracing_enabled: 2037 return 2038 2039 score_id = score_id or self._create_observation_id() 2040 2041 try: 2042 new_body = ScoreBody( 2043 id=score_id, 2044 sessionId=session_id, 2045 datasetRunId=dataset_run_id, 2046 traceId=trace_id, 2047 observationId=observation_id, 2048 name=name, 2049 value=value, 2050 dataType=data_type, # type: ignore 2051 comment=comment, 2052 configId=config_id, 2053 environment=self._environment, 2054 metadata=metadata, 2055 ) 2056 2057 event = { 2058 "id": self.create_trace_id(), 2059 "type": "score-create", 2060 "timestamp": _get_timestamp(), 2061 "body": new_body, 2062 } 2063 2064 if self._resources is not None: 2065 # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar 2066 force_sample = ( 2067 not self._is_valid_trace_id(trace_id) if trace_id else True 2068 ) 2069 2070 self._resources.add_score_task( 2071 event, 2072 force_sample=force_sample, 2073 ) 2074 2075 except Exception as e: 2076 langfuse_logger.exception( 2077 f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}" 2078 ) 2079 2080 @overload 2081 def score_current_span( 2082 self, 2083 *, 2084 name: str, 2085 value: float, 2086 score_id: Optional[str] = None, 2087 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2088 comment: Optional[str] = None, 2089 config_id: Optional[str] = None, 2090 ) -> None: ... 2091 2092 @overload 2093 def score_current_span( 2094 self, 2095 *, 2096 name: str, 2097 value: str, 2098 score_id: Optional[str] = None, 2099 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2100 comment: Optional[str] = None, 2101 config_id: Optional[str] = None, 2102 ) -> None: ... 2103 2104 def score_current_span( 2105 self, 2106 *, 2107 name: str, 2108 value: Union[float, str], 2109 score_id: Optional[str] = None, 2110 data_type: Optional[ScoreDataType] = None, 2111 comment: Optional[str] = None, 2112 config_id: Optional[str] = None, 2113 ) -> None: 2114 """Create a score for the current active span. 2115 2116 This method scores the currently active span in the context. It's a convenient 2117 way to score the current operation without needing to know its trace and span IDs. 2118 2119 Args: 2120 name: Name of the score (e.g., "relevance", "accuracy") 2121 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2122 score_id: Optional custom ID for the score (auto-generated if not provided) 2123 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2124 comment: Optional comment or explanation for the score 2125 config_id: Optional ID of a score config defined in Langfuse 2126 2127 Example: 2128 ```python 2129 with langfuse.start_as_current_generation(name="answer-query") as generation: 2130 # Generate answer 2131 response = generate_answer(...) 2132 generation.update(output=response) 2133 2134 # Score the generation 2135 langfuse.score_current_span( 2136 name="relevance", 2137 value=0.85, 2138 data_type="NUMERIC", 2139 comment="Mostly relevant but contains some tangential information" 2140 ) 2141 ``` 2142 """ 2143 current_span = self._get_current_otel_span() 2144 2145 if current_span is not None: 2146 trace_id = self._get_otel_trace_id(current_span) 2147 observation_id = self._get_otel_span_id(current_span) 2148 2149 langfuse_logger.info( 2150 f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}" 2151 ) 2152 2153 self.create_score( 2154 trace_id=trace_id, 2155 observation_id=observation_id, 2156 name=name, 2157 value=cast(str, value), 2158 score_id=score_id, 2159 data_type=cast(Literal["CATEGORICAL"], data_type), 2160 comment=comment, 2161 config_id=config_id, 2162 ) 2163 2164 @overload 2165 def score_current_trace( 2166 self, 2167 *, 2168 name: str, 2169 value: float, 2170 score_id: Optional[str] = None, 2171 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2172 comment: Optional[str] = None, 2173 config_id: Optional[str] = None, 2174 ) -> None: ... 2175 2176 @overload 2177 def score_current_trace( 2178 self, 2179 *, 2180 name: str, 2181 value: str, 2182 score_id: Optional[str] = None, 2183 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2184 comment: Optional[str] = None, 2185 config_id: Optional[str] = None, 2186 ) -> None: ... 2187 2188 def score_current_trace( 2189 self, 2190 *, 2191 name: str, 2192 value: Union[float, str], 2193 score_id: Optional[str] = None, 2194 data_type: Optional[ScoreDataType] = None, 2195 comment: Optional[str] = None, 2196 config_id: Optional[str] = None, 2197 ) -> None: 2198 """Create a score for the current trace. 2199 2200 This method scores the trace of the currently active span. Unlike score_current_span, 2201 this method associates the score with the entire trace rather than a specific span. 2202 It's useful for scoring overall performance or quality of the entire operation. 2203 2204 Args: 2205 name: Name of the score (e.g., "user_satisfaction", "overall_quality") 2206 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2207 score_id: Optional custom ID for the score (auto-generated if not provided) 2208 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2209 comment: Optional comment or explanation for the score 2210 config_id: Optional ID of a score config defined in Langfuse 2211 2212 Example: 2213 ```python 2214 with langfuse.start_as_current_span(name="process-user-request") as span: 2215 # Process request 2216 result = process_complete_request() 2217 span.update(output=result) 2218 2219 # Score the overall trace 2220 langfuse.score_current_trace( 2221 name="overall_quality", 2222 value=0.95, 2223 data_type="NUMERIC", 2224 comment="High quality end-to-end response" 2225 ) 2226 ``` 2227 """ 2228 current_span = self._get_current_otel_span() 2229 2230 if current_span is not None: 2231 trace_id = self._get_otel_trace_id(current_span) 2232 2233 langfuse_logger.info( 2234 f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}" 2235 ) 2236 2237 self.create_score( 2238 trace_id=trace_id, 2239 name=name, 2240 value=cast(str, value), 2241 score_id=score_id, 2242 data_type=cast(Literal["CATEGORICAL"], data_type), 2243 comment=comment, 2244 config_id=config_id, 2245 ) 2246 2247 def flush(self) -> None: 2248 """Force flush all pending spans and events to the Langfuse API. 2249 2250 This method manually flushes any pending spans, scores, and other events to the 2251 Langfuse API. It's useful in scenarios where you want to ensure all data is sent 2252 before proceeding, without waiting for the automatic flush interval. 2253 2254 Example: 2255 ```python 2256 # Record some spans and scores 2257 with langfuse.start_as_current_span(name="operation") as span: 2258 # Do work... 2259 pass 2260 2261 # Ensure all data is sent to Langfuse before proceeding 2262 langfuse.flush() 2263 2264 # Continue with other work 2265 ``` 2266 """ 2267 if self._resources is not None: 2268 self._resources.flush() 2269 2270 def shutdown(self) -> None: 2271 """Shut down the Langfuse client and flush all pending data. 2272 2273 This method cleanly shuts down the Langfuse client, ensuring all pending data 2274 is flushed to the API and all background threads are properly terminated. 2275 2276 It's important to call this method when your application is shutting down to 2277 prevent data loss and resource leaks. For most applications, using the client 2278 as a context manager or relying on the automatic shutdown via atexit is sufficient. 2279 2280 Example: 2281 ```python 2282 # Initialize Langfuse 2283 langfuse = Langfuse(public_key="...", secret_key="...") 2284 2285 # Use Langfuse throughout your application 2286 # ... 2287 2288 # When application is shutting down 2289 langfuse.shutdown() 2290 ``` 2291 """ 2292 if self._resources is not None: 2293 self._resources.shutdown() 2294 2295 def get_current_trace_id(self) -> Optional[str]: 2296 """Get the trace ID of the current active span. 2297 2298 This method retrieves the trace ID from the currently active span in the context. 2299 It can be used to get the trace ID for referencing in logs, external systems, 2300 or for creating related operations. 2301 2302 Returns: 2303 The current trace ID as a 32-character lowercase hexadecimal string, 2304 or None if there is no active span. 2305 2306 Example: 2307 ```python 2308 with langfuse.start_as_current_span(name="process-request") as span: 2309 # Get the current trace ID for reference 2310 trace_id = langfuse.get_current_trace_id() 2311 2312 # Use it for external correlation 2313 log.info(f"Processing request with trace_id: {trace_id}") 2314 2315 # Or pass to another system 2316 external_system.process(data, trace_id=trace_id) 2317 ``` 2318 """ 2319 if not self._tracing_enabled: 2320 langfuse_logger.debug( 2321 "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode." 2322 ) 2323 return None 2324 2325 current_otel_span = self._get_current_otel_span() 2326 2327 return self._get_otel_trace_id(current_otel_span) if current_otel_span else None 2328 2329 def get_current_observation_id(self) -> Optional[str]: 2330 """Get the observation ID (span ID) of the current active span. 2331 2332 This method retrieves the observation ID from the currently active span in the context. 2333 It can be used to get the observation ID for referencing in logs, external systems, 2334 or for creating scores or other related operations. 2335 2336 Returns: 2337 The current observation ID as a 16-character lowercase hexadecimal string, 2338 or None if there is no active span. 2339 2340 Example: 2341 ```python 2342 with langfuse.start_as_current_span(name="process-user-query") as span: 2343 # Get the current observation ID 2344 observation_id = langfuse.get_current_observation_id() 2345 2346 # Store it for later reference 2347 cache.set(f"query_{query_id}_observation", observation_id) 2348 2349 # Process the query... 2350 ``` 2351 """ 2352 if not self._tracing_enabled: 2353 langfuse_logger.debug( 2354 "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode." 2355 ) 2356 return None 2357 2358 current_otel_span = self._get_current_otel_span() 2359 2360 return self._get_otel_span_id(current_otel_span) if current_otel_span else None 2361 2362 def _get_project_id(self) -> Optional[str]: 2363 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 2364 if not self._project_id: 2365 proj = self.api.projects.get() 2366 if not proj.data or not proj.data[0].id: 2367 return None 2368 2369 self._project_id = proj.data[0].id 2370 2371 return self._project_id 2372 2373 def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]: 2374 """Get the URL to view a trace in the Langfuse UI. 2375 2376 This method generates a URL that links directly to a trace in the Langfuse UI. 2377 It's useful for providing links in logs, notifications, or debugging tools. 2378 2379 Args: 2380 trace_id: Optional trace ID to generate a URL for. If not provided, 2381 the trace ID of the current active span will be used. 2382 2383 Returns: 2384 A URL string pointing to the trace in the Langfuse UI, 2385 or None if the project ID couldn't be retrieved or no trace ID is available. 2386 2387 Example: 2388 ```python 2389 # Get URL for the current trace 2390 with langfuse.start_as_current_span(name="process-request") as span: 2391 trace_url = langfuse.get_trace_url() 2392 log.info(f"Processing trace: {trace_url}") 2393 2394 # Get URL for a specific trace 2395 specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") 2396 send_notification(f"Review needed for trace: {specific_trace_url}") 2397 ``` 2398 """ 2399 project_id = self._get_project_id() 2400 final_trace_id = trace_id or self.get_current_trace_id() 2401 2402 return ( 2403 f"{self._host}/project/{project_id}/traces/{final_trace_id}" 2404 if project_id and final_trace_id 2405 else None 2406 ) 2407 2408 def get_dataset( 2409 self, name: str, *, fetch_items_page_size: Optional[int] = 50 2410 ) -> "DatasetClient": 2411 """Fetch a dataset by its name. 2412 2413 Args: 2414 name (str): The name of the dataset to fetch. 2415 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 2416 2417 Returns: 2418 DatasetClient: The dataset with the given name. 2419 """ 2420 try: 2421 langfuse_logger.debug(f"Getting datasets {name}") 2422 dataset = self.api.datasets.get(dataset_name=name) 2423 2424 dataset_items = [] 2425 page = 1 2426 2427 while True: 2428 new_items = self.api.dataset_items.list( 2429 dataset_name=self._url_encode(name, is_url_param=True), 2430 page=page, 2431 limit=fetch_items_page_size, 2432 ) 2433 dataset_items.extend(new_items.data) 2434 2435 if new_items.meta.total_pages <= page: 2436 break 2437 2438 page += 1 2439 2440 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 2441 2442 return DatasetClient(dataset, items=items) 2443 2444 except Error as e: 2445 handle_fern_exception(e) 2446 raise e 2447 2448 def auth_check(self) -> bool: 2449 """Check if the provided credentials (public and secret key) are valid. 2450 2451 Raises: 2452 Exception: If no projects were found for the provided credentials. 2453 2454 Note: 2455 This method is blocking. It is discouraged to use it in production code. 2456 """ 2457 try: 2458 projects = self.api.projects.get() 2459 langfuse_logger.debug( 2460 f"Auth check successful, found {len(projects.data)} projects" 2461 ) 2462 if len(projects.data) == 0: 2463 raise Exception( 2464 "Auth check failed, no project found for the keys provided." 2465 ) 2466 return True 2467 2468 except AttributeError as e: 2469 langfuse_logger.warning( 2470 f"Auth check failed: Client not properly initialized. Error: {e}" 2471 ) 2472 return False 2473 2474 except Error as e: 2475 handle_fern_exception(e) 2476 raise e 2477 2478 def create_dataset( 2479 self, 2480 *, 2481 name: str, 2482 description: Optional[str] = None, 2483 metadata: Optional[Any] = None, 2484 ) -> Dataset: 2485 """Create a dataset with the given name on Langfuse. 2486 2487 Args: 2488 name: Name of the dataset to create. 2489 description: Description of the dataset. Defaults to None. 2490 metadata: Additional metadata. Defaults to None. 2491 2492 Returns: 2493 Dataset: The created dataset as returned by the Langfuse API. 2494 """ 2495 try: 2496 body = CreateDatasetRequest( 2497 name=name, description=description, metadata=metadata 2498 ) 2499 langfuse_logger.debug(f"Creating datasets {body}") 2500 2501 return self.api.datasets.create(request=body) 2502 2503 except Error as e: 2504 handle_fern_exception(e) 2505 raise e 2506 2507 def create_dataset_item( 2508 self, 2509 *, 2510 dataset_name: str, 2511 input: Optional[Any] = None, 2512 expected_output: Optional[Any] = None, 2513 metadata: Optional[Any] = None, 2514 source_trace_id: Optional[str] = None, 2515 source_observation_id: Optional[str] = None, 2516 status: Optional[DatasetStatus] = None, 2517 id: Optional[str] = None, 2518 ) -> DatasetItem: 2519 """Create a dataset item. 2520 2521 Upserts if an item with id already exists. 2522 2523 Args: 2524 dataset_name: Name of the dataset in which the dataset item should be created. 2525 input: Input data. Defaults to None. Can contain any dict, list or scalar. 2526 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 2527 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 2528 source_trace_id: Id of the source trace. Defaults to None. 2529 source_observation_id: Id of the source observation. Defaults to None. 2530 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 2531 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 2532 2533 Returns: 2534 DatasetItem: The created dataset item as returned by the Langfuse API. 2535 2536 Example: 2537 ```python 2538 from langfuse import Langfuse 2539 2540 langfuse = Langfuse() 2541 2542 # Uploading items to the Langfuse dataset named "capital_cities" 2543 langfuse.create_dataset_item( 2544 dataset_name="capital_cities", 2545 input={"input": {"country": "Italy"}}, 2546 expected_output={"expected_output": "Rome"}, 2547 metadata={"foo": "bar"} 2548 ) 2549 ``` 2550 """ 2551 try: 2552 body = CreateDatasetItemRequest( 2553 datasetName=dataset_name, 2554 input=input, 2555 expectedOutput=expected_output, 2556 metadata=metadata, 2557 sourceTraceId=source_trace_id, 2558 sourceObservationId=source_observation_id, 2559 status=status, 2560 id=id, 2561 ) 2562 langfuse_logger.debug(f"Creating dataset item {body}") 2563 return self.api.dataset_items.create(request=body) 2564 except Error as e: 2565 handle_fern_exception(e) 2566 raise e 2567 2568 def resolve_media_references( 2569 self, 2570 *, 2571 obj: Any, 2572 resolve_with: Literal["base64_data_uri"], 2573 max_depth: int = 10, 2574 content_fetch_timeout_seconds: int = 5, 2575 ) -> Any: 2576 """Replace media reference strings in an object with base64 data URIs. 2577 2578 This method recursively traverses an object (up to max_depth) looking for media reference strings 2579 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 2580 the provided Langfuse client and replaces the reference string with a base64 data URI. 2581 2582 If fetching media content fails for a reference string, a warning is logged and the reference 2583 string is left unchanged. 2584 2585 Args: 2586 obj: The object to process. Can be a primitive value, array, or nested object. 2587 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 2588 resolve_with: The representation of the media content to replace the media reference string with. 2589 Currently only "base64_data_uri" is supported. 2590 max_depth: int: The maximum depth to traverse the object. Default is 10. 2591 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5. 2592 2593 Returns: 2594 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 2595 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 2596 2597 Example: 2598 obj = { 2599 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 2600 "nested": { 2601 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 2602 } 2603 } 2604 2605 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 2606 2607 # Result: 2608 # { 2609 # "image": "...", 2610 # "nested": { 2611 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 2612 # } 2613 # } 2614 """ 2615 return LangfuseMedia.resolve_media_references( 2616 langfuse_client=self, 2617 obj=obj, 2618 resolve_with=resolve_with, 2619 max_depth=max_depth, 2620 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 2621 ) 2622 2623 @overload 2624 def get_prompt( 2625 self, 2626 name: str, 2627 *, 2628 version: Optional[int] = None, 2629 label: Optional[str] = None, 2630 type: Literal["chat"], 2631 cache_ttl_seconds: Optional[int] = None, 2632 fallback: Optional[List[ChatMessageDict]] = None, 2633 max_retries: Optional[int] = None, 2634 fetch_timeout_seconds: Optional[int] = None, 2635 ) -> ChatPromptClient: ... 2636 2637 @overload 2638 def get_prompt( 2639 self, 2640 name: str, 2641 *, 2642 version: Optional[int] = None, 2643 label: Optional[str] = None, 2644 type: Literal["text"] = "text", 2645 cache_ttl_seconds: Optional[int] = None, 2646 fallback: Optional[str] = None, 2647 max_retries: Optional[int] = None, 2648 fetch_timeout_seconds: Optional[int] = None, 2649 ) -> TextPromptClient: ... 2650 2651 def get_prompt( 2652 self, 2653 name: str, 2654 *, 2655 version: Optional[int] = None, 2656 label: Optional[str] = None, 2657 type: Literal["chat", "text"] = "text", 2658 cache_ttl_seconds: Optional[int] = None, 2659 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 2660 max_retries: Optional[int] = None, 2661 fetch_timeout_seconds: Optional[int] = None, 2662 ) -> PromptClient: 2663 """Get a prompt. 2664 2665 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 2666 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 2667 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 2668 return the expired prompt as a fallback. 2669 2670 Args: 2671 name (str): The name of the prompt to retrieve. 2672 2673 Keyword Args: 2674 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 2675 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 2676 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 2677 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 2678 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 2679 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 2680 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 2681 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default. 2682 2683 Returns: 2684 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 2685 - TextPromptClient, if type argument is 'text'. 2686 - ChatPromptClient, if type argument is 'chat'. 2687 2688 Raises: 2689 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 2690 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 2691 """ 2692 if self._resources is None: 2693 raise Error( 2694 "SDK is not correctly initalized. Check the init logs for more details." 2695 ) 2696 if version is not None and label is not None: 2697 raise ValueError("Cannot specify both version and label at the same time.") 2698 2699 if not name: 2700 raise ValueError("Prompt name cannot be empty.") 2701 2702 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 2703 bounded_max_retries = self._get_bounded_max_retries( 2704 max_retries, default_max_retries=2, max_retries_upper_bound=4 2705 ) 2706 2707 langfuse_logger.debug(f"Getting prompt '{cache_key}'") 2708 cached_prompt = self._resources.prompt_cache.get(cache_key) 2709 2710 if cached_prompt is None or cache_ttl_seconds == 0: 2711 langfuse_logger.debug( 2712 f"Prompt '{cache_key}' not found in cache or caching disabled." 2713 ) 2714 try: 2715 return self._fetch_prompt_and_update_cache( 2716 name, 2717 version=version, 2718 label=label, 2719 ttl_seconds=cache_ttl_seconds, 2720 max_retries=bounded_max_retries, 2721 fetch_timeout_seconds=fetch_timeout_seconds, 2722 ) 2723 except Exception as e: 2724 if fallback: 2725 langfuse_logger.warning( 2726 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 2727 ) 2728 2729 fallback_client_args: Dict[str, Any] = { 2730 "name": name, 2731 "prompt": fallback, 2732 "type": type, 2733 "version": version or 0, 2734 "config": {}, 2735 "labels": [label] if label else [], 2736 "tags": [], 2737 } 2738 2739 if type == "text": 2740 return TextPromptClient( 2741 prompt=Prompt_Text(**fallback_client_args), 2742 is_fallback=True, 2743 ) 2744 2745 if type == "chat": 2746 return ChatPromptClient( 2747 prompt=Prompt_Chat(**fallback_client_args), 2748 is_fallback=True, 2749 ) 2750 2751 raise e 2752 2753 if cached_prompt.is_expired(): 2754 langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.") 2755 try: 2756 # refresh prompt in background thread, refresh_prompt deduplicates tasks 2757 langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.") 2758 2759 def refresh_task() -> None: 2760 self._fetch_prompt_and_update_cache( 2761 name, 2762 version=version, 2763 label=label, 2764 ttl_seconds=cache_ttl_seconds, 2765 max_retries=bounded_max_retries, 2766 fetch_timeout_seconds=fetch_timeout_seconds, 2767 ) 2768 2769 self._resources.prompt_cache.add_refresh_prompt_task( 2770 cache_key, 2771 refresh_task, 2772 ) 2773 langfuse_logger.debug( 2774 f"Returning stale prompt '{cache_key}' from cache." 2775 ) 2776 # return stale prompt 2777 return cached_prompt.value 2778 2779 except Exception as e: 2780 langfuse_logger.warning( 2781 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 2782 ) 2783 # creation of refresh prompt task failed, return stale prompt 2784 return cached_prompt.value 2785 2786 return cached_prompt.value 2787 2788 def _fetch_prompt_and_update_cache( 2789 self, 2790 name: str, 2791 *, 2792 version: Optional[int] = None, 2793 label: Optional[str] = None, 2794 ttl_seconds: Optional[int] = None, 2795 max_retries: int, 2796 fetch_timeout_seconds: Optional[int], 2797 ) -> PromptClient: 2798 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 2799 langfuse_logger.debug(f"Fetching prompt '{cache_key}' from server...") 2800 2801 try: 2802 2803 @backoff.on_exception( 2804 backoff.constant, Exception, max_tries=max_retries + 1, logger=None 2805 ) 2806 def fetch_prompts() -> Any: 2807 return self.api.prompts.get( 2808 self._url_encode(name), 2809 version=version, 2810 label=label, 2811 request_options={ 2812 "timeout_in_seconds": fetch_timeout_seconds, 2813 } 2814 if fetch_timeout_seconds is not None 2815 else None, 2816 ) 2817 2818 prompt_response = fetch_prompts() 2819 2820 prompt: PromptClient 2821 if prompt_response.type == "chat": 2822 prompt = ChatPromptClient(prompt_response) 2823 else: 2824 prompt = TextPromptClient(prompt_response) 2825 2826 if self._resources is not None: 2827 self._resources.prompt_cache.set(cache_key, prompt, ttl_seconds) 2828 2829 return prompt 2830 2831 except Exception as e: 2832 langfuse_logger.error( 2833 f"Error while fetching prompt '{cache_key}': {str(e)}" 2834 ) 2835 raise e 2836 2837 def _get_bounded_max_retries( 2838 self, 2839 max_retries: Optional[int], 2840 *, 2841 default_max_retries: int = 2, 2842 max_retries_upper_bound: int = 4, 2843 ) -> int: 2844 if max_retries is None: 2845 return default_max_retries 2846 2847 bounded_max_retries = min( 2848 max(max_retries, 0), 2849 max_retries_upper_bound, 2850 ) 2851 2852 return bounded_max_retries 2853 2854 @overload 2855 def create_prompt( 2856 self, 2857 *, 2858 name: str, 2859 prompt: List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]], 2860 labels: List[str] = [], 2861 tags: Optional[List[str]] = None, 2862 type: Optional[Literal["chat"]], 2863 config: Optional[Any] = None, 2864 commit_message: Optional[str] = None, 2865 ) -> ChatPromptClient: ... 2866 2867 @overload 2868 def create_prompt( 2869 self, 2870 *, 2871 name: str, 2872 prompt: str, 2873 labels: List[str] = [], 2874 tags: Optional[List[str]] = None, 2875 type: Optional[Literal["text"]] = "text", 2876 config: Optional[Any] = None, 2877 commit_message: Optional[str] = None, 2878 ) -> TextPromptClient: ... 2879 2880 def create_prompt( 2881 self, 2882 *, 2883 name: str, 2884 prompt: Union[ 2885 str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]] 2886 ], 2887 labels: List[str] = [], 2888 tags: Optional[List[str]] = None, 2889 type: Optional[Literal["chat", "text"]] = "text", 2890 config: Optional[Any] = None, 2891 commit_message: Optional[str] = None, 2892 ) -> PromptClient: 2893 """Create a new prompt in Langfuse. 2894 2895 Keyword Args: 2896 name : The name of the prompt to be created. 2897 prompt : The content of the prompt to be created. 2898 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 2899 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 2900 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 2901 config: Additional structured data to be saved with the prompt. Defaults to None. 2902 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 2903 commit_message: Optional string describing the change. 2904 2905 Returns: 2906 TextPromptClient: The prompt if type argument is 'text'. 2907 ChatPromptClient: The prompt if type argument is 'chat'. 2908 """ 2909 try: 2910 langfuse_logger.debug(f"Creating prompt {name=}, {labels=}") 2911 2912 if type == "chat": 2913 if not isinstance(prompt, list): 2914 raise ValueError( 2915 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 2916 ) 2917 request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = ( 2918 CreatePromptRequest_Chat( 2919 name=name, 2920 prompt=cast(Any, prompt), 2921 labels=labels, 2922 tags=tags, 2923 config=config or {}, 2924 commitMessage=commit_message, 2925 type="chat", 2926 ) 2927 ) 2928 server_prompt = self.api.prompts.create(request=request) 2929 2930 if self._resources is not None: 2931 self._resources.prompt_cache.invalidate(name) 2932 2933 return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt)) 2934 2935 if not isinstance(prompt, str): 2936 raise ValueError("For 'text' type, 'prompt' must be a string.") 2937 2938 request = CreatePromptRequest_Text( 2939 name=name, 2940 prompt=prompt, 2941 labels=labels, 2942 tags=tags, 2943 config=config or {}, 2944 commitMessage=commit_message, 2945 type="text", 2946 ) 2947 2948 server_prompt = self.api.prompts.create(request=request) 2949 2950 if self._resources is not None: 2951 self._resources.prompt_cache.invalidate(name) 2952 2953 return TextPromptClient(prompt=cast(Prompt_Text, server_prompt)) 2954 2955 except Error as e: 2956 handle_fern_exception(e) 2957 raise e 2958 2959 def update_prompt( 2960 self, 2961 *, 2962 name: str, 2963 version: int, 2964 new_labels: List[str] = [], 2965 ) -> Any: 2966 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 2967 2968 Args: 2969 name (str): The name of the prompt to update. 2970 version (int): The version number of the prompt to update. 2971 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 2972 2973 Returns: 2974 Prompt: The updated prompt from the Langfuse API. 2975 2976 """ 2977 updated_prompt = self.api.prompt_version.update( 2978 name=name, 2979 version=version, 2980 new_labels=new_labels, 2981 ) 2982 2983 if self._resources is not None: 2984 self._resources.prompt_cache.invalidate(name) 2985 2986 return updated_prompt 2987 2988 def _url_encode(self, url: str, *, is_url_param: Optional[bool] = False) -> str: 2989 # httpx ≥ 0.28 does its own WHATWG-compliant quoting (eg. encodes bare 2990 # “%”, “?”, “#”, “|”, … in query/path parts). Re-quoting here would 2991 # double-encode, so we skip when the value is about to be sent straight 2992 # to httpx (`is_url_param=True`) and the installed version is ≥ 0.28. 2993 if is_url_param and Version(httpx.__version__) >= Version("0.28.0"): 2994 return url 2995 2996 # urllib.parse.quote does not escape slashes "/" by default; we need to add safe="" to force escaping 2997 # we need add safe="" to force escaping of slashes 2998 # This is necessary for prompts in prompt folders 2999 return urllib.parse.quote(url, safe="")
Main client for Langfuse tracing and platform features.
This class provides an interface for creating and managing traces, spans, and generations in Langfuse as well as interacting with the Langfuse API.
The client features a thread-safe singleton pattern for each unique public API key, ensuring consistent trace context propagation across your application. It implements efficient batching of spans with configurable flush settings and includes background thread management for media uploads and score ingestion.
Configuration is flexible through either direct parameters or environment variables, with graceful fallbacks and runtime configuration updates.
Attributes:
- api: Synchronous API client for Langfuse backend communication
- async_api: Asynchronous API client for Langfuse backend communication
- langfuse_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
Arguments:
- public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
- secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
- host (Optional[str]): The Langfuse API host URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_HOST environment variable.
- timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
- httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
- debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
- tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
- flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
- flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
- environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
- release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
- media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
- sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
- mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
- blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (
metadata.scope.name
) - additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
- tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
Example:
from langfuse.otel import Langfuse # Initialize the client (reads from env vars if not provided) langfuse = Langfuse( public_key="your-public-key", secret_key="your-secret-key", host="https://cloud.langfuse.com", # Optional, default shown ) # Create a trace span with langfuse.start_as_current_span(name="process-query") as span: # Your application code here # Create a nested generation span for an LLM call with span.start_as_current_generation( name="generate-response", model="gpt-4", input={"query": "Tell me about AI"}, model_parameters={"temperature": 0.7, "max_tokens": 500} ) as generation: # Generate response here response = "AI is a field of computer science..." generation.update( output=response, usage_details={"prompt_tokens": 10, "completion_tokens": 50}, cost_details={"total_cost": 0.0023} ) # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL) generation.score(name="relevance", value=0.95, data_type="NUMERIC")
178 def __init__( 179 self, 180 *, 181 public_key: Optional[str] = None, 182 secret_key: Optional[str] = None, 183 host: Optional[str] = None, 184 timeout: Optional[int] = None, 185 httpx_client: Optional[httpx.Client] = None, 186 debug: bool = False, 187 tracing_enabled: Optional[bool] = True, 188 flush_at: Optional[int] = None, 189 flush_interval: Optional[float] = None, 190 environment: Optional[str] = None, 191 release: Optional[str] = None, 192 media_upload_thread_count: Optional[int] = None, 193 sample_rate: Optional[float] = None, 194 mask: Optional[MaskFunction] = None, 195 blocked_instrumentation_scopes: Optional[List[str]] = None, 196 additional_headers: Optional[Dict[str, str]] = None, 197 tracer_provider: Optional[TracerProvider] = None, 198 ): 199 self._host = host or cast( 200 str, os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com") 201 ) 202 self._environment = environment or cast( 203 str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT) 204 ) 205 self._project_id: Optional[str] = None 206 sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0)) 207 if not 0.0 <= sample_rate <= 1.0: 208 raise ValueError( 209 f"Sample rate must be between 0.0 and 1.0, got {sample_rate}" 210 ) 211 212 timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5)) 213 214 self._tracing_enabled = ( 215 tracing_enabled 216 and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false" 217 ) 218 if not self._tracing_enabled: 219 langfuse_logger.info( 220 "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API." 221 ) 222 223 debug = ( 224 debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true") 225 ) 226 if debug: 227 logging.basicConfig( 228 format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" 229 ) 230 langfuse_logger.setLevel(logging.DEBUG) 231 232 public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY) 233 if public_key is None: 234 langfuse_logger.warning( 235 "Authentication error: Langfuse client initialized without public_key. Client will be disabled. " 236 "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. " 237 ) 238 self._otel_tracer = otel_trace_api.NoOpTracer() 239 return 240 241 secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY) 242 if secret_key is None: 243 langfuse_logger.warning( 244 "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. " 245 "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. " 246 ) 247 self._otel_tracer = otel_trace_api.NoOpTracer() 248 return 249 250 if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true": 251 langfuse_logger.warning( 252 "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI." 253 ) 254 255 # Initialize api and tracer if requirements are met 256 self._resources = LangfuseResourceManager( 257 public_key=public_key, 258 secret_key=secret_key, 259 host=self._host, 260 timeout=timeout, 261 environment=environment, 262 release=release, 263 flush_at=flush_at, 264 flush_interval=flush_interval, 265 httpx_client=httpx_client, 266 media_upload_thread_count=media_upload_thread_count, 267 sample_rate=sample_rate, 268 mask=mask, 269 tracing_enabled=self._tracing_enabled, 270 blocked_instrumentation_scopes=blocked_instrumentation_scopes, 271 additional_headers=additional_headers, 272 tracer_provider=tracer_provider, 273 ) 274 self._mask = self._resources.mask 275 276 self._otel_tracer = ( 277 self._resources.tracer 278 if self._tracing_enabled and self._resources.tracer is not None 279 else otel_trace_api.NoOpTracer() 280 ) 281 self.api = self._resources.api 282 self.async_api = self._resources.async_api
284 def start_span( 285 self, 286 *, 287 trace_context: Optional[TraceContext] = None, 288 name: str, 289 input: Optional[Any] = None, 290 output: Optional[Any] = None, 291 metadata: Optional[Any] = None, 292 version: Optional[str] = None, 293 level: Optional[SpanLevel] = None, 294 status_message: Optional[str] = None, 295 ) -> LangfuseSpan: 296 """Create a new span for tracing a unit of work. 297 298 This method creates a new span but does not set it as the current span in the 299 context. To create and use a span within a context, use start_as_current_span(). 300 301 The created span will be the child of the current span in the context. 302 303 Args: 304 trace_context: Optional context for connecting to an existing trace 305 name: Name of the span (e.g., function or operation name) 306 input: Input data for the operation (can be any JSON-serializable object) 307 output: Output data from the operation (can be any JSON-serializable object) 308 metadata: Additional metadata to associate with the span 309 version: Version identifier for the code or component 310 level: Importance level of the span (info, warning, error) 311 status_message: Optional status message for the span 312 313 Returns: 314 A LangfuseSpan object that must be ended with .end() when the operation completes 315 316 Example: 317 ```python 318 span = langfuse.start_span(name="process-data") 319 try: 320 # Do work 321 span.update(output="result") 322 finally: 323 span.end() 324 ``` 325 """ 326 return self.start_observation( 327 trace_context=trace_context, 328 name=name, 329 as_type="span", 330 input=input, 331 output=output, 332 metadata=metadata, 333 version=version, 334 level=level, 335 status_message=status_message, 336 )
Create a new span for tracing a unit of work.
This method creates a new span but does not set it as the current span in the context. To create and use a span within a context, use start_as_current_span().
The created span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A LangfuseSpan object that must be ended with .end() when the operation completes
Example:
span = langfuse.start_span(name="process-data") try: # Do work span.update(output="result") finally: span.end()
338 def start_as_current_span( 339 self, 340 *, 341 trace_context: Optional[TraceContext] = None, 342 name: str, 343 input: Optional[Any] = None, 344 output: Optional[Any] = None, 345 metadata: Optional[Any] = None, 346 version: Optional[str] = None, 347 level: Optional[SpanLevel] = None, 348 status_message: Optional[str] = None, 349 end_on_exit: Optional[bool] = None, 350 ) -> _AgnosticContextManager[LangfuseSpan]: 351 """Create a new span and set it as the current span in a context manager. 352 353 This method creates a new span and sets it as the current span within a context 354 manager. Use this method with a 'with' statement to automatically handle span 355 lifecycle within a code block. 356 357 The created span will be the child of the current span in the context. 358 359 Args: 360 trace_context: Optional context for connecting to an existing trace 361 name: Name of the span (e.g., function or operation name) 362 input: Input data for the operation (can be any JSON-serializable object) 363 output: Output data from the operation (can be any JSON-serializable object) 364 metadata: Additional metadata to associate with the span 365 version: Version identifier for the code or component 366 level: Importance level of the span (info, warning, error) 367 status_message: Optional status message for the span 368 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 369 370 Returns: 371 A context manager that yields a LangfuseSpan 372 373 Example: 374 ```python 375 with langfuse.start_as_current_span(name="process-query") as span: 376 # Do work 377 result = process_data() 378 span.update(output=result) 379 380 # Create a child span automatically 381 with span.start_as_current_span(name="sub-operation") as child_span: 382 # Do sub-operation work 383 child_span.update(output="sub-result") 384 ``` 385 """ 386 return self.start_as_current_observation( 387 trace_context=trace_context, 388 name=name, 389 as_type="span", 390 input=input, 391 output=output, 392 metadata=metadata, 393 version=version, 394 level=level, 395 status_message=status_message, 396 end_on_exit=end_on_exit, 397 )
Create a new span and set it as the current span in a context manager.
This method creates a new span and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle span lifecycle within a code block.
The created span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:
A context manager that yields a LangfuseSpan
Example:
with langfuse.start_as_current_span(name="process-query") as span: # Do work result = process_data() span.update(output=result) # Create a child span automatically with span.start_as_current_span(name="sub-operation") as child_span: # Do sub-operation work child_span.update(output="sub-result")
546 def start_observation( 547 self, 548 *, 549 trace_context: Optional[TraceContext] = None, 550 name: str, 551 as_type: ObservationTypeLiteralNoEvent = "span", 552 input: Optional[Any] = None, 553 output: Optional[Any] = None, 554 metadata: Optional[Any] = None, 555 version: Optional[str] = None, 556 level: Optional[SpanLevel] = None, 557 status_message: Optional[str] = None, 558 completion_start_time: Optional[datetime] = None, 559 model: Optional[str] = None, 560 model_parameters: Optional[Dict[str, MapValue]] = None, 561 usage_details: Optional[Dict[str, int]] = None, 562 cost_details: Optional[Dict[str, float]] = None, 563 prompt: Optional[PromptClient] = None, 564 ) -> Union[ 565 LangfuseSpan, 566 LangfuseGeneration, 567 LangfuseAgent, 568 LangfuseTool, 569 LangfuseChain, 570 LangfuseRetriever, 571 LangfuseEvaluator, 572 LangfuseEmbedding, 573 LangfuseGuardrail, 574 ]: 575 """Create a new observation of the specified type. 576 577 This method creates a new observation but does not set it as the current span in the 578 context. To create and use an observation within a context, use start_as_current_observation(). 579 580 Args: 581 trace_context: Optional context for connecting to an existing trace 582 name: Name of the observation 583 as_type: Type of observation to create (defaults to "span") 584 input: Input data for the operation 585 output: Output data from the operation 586 metadata: Additional metadata to associate with the observation 587 version: Version identifier for the code or component 588 level: Importance level of the observation 589 status_message: Optional status message for the observation 590 completion_start_time: When the model started generating (for generation types) 591 model: Name/identifier of the AI model used (for generation types) 592 model_parameters: Parameters used for the model (for generation types) 593 usage_details: Token usage information (for generation types) 594 cost_details: Cost information (for generation types) 595 prompt: Associated prompt template (for generation types) 596 597 Returns: 598 An observation object of the appropriate type that must be ended with .end() 599 """ 600 if trace_context: 601 trace_id = trace_context.get("trace_id", None) 602 parent_span_id = trace_context.get("parent_span_id", None) 603 604 if trace_id: 605 remote_parent_span = self._create_remote_parent_span( 606 trace_id=trace_id, parent_span_id=parent_span_id 607 ) 608 609 with otel_trace_api.use_span( 610 cast(otel_trace_api.Span, remote_parent_span) 611 ): 612 otel_span = self._otel_tracer.start_span(name=name) 613 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 614 615 return self._create_observation_from_otel_span( 616 otel_span=otel_span, 617 as_type=as_type, 618 input=input, 619 output=output, 620 metadata=metadata, 621 version=version, 622 level=level, 623 status_message=status_message, 624 completion_start_time=completion_start_time, 625 model=model, 626 model_parameters=model_parameters, 627 usage_details=usage_details, 628 cost_details=cost_details, 629 prompt=prompt, 630 ) 631 632 otel_span = self._otel_tracer.start_span(name=name) 633 634 return self._create_observation_from_otel_span( 635 otel_span=otel_span, 636 as_type=as_type, 637 input=input, 638 output=output, 639 metadata=metadata, 640 version=version, 641 level=level, 642 status_message=status_message, 643 completion_start_time=completion_start_time, 644 model=model, 645 model_parameters=model_parameters, 646 usage_details=usage_details, 647 cost_details=cost_details, 648 prompt=prompt, 649 )
Create a new observation of the specified type.
This method creates a new observation but does not set it as the current span in the context. To create and use an observation within a context, use start_as_current_observation().
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the observation
- as_type: Type of observation to create (defaults to "span")
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the observation
- version: Version identifier for the code or component
- level: Importance level of the observation
- status_message: Optional status message for the observation
- completion_start_time: When the model started generating (for generation types)
- model: Name/identifier of the AI model used (for generation types)
- model_parameters: Parameters used for the model (for generation types)
- usage_details: Token usage information (for generation types)
- cost_details: Cost information (for generation types)
- prompt: Associated prompt template (for generation types)
Returns:
An observation object of the appropriate type that must be ended with .end()
721 def start_generation( 722 self, 723 *, 724 trace_context: Optional[TraceContext] = None, 725 name: str, 726 input: Optional[Any] = None, 727 output: Optional[Any] = None, 728 metadata: Optional[Any] = None, 729 version: Optional[str] = None, 730 level: Optional[SpanLevel] = None, 731 status_message: Optional[str] = None, 732 completion_start_time: Optional[datetime] = None, 733 model: Optional[str] = None, 734 model_parameters: Optional[Dict[str, MapValue]] = None, 735 usage_details: Optional[Dict[str, int]] = None, 736 cost_details: Optional[Dict[str, float]] = None, 737 prompt: Optional[PromptClient] = None, 738 ) -> LangfuseGeneration: 739 """[DEPRECATED] Create a new generation span for model generations. 740 741 DEPRECATED: This method is deprecated and will be removed in a future version. 742 Use start_observation(as_type='generation') instead. 743 744 This method creates a specialized span for tracking model generations. 745 It includes additional fields specific to model generations such as model name, 746 token usage, and cost details. 747 748 The created generation span will be the child of the current span in the context. 749 750 Args: 751 trace_context: Optional context for connecting to an existing trace 752 name: Name of the generation operation 753 input: Input data for the model (e.g., prompts) 754 output: Output from the model (e.g., completions) 755 metadata: Additional metadata to associate with the generation 756 version: Version identifier for the model or component 757 level: Importance level of the generation (info, warning, error) 758 status_message: Optional status message for the generation 759 completion_start_time: When the model started generating the response 760 model: Name/identifier of the AI model used (e.g., "gpt-4") 761 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 762 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 763 cost_details: Cost information for the model call 764 prompt: Associated prompt template from Langfuse prompt management 765 766 Returns: 767 A LangfuseGeneration object that must be ended with .end() when complete 768 769 Example: 770 ```python 771 generation = langfuse.start_generation( 772 name="answer-generation", 773 model="gpt-4", 774 input={"prompt": "Explain quantum computing"}, 775 model_parameters={"temperature": 0.7} 776 ) 777 try: 778 # Call model API 779 response = llm.generate(...) 780 781 generation.update( 782 output=response.text, 783 usage_details={ 784 "prompt_tokens": response.usage.prompt_tokens, 785 "completion_tokens": response.usage.completion_tokens 786 } 787 ) 788 finally: 789 generation.end() 790 ``` 791 """ 792 warnings.warn( 793 "start_generation is deprecated and will be removed in a future version. " 794 "Use start_observation(as_type='generation') instead.", 795 DeprecationWarning, 796 stacklevel=2, 797 ) 798 return self.start_observation( 799 trace_context=trace_context, 800 name=name, 801 as_type="generation", 802 input=input, 803 output=output, 804 metadata=metadata, 805 version=version, 806 level=level, 807 status_message=status_message, 808 completion_start_time=completion_start_time, 809 model=model, 810 model_parameters=model_parameters, 811 usage_details=usage_details, 812 cost_details=cost_details, 813 prompt=prompt, 814 )
[DEPRECATED] Create a new generation span for model generations.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.
This method creates a specialized span for tracking model generations. It includes additional fields specific to model generations such as model name, token usage, and cost details.
The created generation span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A LangfuseGeneration object that must be ended with .end() when complete
Example:
generation = langfuse.start_generation( name="answer-generation", model="gpt-4", input={"prompt": "Explain quantum computing"}, model_parameters={"temperature": 0.7} ) try: # Call model API response = llm.generate(...) generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) finally: generation.end()
816 def start_as_current_generation( 817 self, 818 *, 819 trace_context: Optional[TraceContext] = None, 820 name: str, 821 input: Optional[Any] = None, 822 output: Optional[Any] = None, 823 metadata: Optional[Any] = None, 824 version: Optional[str] = None, 825 level: Optional[SpanLevel] = None, 826 status_message: Optional[str] = None, 827 completion_start_time: Optional[datetime] = None, 828 model: Optional[str] = None, 829 model_parameters: Optional[Dict[str, MapValue]] = None, 830 usage_details: Optional[Dict[str, int]] = None, 831 cost_details: Optional[Dict[str, float]] = None, 832 prompt: Optional[PromptClient] = None, 833 end_on_exit: Optional[bool] = None, 834 ) -> _AgnosticContextManager[LangfuseGeneration]: 835 """[DEPRECATED] Create a new generation span and set it as the current span in a context manager. 836 837 DEPRECATED: This method is deprecated and will be removed in a future version. 838 Use start_as_current_observation(as_type='generation') instead. 839 840 This method creates a specialized span for model generations and sets it as the 841 current span within a context manager. Use this method with a 'with' statement to 842 automatically handle the generation span lifecycle within a code block. 843 844 The created generation span will be the child of the current span in the context. 845 846 Args: 847 trace_context: Optional context for connecting to an existing trace 848 name: Name of the generation operation 849 input: Input data for the model (e.g., prompts) 850 output: Output from the model (e.g., completions) 851 metadata: Additional metadata to associate with the generation 852 version: Version identifier for the model or component 853 level: Importance level of the generation (info, warning, error) 854 status_message: Optional status message for the generation 855 completion_start_time: When the model started generating the response 856 model: Name/identifier of the AI model used (e.g., "gpt-4") 857 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 858 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 859 cost_details: Cost information for the model call 860 prompt: Associated prompt template from Langfuse prompt management 861 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 862 863 Returns: 864 A context manager that yields a LangfuseGeneration 865 866 Example: 867 ```python 868 with langfuse.start_as_current_generation( 869 name="answer-generation", 870 model="gpt-4", 871 input={"prompt": "Explain quantum computing"} 872 ) as generation: 873 # Call model API 874 response = llm.generate(...) 875 876 # Update with results 877 generation.update( 878 output=response.text, 879 usage_details={ 880 "prompt_tokens": response.usage.prompt_tokens, 881 "completion_tokens": response.usage.completion_tokens 882 } 883 ) 884 ``` 885 """ 886 warnings.warn( 887 "start_as_current_generation is deprecated and will be removed in a future version. " 888 "Use start_as_current_observation(as_type='generation') instead.", 889 DeprecationWarning, 890 stacklevel=2, 891 ) 892 return self.start_as_current_observation( 893 trace_context=trace_context, 894 name=name, 895 as_type="generation", 896 input=input, 897 output=output, 898 metadata=metadata, 899 version=version, 900 level=level, 901 status_message=status_message, 902 completion_start_time=completion_start_time, 903 model=model, 904 model_parameters=model_parameters, 905 usage_details=usage_details, 906 cost_details=cost_details, 907 prompt=prompt, 908 end_on_exit=end_on_exit, 909 )
[DEPRECATED] Create a new generation span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.
This method creates a specialized span for model generations and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the generation span lifecycle within a code block.
The created generation span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:
A context manager that yields a LangfuseGeneration
Example:
with langfuse.start_as_current_generation( name="answer-generation", model="gpt-4", input={"prompt": "Explain quantum computing"} ) as generation: # Call model API response = llm.generate(...) # Update with results generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } )
1067 def start_as_current_observation( 1068 self, 1069 *, 1070 trace_context: Optional[TraceContext] = None, 1071 name: str, 1072 as_type: ObservationTypeLiteralNoEvent = "span", 1073 input: Optional[Any] = None, 1074 output: Optional[Any] = None, 1075 metadata: Optional[Any] = None, 1076 version: Optional[str] = None, 1077 level: Optional[SpanLevel] = None, 1078 status_message: Optional[str] = None, 1079 completion_start_time: Optional[datetime] = None, 1080 model: Optional[str] = None, 1081 model_parameters: Optional[Dict[str, MapValue]] = None, 1082 usage_details: Optional[Dict[str, int]] = None, 1083 cost_details: Optional[Dict[str, float]] = None, 1084 prompt: Optional[PromptClient] = None, 1085 end_on_exit: Optional[bool] = None, 1086 ) -> Union[ 1087 _AgnosticContextManager[LangfuseGeneration], 1088 _AgnosticContextManager[LangfuseSpan], 1089 _AgnosticContextManager[LangfuseAgent], 1090 _AgnosticContextManager[LangfuseTool], 1091 _AgnosticContextManager[LangfuseChain], 1092 _AgnosticContextManager[LangfuseRetriever], 1093 _AgnosticContextManager[LangfuseEvaluator], 1094 _AgnosticContextManager[LangfuseEmbedding], 1095 _AgnosticContextManager[LangfuseGuardrail], 1096 ]: 1097 """Create a new observation and set it as the current span in a context manager. 1098 1099 This method creates a new observation of the specified type and sets it as the 1100 current span within a context manager. Use this method with a 'with' statement to 1101 automatically handle the observation lifecycle within a code block. 1102 1103 The created observation will be the child of the current span in the context. 1104 1105 Args: 1106 trace_context: Optional context for connecting to an existing trace 1107 name: Name of the observation (e.g., function or operation name) 1108 as_type: Type of observation to create (defaults to "span") 1109 input: Input data for the operation (can be any JSON-serializable object) 1110 output: Output data from the operation (can be any JSON-serializable object) 1111 metadata: Additional metadata to associate with the observation 1112 version: Version identifier for the code or component 1113 level: Importance level of the observation (info, warning, error) 1114 status_message: Optional status message for the observation 1115 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 1116 1117 The following parameters are available when as_type is: "generation" or "embedding". 1118 completion_start_time: When the model started generating the response 1119 model: Name/identifier of the AI model used (e.g., "gpt-4") 1120 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1121 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1122 cost_details: Cost information for the model call 1123 prompt: Associated prompt template from Langfuse prompt management 1124 1125 Returns: 1126 A context manager that yields the appropriate observation type based on as_type 1127 1128 Example: 1129 ```python 1130 # Create a span 1131 with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: 1132 # Do work 1133 result = process_data() 1134 span.update(output=result) 1135 1136 # Create a child span automatically 1137 with span.start_as_current_span(name="sub-operation") as child_span: 1138 # Do sub-operation work 1139 child_span.update(output="sub-result") 1140 1141 # Create a tool observation 1142 with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: 1143 # Do tool work 1144 results = search_web(query) 1145 tool.update(output=results) 1146 1147 # Create a generation observation 1148 with langfuse.start_as_current_observation( 1149 name="answer-generation", 1150 as_type="generation", 1151 model="gpt-4" 1152 ) as generation: 1153 # Generate answer 1154 response = llm.generate(...) 1155 generation.update(output=response) 1156 ``` 1157 """ 1158 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 1159 if trace_context: 1160 trace_id = trace_context.get("trace_id", None) 1161 parent_span_id = trace_context.get("parent_span_id", None) 1162 1163 if trace_id: 1164 remote_parent_span = self._create_remote_parent_span( 1165 trace_id=trace_id, parent_span_id=parent_span_id 1166 ) 1167 1168 return cast( 1169 Union[ 1170 _AgnosticContextManager[LangfuseGeneration], 1171 _AgnosticContextManager[LangfuseEmbedding], 1172 ], 1173 self._create_span_with_parent_context( 1174 as_type=as_type, 1175 name=name, 1176 remote_parent_span=remote_parent_span, 1177 parent=None, 1178 end_on_exit=end_on_exit, 1179 input=input, 1180 output=output, 1181 metadata=metadata, 1182 version=version, 1183 level=level, 1184 status_message=status_message, 1185 completion_start_time=completion_start_time, 1186 model=model, 1187 model_parameters=model_parameters, 1188 usage_details=usage_details, 1189 cost_details=cost_details, 1190 prompt=prompt, 1191 ), 1192 ) 1193 1194 return cast( 1195 Union[ 1196 _AgnosticContextManager[LangfuseGeneration], 1197 _AgnosticContextManager[LangfuseEmbedding], 1198 ], 1199 self._start_as_current_otel_span_with_processed_media( 1200 as_type=as_type, 1201 name=name, 1202 end_on_exit=end_on_exit, 1203 input=input, 1204 output=output, 1205 metadata=metadata, 1206 version=version, 1207 level=level, 1208 status_message=status_message, 1209 completion_start_time=completion_start_time, 1210 model=model, 1211 model_parameters=model_parameters, 1212 usage_details=usage_details, 1213 cost_details=cost_details, 1214 prompt=prompt, 1215 ), 1216 ) 1217 1218 if as_type in get_observation_types_list(ObservationTypeSpanLike): 1219 if trace_context: 1220 trace_id = trace_context.get("trace_id", None) 1221 parent_span_id = trace_context.get("parent_span_id", None) 1222 1223 if trace_id: 1224 remote_parent_span = self._create_remote_parent_span( 1225 trace_id=trace_id, parent_span_id=parent_span_id 1226 ) 1227 1228 return cast( 1229 Union[ 1230 _AgnosticContextManager[LangfuseSpan], 1231 _AgnosticContextManager[LangfuseAgent], 1232 _AgnosticContextManager[LangfuseTool], 1233 _AgnosticContextManager[LangfuseChain], 1234 _AgnosticContextManager[LangfuseRetriever], 1235 _AgnosticContextManager[LangfuseEvaluator], 1236 _AgnosticContextManager[LangfuseGuardrail], 1237 ], 1238 self._create_span_with_parent_context( 1239 as_type=as_type, 1240 name=name, 1241 remote_parent_span=remote_parent_span, 1242 parent=None, 1243 end_on_exit=end_on_exit, 1244 input=input, 1245 output=output, 1246 metadata=metadata, 1247 version=version, 1248 level=level, 1249 status_message=status_message, 1250 ), 1251 ) 1252 1253 return cast( 1254 Union[ 1255 _AgnosticContextManager[LangfuseSpan], 1256 _AgnosticContextManager[LangfuseAgent], 1257 _AgnosticContextManager[LangfuseTool], 1258 _AgnosticContextManager[LangfuseChain], 1259 _AgnosticContextManager[LangfuseRetriever], 1260 _AgnosticContextManager[LangfuseEvaluator], 1261 _AgnosticContextManager[LangfuseGuardrail], 1262 ], 1263 self._start_as_current_otel_span_with_processed_media( 1264 as_type=as_type, 1265 name=name, 1266 end_on_exit=end_on_exit, 1267 input=input, 1268 output=output, 1269 metadata=metadata, 1270 version=version, 1271 level=level, 1272 status_message=status_message, 1273 ), 1274 ) 1275 1276 # This should never be reached since all valid types are handled above 1277 langfuse_logger.warning( 1278 f"Unknown observation type: {as_type}, falling back to span" 1279 ) 1280 return self._start_as_current_otel_span_with_processed_media( 1281 as_type="span", 1282 name=name, 1283 end_on_exit=end_on_exit, 1284 input=input, 1285 output=output, 1286 metadata=metadata, 1287 version=version, 1288 level=level, 1289 status_message=status_message, 1290 )
Create a new observation and set it as the current span in a context manager.
This method creates a new observation of the specified type and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the observation lifecycle within a code block.
The created observation will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the observation (e.g., function or operation name)
- as_type: Type of observation to create (defaults to "span")
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the observation
- version: Version identifier for the code or component
- level: Importance level of the observation (info, warning, error)
- status_message: Optional status message for the observation
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
- The following parameters are available when as_type is: "generation" or "embedding".
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A context manager that yields the appropriate observation type based on as_type
Example:
# Create a span with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: # Do work result = process_data() span.update(output=result) # Create a child span automatically with span.start_as_current_span(name="sub-operation") as child_span: # Do sub-operation work child_span.update(output="sub-result") # Create a tool observation with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: # Do tool work results = search_web(query) tool.update(output=results) # Create a generation observation with langfuse.start_as_current_observation( name="answer-generation", as_type="generation", model="gpt-4" ) as generation: # Generate answer response = llm.generate(...) generation.update(output=response)
1451 def update_current_generation( 1452 self, 1453 *, 1454 name: Optional[str] = None, 1455 input: Optional[Any] = None, 1456 output: Optional[Any] = None, 1457 metadata: Optional[Any] = None, 1458 version: Optional[str] = None, 1459 level: Optional[SpanLevel] = None, 1460 status_message: Optional[str] = None, 1461 completion_start_time: Optional[datetime] = None, 1462 model: Optional[str] = None, 1463 model_parameters: Optional[Dict[str, MapValue]] = None, 1464 usage_details: Optional[Dict[str, int]] = None, 1465 cost_details: Optional[Dict[str, float]] = None, 1466 prompt: Optional[PromptClient] = None, 1467 ) -> None: 1468 """Update the current active generation span with new information. 1469 1470 This method updates the current generation span in the active context with 1471 additional information. It's useful for adding output, usage stats, or other 1472 details that become available during or after model generation. 1473 1474 Args: 1475 name: The generation name 1476 input: Updated input data for the model 1477 output: Output from the model (e.g., completions) 1478 metadata: Additional metadata to associate with the generation 1479 version: Version identifier for the model or component 1480 level: Importance level of the generation (info, warning, error) 1481 status_message: Optional status message for the generation 1482 completion_start_time: When the model started generating the response 1483 model: Name/identifier of the AI model used (e.g., "gpt-4") 1484 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1485 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1486 cost_details: Cost information for the model call 1487 prompt: Associated prompt template from Langfuse prompt management 1488 1489 Example: 1490 ```python 1491 with langfuse.start_as_current_generation(name="answer-query") as generation: 1492 # Initial setup and API call 1493 response = llm.generate(...) 1494 1495 # Update with results that weren't available at creation time 1496 langfuse.update_current_generation( 1497 output=response.text, 1498 usage_details={ 1499 "prompt_tokens": response.usage.prompt_tokens, 1500 "completion_tokens": response.usage.completion_tokens 1501 } 1502 ) 1503 ``` 1504 """ 1505 if not self._tracing_enabled: 1506 langfuse_logger.debug( 1507 "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode." 1508 ) 1509 return 1510 1511 current_otel_span = self._get_current_otel_span() 1512 1513 if current_otel_span is not None: 1514 generation = LangfuseGeneration( 1515 otel_span=current_otel_span, langfuse_client=self 1516 ) 1517 1518 if name: 1519 current_otel_span.update_name(name) 1520 1521 generation.update( 1522 input=input, 1523 output=output, 1524 metadata=metadata, 1525 version=version, 1526 level=level, 1527 status_message=status_message, 1528 completion_start_time=completion_start_time, 1529 model=model, 1530 model_parameters=model_parameters, 1531 usage_details=usage_details, 1532 cost_details=cost_details, 1533 prompt=prompt, 1534 )
Update the current active generation span with new information.
This method updates the current generation span in the active context with additional information. It's useful for adding output, usage stats, or other details that become available during or after model generation.
Arguments:
- name: The generation name
- input: Updated input data for the model
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation: # Initial setup and API call response = llm.generate(...) # Update with results that weren't available at creation time langfuse.update_current_generation( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } )
1536 def update_current_span( 1537 self, 1538 *, 1539 name: Optional[str] = None, 1540 input: Optional[Any] = None, 1541 output: Optional[Any] = None, 1542 metadata: Optional[Any] = None, 1543 version: Optional[str] = None, 1544 level: Optional[SpanLevel] = None, 1545 status_message: Optional[str] = None, 1546 ) -> None: 1547 """Update the current active span with new information. 1548 1549 This method updates the current span in the active context with 1550 additional information. It's useful for adding outputs or metadata 1551 that become available during execution. 1552 1553 Args: 1554 name: The span name 1555 input: Updated input data for the operation 1556 output: Output data from the operation 1557 metadata: Additional metadata to associate with the span 1558 version: Version identifier for the code or component 1559 level: Importance level of the span (info, warning, error) 1560 status_message: Optional status message for the span 1561 1562 Example: 1563 ```python 1564 with langfuse.start_as_current_span(name="process-data") as span: 1565 # Initial processing 1566 result = process_first_part() 1567 1568 # Update with intermediate results 1569 langfuse.update_current_span(metadata={"intermediate_result": result}) 1570 1571 # Continue processing 1572 final_result = process_second_part(result) 1573 1574 # Final update 1575 langfuse.update_current_span(output=final_result) 1576 ``` 1577 """ 1578 if not self._tracing_enabled: 1579 langfuse_logger.debug( 1580 "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode." 1581 ) 1582 return 1583 1584 current_otel_span = self._get_current_otel_span() 1585 1586 if current_otel_span is not None: 1587 span = LangfuseSpan( 1588 otel_span=current_otel_span, 1589 langfuse_client=self, 1590 environment=self._environment, 1591 ) 1592 1593 if name: 1594 current_otel_span.update_name(name) 1595 1596 span.update( 1597 input=input, 1598 output=output, 1599 metadata=metadata, 1600 version=version, 1601 level=level, 1602 status_message=status_message, 1603 )
Update the current active span with new information.
This method updates the current span in the active context with additional information. It's useful for adding outputs or metadata that become available during execution.
Arguments:
- name: The span name
- input: Updated input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Example:
with langfuse.start_as_current_span(name="process-data") as span: # Initial processing result = process_first_part() # Update with intermediate results langfuse.update_current_span(metadata={"intermediate_result": result}) # Continue processing final_result = process_second_part(result) # Final update langfuse.update_current_span(output=final_result)
1605 def update_current_trace( 1606 self, 1607 *, 1608 name: Optional[str] = None, 1609 user_id: Optional[str] = None, 1610 session_id: Optional[str] = None, 1611 version: Optional[str] = None, 1612 input: Optional[Any] = None, 1613 output: Optional[Any] = None, 1614 metadata: Optional[Any] = None, 1615 tags: Optional[List[str]] = None, 1616 public: Optional[bool] = None, 1617 ) -> None: 1618 """Update the current trace with additional information. 1619 1620 This method updates the Langfuse trace that the current span belongs to. It's useful for 1621 adding trace-level metadata like user ID, session ID, or tags that apply to 1622 the entire Langfuse trace rather than just a single observation. 1623 1624 Args: 1625 name: Updated name for the Langfuse trace 1626 user_id: ID of the user who initiated the Langfuse trace 1627 session_id: Session identifier for grouping related Langfuse traces 1628 version: Version identifier for the application or service 1629 input: Input data for the overall Langfuse trace 1630 output: Output data from the overall Langfuse trace 1631 metadata: Additional metadata to associate with the Langfuse trace 1632 tags: List of tags to categorize the Langfuse trace 1633 public: Whether the Langfuse trace should be publicly accessible 1634 1635 Example: 1636 ```python 1637 with langfuse.start_as_current_span(name="handle-request") as span: 1638 # Get user information 1639 user = authenticate_user(request) 1640 1641 # Update trace with user context 1642 langfuse.update_current_trace( 1643 user_id=user.id, 1644 session_id=request.session_id, 1645 tags=["production", "web-app"] 1646 ) 1647 1648 # Continue processing 1649 response = process_request(request) 1650 1651 # Update span with results 1652 span.update(output=response) 1653 ``` 1654 """ 1655 if not self._tracing_enabled: 1656 langfuse_logger.debug( 1657 "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode." 1658 ) 1659 return 1660 1661 current_otel_span = self._get_current_otel_span() 1662 1663 if current_otel_span is not None: 1664 existing_observation_type = current_otel_span.attributes.get( # type: ignore[attr-defined] 1665 LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span" 1666 ) 1667 # We need to preserve the class to keep the corret observation type 1668 span_class = self._get_span_class(existing_observation_type) 1669 span = span_class( 1670 otel_span=current_otel_span, 1671 langfuse_client=self, 1672 environment=self._environment, 1673 ) 1674 1675 span.update_trace( 1676 name=name, 1677 user_id=user_id, 1678 session_id=session_id, 1679 version=version, 1680 input=input, 1681 output=output, 1682 metadata=metadata, 1683 tags=tags, 1684 public=public, 1685 )
Update the current trace with additional information.
This method updates the Langfuse trace that the current span belongs to. It's useful for adding trace-level metadata like user ID, session ID, or tags that apply to the entire Langfuse trace rather than just a single observation.
Arguments:
- name: Updated name for the Langfuse trace
- user_id: ID of the user who initiated the Langfuse trace
- session_id: Session identifier for grouping related Langfuse traces
- version: Version identifier for the application or service
- input: Input data for the overall Langfuse trace
- output: Output data from the overall Langfuse trace
- metadata: Additional metadata to associate with the Langfuse trace
- tags: List of tags to categorize the Langfuse trace
- public: Whether the Langfuse trace should be publicly accessible
Example:
with langfuse.start_as_current_span(name="handle-request") as span: # Get user information user = authenticate_user(request) # Update trace with user context langfuse.update_current_trace( user_id=user.id, session_id=request.session_id, tags=["production", "web-app"] ) # Continue processing response = process_request(request) # Update span with results span.update(output=response)
1687 def create_event( 1688 self, 1689 *, 1690 trace_context: Optional[TraceContext] = None, 1691 name: str, 1692 input: Optional[Any] = None, 1693 output: Optional[Any] = None, 1694 metadata: Optional[Any] = None, 1695 version: Optional[str] = None, 1696 level: Optional[SpanLevel] = None, 1697 status_message: Optional[str] = None, 1698 ) -> LangfuseEvent: 1699 """Create a new Langfuse observation of type 'EVENT'. 1700 1701 The created Langfuse Event observation will be the child of the current span in the context. 1702 1703 Args: 1704 trace_context: Optional context for connecting to an existing trace 1705 name: Name of the span (e.g., function or operation name) 1706 input: Input data for the operation (can be any JSON-serializable object) 1707 output: Output data from the operation (can be any JSON-serializable object) 1708 metadata: Additional metadata to associate with the span 1709 version: Version identifier for the code or component 1710 level: Importance level of the span (info, warning, error) 1711 status_message: Optional status message for the span 1712 1713 Returns: 1714 The Langfuse Event object 1715 1716 Example: 1717 ```python 1718 event = langfuse.create_event(name="process-event") 1719 ``` 1720 """ 1721 timestamp = time_ns() 1722 1723 if trace_context: 1724 trace_id = trace_context.get("trace_id", None) 1725 parent_span_id = trace_context.get("parent_span_id", None) 1726 1727 if trace_id: 1728 remote_parent_span = self._create_remote_parent_span( 1729 trace_id=trace_id, parent_span_id=parent_span_id 1730 ) 1731 1732 with otel_trace_api.use_span( 1733 cast(otel_trace_api.Span, remote_parent_span) 1734 ): 1735 otel_span = self._otel_tracer.start_span( 1736 name=name, start_time=timestamp 1737 ) 1738 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 1739 1740 return cast( 1741 LangfuseEvent, 1742 LangfuseEvent( 1743 otel_span=otel_span, 1744 langfuse_client=self, 1745 environment=self._environment, 1746 input=input, 1747 output=output, 1748 metadata=metadata, 1749 version=version, 1750 level=level, 1751 status_message=status_message, 1752 ).end(end_time=timestamp), 1753 ) 1754 1755 otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp) 1756 1757 return cast( 1758 LangfuseEvent, 1759 LangfuseEvent( 1760 otel_span=otel_span, 1761 langfuse_client=self, 1762 environment=self._environment, 1763 input=input, 1764 output=output, 1765 metadata=metadata, 1766 version=version, 1767 level=level, 1768 status_message=status_message, 1769 ).end(end_time=timestamp), 1770 )
Create a new Langfuse observation of type 'EVENT'.
The created Langfuse Event observation will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
The Langfuse Event object
Example:
event = langfuse.create_event(name="process-event")
1859 @staticmethod 1860 def create_trace_id(*, seed: Optional[str] = None) -> str: 1861 """Create a unique trace ID for use with Langfuse. 1862 1863 This method generates a unique trace ID for use with various Langfuse APIs. 1864 It can either generate a random ID or create a deterministic ID based on 1865 a seed string. 1866 1867 Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. 1868 This method ensures the generated ID meets this requirement. If you need to 1869 correlate an external ID with a Langfuse trace ID, use the external ID as the 1870 seed to get a valid, deterministic Langfuse trace ID. 1871 1872 Args: 1873 seed: Optional string to use as a seed for deterministic ID generation. 1874 If provided, the same seed will always produce the same ID. 1875 If not provided, a random ID will be generated. 1876 1877 Returns: 1878 A 32-character lowercase hexadecimal string representing the Langfuse trace ID. 1879 1880 Example: 1881 ```python 1882 # Generate a random trace ID 1883 trace_id = langfuse.create_trace_id() 1884 1885 # Generate a deterministic ID based on a seed 1886 session_trace_id = langfuse.create_trace_id(seed="session-456") 1887 1888 # Correlate an external ID with a Langfuse trace ID 1889 external_id = "external-system-123456" 1890 correlated_trace_id = langfuse.create_trace_id(seed=external_id) 1891 1892 # Use the ID with trace context 1893 with langfuse.start_as_current_span( 1894 name="process-request", 1895 trace_context={"trace_id": trace_id} 1896 ) as span: 1897 # Operation will be part of the specific trace 1898 pass 1899 ``` 1900 """ 1901 if not seed: 1902 trace_id_int = RandomIdGenerator().generate_trace_id() 1903 1904 return Langfuse._format_otel_trace_id(trace_id_int) 1905 1906 return sha256(seed.encode("utf-8")).digest()[:16].hex()
Create a unique trace ID for use with Langfuse.
This method generates a unique trace ID for use with various Langfuse APIs. It can either generate a random ID or create a deterministic ID based on a seed string.
Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. This method ensures the generated ID meets this requirement. If you need to correlate an external ID with a Langfuse trace ID, use the external ID as the seed to get a valid, deterministic Langfuse trace ID.
Arguments:
- seed: Optional string to use as a seed for deterministic ID generation. If provided, the same seed will always produce the same ID. If not provided, a random ID will be generated.
Returns:
A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
Example:
# Generate a random trace ID trace_id = langfuse.create_trace_id() # Generate a deterministic ID based on a seed session_trace_id = langfuse.create_trace_id(seed="session-456") # Correlate an external ID with a Langfuse trace ID external_id = "external-system-123456" correlated_trace_id = langfuse.create_trace_id(seed=external_id) # Use the ID with trace context with langfuse.start_as_current_span( name="process-request", trace_context={"trace_id": trace_id} ) as span: # Operation will be part of the specific trace pass
1982 def create_score( 1983 self, 1984 *, 1985 name: str, 1986 value: Union[float, str], 1987 session_id: Optional[str] = None, 1988 dataset_run_id: Optional[str] = None, 1989 trace_id: Optional[str] = None, 1990 observation_id: Optional[str] = None, 1991 score_id: Optional[str] = None, 1992 data_type: Optional[ScoreDataType] = None, 1993 comment: Optional[str] = None, 1994 config_id: Optional[str] = None, 1995 metadata: Optional[Any] = None, 1996 ) -> None: 1997 """Create a score for a specific trace or observation. 1998 1999 This method creates a score for evaluating a Langfuse trace or observation. Scores can be 2000 used to track quality metrics, user feedback, or automated evaluations. 2001 2002 Args: 2003 name: Name of the score (e.g., "relevance", "accuracy") 2004 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2005 session_id: ID of the Langfuse session to associate the score with 2006 dataset_run_id: ID of the Langfuse dataset run to associate the score with 2007 trace_id: ID of the Langfuse trace to associate the score with 2008 observation_id: Optional ID of the specific observation to score. Trace ID must be provided too. 2009 score_id: Optional custom ID for the score (auto-generated if not provided) 2010 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2011 comment: Optional comment or explanation for the score 2012 config_id: Optional ID of a score config defined in Langfuse 2013 metadata: Optional metadata to be attached to the score 2014 2015 Example: 2016 ```python 2017 # Create a numeric score for accuracy 2018 langfuse.create_score( 2019 name="accuracy", 2020 value=0.92, 2021 trace_id="abcdef1234567890abcdef1234567890", 2022 data_type="NUMERIC", 2023 comment="High accuracy with minor irrelevant details" 2024 ) 2025 2026 # Create a categorical score for sentiment 2027 langfuse.create_score( 2028 name="sentiment", 2029 value="positive", 2030 trace_id="abcdef1234567890abcdef1234567890", 2031 observation_id="abcdef1234567890", 2032 data_type="CATEGORICAL" 2033 ) 2034 ``` 2035 """ 2036 if not self._tracing_enabled: 2037 return 2038 2039 score_id = score_id or self._create_observation_id() 2040 2041 try: 2042 new_body = ScoreBody( 2043 id=score_id, 2044 sessionId=session_id, 2045 datasetRunId=dataset_run_id, 2046 traceId=trace_id, 2047 observationId=observation_id, 2048 name=name, 2049 value=value, 2050 dataType=data_type, # type: ignore 2051 comment=comment, 2052 configId=config_id, 2053 environment=self._environment, 2054 metadata=metadata, 2055 ) 2056 2057 event = { 2058 "id": self.create_trace_id(), 2059 "type": "score-create", 2060 "timestamp": _get_timestamp(), 2061 "body": new_body, 2062 } 2063 2064 if self._resources is not None: 2065 # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar 2066 force_sample = ( 2067 not self._is_valid_trace_id(trace_id) if trace_id else True 2068 ) 2069 2070 self._resources.add_score_task( 2071 event, 2072 force_sample=force_sample, 2073 ) 2074 2075 except Exception as e: 2076 langfuse_logger.exception( 2077 f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}" 2078 )
Create a score for a specific trace or observation.
This method creates a score for evaluating a Langfuse trace or observation. Scores can be used to track quality metrics, user feedback, or automated evaluations.
Arguments:
- name: Name of the score (e.g., "relevance", "accuracy")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- session_id: ID of the Langfuse session to associate the score with
- dataset_run_id: ID of the Langfuse dataset run to associate the score with
- trace_id: ID of the Langfuse trace to associate the score with
- observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
- metadata: Optional metadata to be attached to the score
Example:
# Create a numeric score for accuracy langfuse.create_score( name="accuracy", value=0.92, trace_id="abcdef1234567890abcdef1234567890", data_type="NUMERIC", comment="High accuracy with minor irrelevant details" ) # Create a categorical score for sentiment langfuse.create_score( name="sentiment", value="positive", trace_id="abcdef1234567890abcdef1234567890", observation_id="abcdef1234567890", data_type="CATEGORICAL" )
2104 def score_current_span( 2105 self, 2106 *, 2107 name: str, 2108 value: Union[float, str], 2109 score_id: Optional[str] = None, 2110 data_type: Optional[ScoreDataType] = None, 2111 comment: Optional[str] = None, 2112 config_id: Optional[str] = None, 2113 ) -> None: 2114 """Create a score for the current active span. 2115 2116 This method scores the currently active span in the context. It's a convenient 2117 way to score the current operation without needing to know its trace and span IDs. 2118 2119 Args: 2120 name: Name of the score (e.g., "relevance", "accuracy") 2121 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2122 score_id: Optional custom ID for the score (auto-generated if not provided) 2123 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2124 comment: Optional comment or explanation for the score 2125 config_id: Optional ID of a score config defined in Langfuse 2126 2127 Example: 2128 ```python 2129 with langfuse.start_as_current_generation(name="answer-query") as generation: 2130 # Generate answer 2131 response = generate_answer(...) 2132 generation.update(output=response) 2133 2134 # Score the generation 2135 langfuse.score_current_span( 2136 name="relevance", 2137 value=0.85, 2138 data_type="NUMERIC", 2139 comment="Mostly relevant but contains some tangential information" 2140 ) 2141 ``` 2142 """ 2143 current_span = self._get_current_otel_span() 2144 2145 if current_span is not None: 2146 trace_id = self._get_otel_trace_id(current_span) 2147 observation_id = self._get_otel_span_id(current_span) 2148 2149 langfuse_logger.info( 2150 f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}" 2151 ) 2152 2153 self.create_score( 2154 trace_id=trace_id, 2155 observation_id=observation_id, 2156 name=name, 2157 value=cast(str, value), 2158 score_id=score_id, 2159 data_type=cast(Literal["CATEGORICAL"], data_type), 2160 comment=comment, 2161 config_id=config_id, 2162 )
Create a score for the current active span.
This method scores the currently active span in the context. It's a convenient way to score the current operation without needing to know its trace and span IDs.
Arguments:
- name: Name of the score (e.g., "relevance", "accuracy")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation: # Generate answer response = generate_answer(...) generation.update(output=response) # Score the generation langfuse.score_current_span( name="relevance", value=0.85, data_type="NUMERIC", comment="Mostly relevant but contains some tangential information" )
2188 def score_current_trace( 2189 self, 2190 *, 2191 name: str, 2192 value: Union[float, str], 2193 score_id: Optional[str] = None, 2194 data_type: Optional[ScoreDataType] = None, 2195 comment: Optional[str] = None, 2196 config_id: Optional[str] = None, 2197 ) -> None: 2198 """Create a score for the current trace. 2199 2200 This method scores the trace of the currently active span. Unlike score_current_span, 2201 this method associates the score with the entire trace rather than a specific span. 2202 It's useful for scoring overall performance or quality of the entire operation. 2203 2204 Args: 2205 name: Name of the score (e.g., "user_satisfaction", "overall_quality") 2206 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2207 score_id: Optional custom ID for the score (auto-generated if not provided) 2208 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2209 comment: Optional comment or explanation for the score 2210 config_id: Optional ID of a score config defined in Langfuse 2211 2212 Example: 2213 ```python 2214 with langfuse.start_as_current_span(name="process-user-request") as span: 2215 # Process request 2216 result = process_complete_request() 2217 span.update(output=result) 2218 2219 # Score the overall trace 2220 langfuse.score_current_trace( 2221 name="overall_quality", 2222 value=0.95, 2223 data_type="NUMERIC", 2224 comment="High quality end-to-end response" 2225 ) 2226 ``` 2227 """ 2228 current_span = self._get_current_otel_span() 2229 2230 if current_span is not None: 2231 trace_id = self._get_otel_trace_id(current_span) 2232 2233 langfuse_logger.info( 2234 f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}" 2235 ) 2236 2237 self.create_score( 2238 trace_id=trace_id, 2239 name=name, 2240 value=cast(str, value), 2241 score_id=score_id, 2242 data_type=cast(Literal["CATEGORICAL"], data_type), 2243 comment=comment, 2244 config_id=config_id, 2245 )
Create a score for the current trace.
This method scores the trace of the currently active span. Unlike score_current_span, this method associates the score with the entire trace rather than a specific span. It's useful for scoring overall performance or quality of the entire operation.
Arguments:
- name: Name of the score (e.g., "user_satisfaction", "overall_quality")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_span(name="process-user-request") as span: # Process request result = process_complete_request() span.update(output=result) # Score the overall trace langfuse.score_current_trace( name="overall_quality", value=0.95, data_type="NUMERIC", comment="High quality end-to-end response" )
2247 def flush(self) -> None: 2248 """Force flush all pending spans and events to the Langfuse API. 2249 2250 This method manually flushes any pending spans, scores, and other events to the 2251 Langfuse API. It's useful in scenarios where you want to ensure all data is sent 2252 before proceeding, without waiting for the automatic flush interval. 2253 2254 Example: 2255 ```python 2256 # Record some spans and scores 2257 with langfuse.start_as_current_span(name="operation") as span: 2258 # Do work... 2259 pass 2260 2261 # Ensure all data is sent to Langfuse before proceeding 2262 langfuse.flush() 2263 2264 # Continue with other work 2265 ``` 2266 """ 2267 if self._resources is not None: 2268 self._resources.flush()
Force flush all pending spans and events to the Langfuse API.
This method manually flushes any pending spans, scores, and other events to the Langfuse API. It's useful in scenarios where you want to ensure all data is sent before proceeding, without waiting for the automatic flush interval.
Example:
# Record some spans and scores with langfuse.start_as_current_span(name="operation") as span: # Do work... pass # Ensure all data is sent to Langfuse before proceeding langfuse.flush() # Continue with other work
2270 def shutdown(self) -> None: 2271 """Shut down the Langfuse client and flush all pending data. 2272 2273 This method cleanly shuts down the Langfuse client, ensuring all pending data 2274 is flushed to the API and all background threads are properly terminated. 2275 2276 It's important to call this method when your application is shutting down to 2277 prevent data loss and resource leaks. For most applications, using the client 2278 as a context manager or relying on the automatic shutdown via atexit is sufficient. 2279 2280 Example: 2281 ```python 2282 # Initialize Langfuse 2283 langfuse = Langfuse(public_key="...", secret_key="...") 2284 2285 # Use Langfuse throughout your application 2286 # ... 2287 2288 # When application is shutting down 2289 langfuse.shutdown() 2290 ``` 2291 """ 2292 if self._resources is not None: 2293 self._resources.shutdown()
Shut down the Langfuse client and flush all pending data.
This method cleanly shuts down the Langfuse client, ensuring all pending data is flushed to the API and all background threads are properly terminated.
It's important to call this method when your application is shutting down to prevent data loss and resource leaks. For most applications, using the client as a context manager or relying on the automatic shutdown via atexit is sufficient.
Example:
# Initialize Langfuse langfuse = Langfuse(public_key="...", secret_key="...") # Use Langfuse throughout your application # ... # When application is shutting down langfuse.shutdown()
2295 def get_current_trace_id(self) -> Optional[str]: 2296 """Get the trace ID of the current active span. 2297 2298 This method retrieves the trace ID from the currently active span in the context. 2299 It can be used to get the trace ID for referencing in logs, external systems, 2300 or for creating related operations. 2301 2302 Returns: 2303 The current trace ID as a 32-character lowercase hexadecimal string, 2304 or None if there is no active span. 2305 2306 Example: 2307 ```python 2308 with langfuse.start_as_current_span(name="process-request") as span: 2309 # Get the current trace ID for reference 2310 trace_id = langfuse.get_current_trace_id() 2311 2312 # Use it for external correlation 2313 log.info(f"Processing request with trace_id: {trace_id}") 2314 2315 # Or pass to another system 2316 external_system.process(data, trace_id=trace_id) 2317 ``` 2318 """ 2319 if not self._tracing_enabled: 2320 langfuse_logger.debug( 2321 "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode." 2322 ) 2323 return None 2324 2325 current_otel_span = self._get_current_otel_span() 2326 2327 return self._get_otel_trace_id(current_otel_span) if current_otel_span else None
Get the trace ID of the current active span.
This method retrieves the trace ID from the currently active span in the context. It can be used to get the trace ID for referencing in logs, external systems, or for creating related operations.
Returns:
The current trace ID as a 32-character lowercase hexadecimal string, or None if there is no active span.
Example:
with langfuse.start_as_current_span(name="process-request") as span: # Get the current trace ID for reference trace_id = langfuse.get_current_trace_id() # Use it for external correlation log.info(f"Processing request with trace_id: {trace_id}") # Or pass to another system external_system.process(data, trace_id=trace_id)
2329 def get_current_observation_id(self) -> Optional[str]: 2330 """Get the observation ID (span ID) of the current active span. 2331 2332 This method retrieves the observation ID from the currently active span in the context. 2333 It can be used to get the observation ID for referencing in logs, external systems, 2334 or for creating scores or other related operations. 2335 2336 Returns: 2337 The current observation ID as a 16-character lowercase hexadecimal string, 2338 or None if there is no active span. 2339 2340 Example: 2341 ```python 2342 with langfuse.start_as_current_span(name="process-user-query") as span: 2343 # Get the current observation ID 2344 observation_id = langfuse.get_current_observation_id() 2345 2346 # Store it for later reference 2347 cache.set(f"query_{query_id}_observation", observation_id) 2348 2349 # Process the query... 2350 ``` 2351 """ 2352 if not self._tracing_enabled: 2353 langfuse_logger.debug( 2354 "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode." 2355 ) 2356 return None 2357 2358 current_otel_span = self._get_current_otel_span() 2359 2360 return self._get_otel_span_id(current_otel_span) if current_otel_span else None
Get the observation ID (span ID) of the current active span.
This method retrieves the observation ID from the currently active span in the context. It can be used to get the observation ID for referencing in logs, external systems, or for creating scores or other related operations.
Returns:
The current observation ID as a 16-character lowercase hexadecimal string, or None if there is no active span.
Example:
with langfuse.start_as_current_span(name="process-user-query") as span: # Get the current observation ID observation_id = langfuse.get_current_observation_id() # Store it for later reference cache.set(f"query_{query_id}_observation", observation_id) # Process the query...
2373 def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]: 2374 """Get the URL to view a trace in the Langfuse UI. 2375 2376 This method generates a URL that links directly to a trace in the Langfuse UI. 2377 It's useful for providing links in logs, notifications, or debugging tools. 2378 2379 Args: 2380 trace_id: Optional trace ID to generate a URL for. If not provided, 2381 the trace ID of the current active span will be used. 2382 2383 Returns: 2384 A URL string pointing to the trace in the Langfuse UI, 2385 or None if the project ID couldn't be retrieved or no trace ID is available. 2386 2387 Example: 2388 ```python 2389 # Get URL for the current trace 2390 with langfuse.start_as_current_span(name="process-request") as span: 2391 trace_url = langfuse.get_trace_url() 2392 log.info(f"Processing trace: {trace_url}") 2393 2394 # Get URL for a specific trace 2395 specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") 2396 send_notification(f"Review needed for trace: {specific_trace_url}") 2397 ``` 2398 """ 2399 project_id = self._get_project_id() 2400 final_trace_id = trace_id or self.get_current_trace_id() 2401 2402 return ( 2403 f"{self._host}/project/{project_id}/traces/{final_trace_id}" 2404 if project_id and final_trace_id 2405 else None 2406 )
Get the URL to view a trace in the Langfuse UI.
This method generates a URL that links directly to a trace in the Langfuse UI. It's useful for providing links in logs, notifications, or debugging tools.
Arguments:
- trace_id: Optional trace ID to generate a URL for. If not provided, the trace ID of the current active span will be used.
Returns:
A URL string pointing to the trace in the Langfuse UI, or None if the project ID couldn't be retrieved or no trace ID is available.
Example:
# Get URL for the current trace with langfuse.start_as_current_span(name="process-request") as span: trace_url = langfuse.get_trace_url() log.info(f"Processing trace: {trace_url}") # Get URL for a specific trace specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") send_notification(f"Review needed for trace: {specific_trace_url}")
2408 def get_dataset( 2409 self, name: str, *, fetch_items_page_size: Optional[int] = 50 2410 ) -> "DatasetClient": 2411 """Fetch a dataset by its name. 2412 2413 Args: 2414 name (str): The name of the dataset to fetch. 2415 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 2416 2417 Returns: 2418 DatasetClient: The dataset with the given name. 2419 """ 2420 try: 2421 langfuse_logger.debug(f"Getting datasets {name}") 2422 dataset = self.api.datasets.get(dataset_name=name) 2423 2424 dataset_items = [] 2425 page = 1 2426 2427 while True: 2428 new_items = self.api.dataset_items.list( 2429 dataset_name=self._url_encode(name, is_url_param=True), 2430 page=page, 2431 limit=fetch_items_page_size, 2432 ) 2433 dataset_items.extend(new_items.data) 2434 2435 if new_items.meta.total_pages <= page: 2436 break 2437 2438 page += 1 2439 2440 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 2441 2442 return DatasetClient(dataset, items=items) 2443 2444 except Error as e: 2445 handle_fern_exception(e) 2446 raise e
Fetch a dataset by its name.
Arguments:
- name (str): The name of the dataset to fetch.
- fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:
DatasetClient: The dataset with the given name.
2448 def auth_check(self) -> bool: 2449 """Check if the provided credentials (public and secret key) are valid. 2450 2451 Raises: 2452 Exception: If no projects were found for the provided credentials. 2453 2454 Note: 2455 This method is blocking. It is discouraged to use it in production code. 2456 """ 2457 try: 2458 projects = self.api.projects.get() 2459 langfuse_logger.debug( 2460 f"Auth check successful, found {len(projects.data)} projects" 2461 ) 2462 if len(projects.data) == 0: 2463 raise Exception( 2464 "Auth check failed, no project found for the keys provided." 2465 ) 2466 return True 2467 2468 except AttributeError as e: 2469 langfuse_logger.warning( 2470 f"Auth check failed: Client not properly initialized. Error: {e}" 2471 ) 2472 return False 2473 2474 except Error as e: 2475 handle_fern_exception(e) 2476 raise e
Check if the provided credentials (public and secret key) are valid.
Raises:
- Exception: If no projects were found for the provided credentials.
Note:
This method is blocking. It is discouraged to use it in production code.
2478 def create_dataset( 2479 self, 2480 *, 2481 name: str, 2482 description: Optional[str] = None, 2483 metadata: Optional[Any] = None, 2484 ) -> Dataset: 2485 """Create a dataset with the given name on Langfuse. 2486 2487 Args: 2488 name: Name of the dataset to create. 2489 description: Description of the dataset. Defaults to None. 2490 metadata: Additional metadata. Defaults to None. 2491 2492 Returns: 2493 Dataset: The created dataset as returned by the Langfuse API. 2494 """ 2495 try: 2496 body = CreateDatasetRequest( 2497 name=name, description=description, metadata=metadata 2498 ) 2499 langfuse_logger.debug(f"Creating datasets {body}") 2500 2501 return self.api.datasets.create(request=body) 2502 2503 except Error as e: 2504 handle_fern_exception(e) 2505 raise e
Create a dataset with the given name on Langfuse.
Arguments:
- name: Name of the dataset to create.
- description: Description of the dataset. Defaults to None.
- metadata: Additional metadata. Defaults to None.
Returns:
Dataset: The created dataset as returned by the Langfuse API.
2507 def create_dataset_item( 2508 self, 2509 *, 2510 dataset_name: str, 2511 input: Optional[Any] = None, 2512 expected_output: Optional[Any] = None, 2513 metadata: Optional[Any] = None, 2514 source_trace_id: Optional[str] = None, 2515 source_observation_id: Optional[str] = None, 2516 status: Optional[DatasetStatus] = None, 2517 id: Optional[str] = None, 2518 ) -> DatasetItem: 2519 """Create a dataset item. 2520 2521 Upserts if an item with id already exists. 2522 2523 Args: 2524 dataset_name: Name of the dataset in which the dataset item should be created. 2525 input: Input data. Defaults to None. Can contain any dict, list or scalar. 2526 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 2527 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 2528 source_trace_id: Id of the source trace. Defaults to None. 2529 source_observation_id: Id of the source observation. Defaults to None. 2530 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 2531 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 2532 2533 Returns: 2534 DatasetItem: The created dataset item as returned by the Langfuse API. 2535 2536 Example: 2537 ```python 2538 from langfuse import Langfuse 2539 2540 langfuse = Langfuse() 2541 2542 # Uploading items to the Langfuse dataset named "capital_cities" 2543 langfuse.create_dataset_item( 2544 dataset_name="capital_cities", 2545 input={"input": {"country": "Italy"}}, 2546 expected_output={"expected_output": "Rome"}, 2547 metadata={"foo": "bar"} 2548 ) 2549 ``` 2550 """ 2551 try: 2552 body = CreateDatasetItemRequest( 2553 datasetName=dataset_name, 2554 input=input, 2555 expectedOutput=expected_output, 2556 metadata=metadata, 2557 sourceTraceId=source_trace_id, 2558 sourceObservationId=source_observation_id, 2559 status=status, 2560 id=id, 2561 ) 2562 langfuse_logger.debug(f"Creating dataset item {body}") 2563 return self.api.dataset_items.create(request=body) 2564 except Error as e: 2565 handle_fern_exception(e) 2566 raise e
Create a dataset item.
Upserts if an item with id already exists.
Arguments:
- dataset_name: Name of the dataset in which the dataset item should be created.
- input: Input data. Defaults to None. Can contain any dict, list or scalar.
- expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
- metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
- source_trace_id: Id of the source trace. Defaults to None.
- source_observation_id: Id of the source observation. Defaults to None.
- status: Status of the dataset item. Defaults to ACTIVE for newly created items.
- id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:
DatasetItem: The created dataset item as returned by the Langfuse API.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Uploading items to the Langfuse dataset named "capital_cities" langfuse.create_dataset_item( dataset_name="capital_cities", input={"input": {"country": "Italy"}}, expected_output={"expected_output": "Rome"}, metadata={"foo": "bar"} )
2568 def resolve_media_references( 2569 self, 2570 *, 2571 obj: Any, 2572 resolve_with: Literal["base64_data_uri"], 2573 max_depth: int = 10, 2574 content_fetch_timeout_seconds: int = 5, 2575 ) -> Any: 2576 """Replace media reference strings in an object with base64 data URIs. 2577 2578 This method recursively traverses an object (up to max_depth) looking for media reference strings 2579 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 2580 the provided Langfuse client and replaces the reference string with a base64 data URI. 2581 2582 If fetching media content fails for a reference string, a warning is logged and the reference 2583 string is left unchanged. 2584 2585 Args: 2586 obj: The object to process. Can be a primitive value, array, or nested object. 2587 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 2588 resolve_with: The representation of the media content to replace the media reference string with. 2589 Currently only "base64_data_uri" is supported. 2590 max_depth: int: The maximum depth to traverse the object. Default is 10. 2591 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5. 2592 2593 Returns: 2594 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 2595 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 2596 2597 Example: 2598 obj = { 2599 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 2600 "nested": { 2601 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 2602 } 2603 } 2604 2605 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 2606 2607 # Result: 2608 # { 2609 # "image": "...", 2610 # "nested": { 2611 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 2612 # } 2613 # } 2614 """ 2615 return LangfuseMedia.resolve_media_references( 2616 langfuse_client=self, 2617 obj=obj, 2618 resolve_with=resolve_with, 2619 max_depth=max_depth, 2620 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 2621 )
Replace media reference strings in an object with base64 data URIs.
This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.
If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.
Arguments:
- obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
- resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
- max_depth: int: The maximum depth to traverse the object. Default is 10.
- content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
Returns:
A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
Example:
obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }
result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
Result:
{
"image": "...",
"nested": {
"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
}
}
2651 def get_prompt( 2652 self, 2653 name: str, 2654 *, 2655 version: Optional[int] = None, 2656 label: Optional[str] = None, 2657 type: Literal["chat", "text"] = "text", 2658 cache_ttl_seconds: Optional[int] = None, 2659 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 2660 max_retries: Optional[int] = None, 2661 fetch_timeout_seconds: Optional[int] = None, 2662 ) -> PromptClient: 2663 """Get a prompt. 2664 2665 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 2666 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 2667 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 2668 return the expired prompt as a fallback. 2669 2670 Args: 2671 name (str): The name of the prompt to retrieve. 2672 2673 Keyword Args: 2674 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 2675 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 2676 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 2677 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 2678 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 2679 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 2680 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 2681 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default. 2682 2683 Returns: 2684 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 2685 - TextPromptClient, if type argument is 'text'. 2686 - ChatPromptClient, if type argument is 'chat'. 2687 2688 Raises: 2689 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 2690 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 2691 """ 2692 if self._resources is None: 2693 raise Error( 2694 "SDK is not correctly initalized. Check the init logs for more details." 2695 ) 2696 if version is not None and label is not None: 2697 raise ValueError("Cannot specify both version and label at the same time.") 2698 2699 if not name: 2700 raise ValueError("Prompt name cannot be empty.") 2701 2702 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 2703 bounded_max_retries = self._get_bounded_max_retries( 2704 max_retries, default_max_retries=2, max_retries_upper_bound=4 2705 ) 2706 2707 langfuse_logger.debug(f"Getting prompt '{cache_key}'") 2708 cached_prompt = self._resources.prompt_cache.get(cache_key) 2709 2710 if cached_prompt is None or cache_ttl_seconds == 0: 2711 langfuse_logger.debug( 2712 f"Prompt '{cache_key}' not found in cache or caching disabled." 2713 ) 2714 try: 2715 return self._fetch_prompt_and_update_cache( 2716 name, 2717 version=version, 2718 label=label, 2719 ttl_seconds=cache_ttl_seconds, 2720 max_retries=bounded_max_retries, 2721 fetch_timeout_seconds=fetch_timeout_seconds, 2722 ) 2723 except Exception as e: 2724 if fallback: 2725 langfuse_logger.warning( 2726 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 2727 ) 2728 2729 fallback_client_args: Dict[str, Any] = { 2730 "name": name, 2731 "prompt": fallback, 2732 "type": type, 2733 "version": version or 0, 2734 "config": {}, 2735 "labels": [label] if label else [], 2736 "tags": [], 2737 } 2738 2739 if type == "text": 2740 return TextPromptClient( 2741 prompt=Prompt_Text(**fallback_client_args), 2742 is_fallback=True, 2743 ) 2744 2745 if type == "chat": 2746 return ChatPromptClient( 2747 prompt=Prompt_Chat(**fallback_client_args), 2748 is_fallback=True, 2749 ) 2750 2751 raise e 2752 2753 if cached_prompt.is_expired(): 2754 langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.") 2755 try: 2756 # refresh prompt in background thread, refresh_prompt deduplicates tasks 2757 langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.") 2758 2759 def refresh_task() -> None: 2760 self._fetch_prompt_and_update_cache( 2761 name, 2762 version=version, 2763 label=label, 2764 ttl_seconds=cache_ttl_seconds, 2765 max_retries=bounded_max_retries, 2766 fetch_timeout_seconds=fetch_timeout_seconds, 2767 ) 2768 2769 self._resources.prompt_cache.add_refresh_prompt_task( 2770 cache_key, 2771 refresh_task, 2772 ) 2773 langfuse_logger.debug( 2774 f"Returning stale prompt '{cache_key}' from cache." 2775 ) 2776 # return stale prompt 2777 return cached_prompt.value 2778 2779 except Exception as e: 2780 langfuse_logger.warning( 2781 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 2782 ) 2783 # creation of refresh prompt task failed, return stale prompt 2784 return cached_prompt.value 2785 2786 return cached_prompt.value
Get a prompt.
This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.
Arguments:
- name (str): The name of the prompt to retrieve.
Keyword Args:
version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the
production
label is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, theproduction
label is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
Returns:
The prompt object retrieved from the cache or directly fetched if not cached or expired of type
- TextPromptClient, if type argument is 'text'.
- ChatPromptClient, if type argument is 'chat'.
Raises:
- Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
- expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
2880 def create_prompt( 2881 self, 2882 *, 2883 name: str, 2884 prompt: Union[ 2885 str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]] 2886 ], 2887 labels: List[str] = [], 2888 tags: Optional[List[str]] = None, 2889 type: Optional[Literal["chat", "text"]] = "text", 2890 config: Optional[Any] = None, 2891 commit_message: Optional[str] = None, 2892 ) -> PromptClient: 2893 """Create a new prompt in Langfuse. 2894 2895 Keyword Args: 2896 name : The name of the prompt to be created. 2897 prompt : The content of the prompt to be created. 2898 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 2899 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 2900 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 2901 config: Additional structured data to be saved with the prompt. Defaults to None. 2902 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 2903 commit_message: Optional string describing the change. 2904 2905 Returns: 2906 TextPromptClient: The prompt if type argument is 'text'. 2907 ChatPromptClient: The prompt if type argument is 'chat'. 2908 """ 2909 try: 2910 langfuse_logger.debug(f"Creating prompt {name=}, {labels=}") 2911 2912 if type == "chat": 2913 if not isinstance(prompt, list): 2914 raise ValueError( 2915 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 2916 ) 2917 request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = ( 2918 CreatePromptRequest_Chat( 2919 name=name, 2920 prompt=cast(Any, prompt), 2921 labels=labels, 2922 tags=tags, 2923 config=config or {}, 2924 commitMessage=commit_message, 2925 type="chat", 2926 ) 2927 ) 2928 server_prompt = self.api.prompts.create(request=request) 2929 2930 if self._resources is not None: 2931 self._resources.prompt_cache.invalidate(name) 2932 2933 return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt)) 2934 2935 if not isinstance(prompt, str): 2936 raise ValueError("For 'text' type, 'prompt' must be a string.") 2937 2938 request = CreatePromptRequest_Text( 2939 name=name, 2940 prompt=prompt, 2941 labels=labels, 2942 tags=tags, 2943 config=config or {}, 2944 commitMessage=commit_message, 2945 type="text", 2946 ) 2947 2948 server_prompt = self.api.prompts.create(request=request) 2949 2950 if self._resources is not None: 2951 self._resources.prompt_cache.invalidate(name) 2952 2953 return TextPromptClient(prompt=cast(Prompt_Text, server_prompt)) 2954 2955 except Error as e: 2956 handle_fern_exception(e) 2957 raise e
Create a new prompt in Langfuse.
Keyword Args:
name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.
Returns:
TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.
2959 def update_prompt( 2960 self, 2961 *, 2962 name: str, 2963 version: int, 2964 new_labels: List[str] = [], 2965 ) -> Any: 2966 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 2967 2968 Args: 2969 name (str): The name of the prompt to update. 2970 version (int): The version number of the prompt to update. 2971 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 2972 2973 Returns: 2974 Prompt: The updated prompt from the Langfuse API. 2975 2976 """ 2977 updated_prompt = self.api.prompt_version.update( 2978 name=name, 2979 version=version, 2980 new_labels=new_labels, 2981 ) 2982 2983 if self._resources is not None: 2984 self._resources.prompt_cache.invalidate(name) 2985 2986 return updated_prompt
Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
Arguments:
- name (str): The name of the prompt to update.
- version (int): The version number of the prompt to update.
- new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:
Prompt: The updated prompt from the Langfuse API.
37def get_client(*, public_key: Optional[str] = None) -> Langfuse: 38 """Get or create a Langfuse client instance. 39 40 Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, 41 providing a public_key is required. Multi-project support is experimental - see Langfuse docs. 42 43 Behavior: 44 - Single project: Returns existing client or creates new one 45 - Multi-project: Requires public_key to return specific client 46 - No public_key in multi-project: Returns disabled client to prevent data leakage 47 48 The function uses a singleton pattern per public_key to conserve resources and maintain state. 49 50 Args: 51 public_key (Optional[str]): Project identifier 52 - With key: Returns client for that project 53 - Without key: Returns single client or disabled client if multiple exist 54 55 Returns: 56 Langfuse: Client instance in one of three states: 57 1. Client for specified public_key 58 2. Default client for single-project setup 59 3. Disabled client when multiple projects exist without key 60 61 Security: 62 Disables tracing when multiple projects exist without explicit key to prevent 63 cross-project data leakage. Multi-project setups are experimental. 64 65 Example: 66 ```python 67 # Single project 68 client = get_client() # Default client 69 70 # In multi-project usage: 71 client_a = get_client(public_key="project_a_key") # Returns project A's client 72 client_b = get_client(public_key="project_b_key") # Returns project B's client 73 74 # Without specific key in multi-project setup: 75 client = get_client() # Returns disabled client for safety 76 ``` 77 """ 78 with LangfuseResourceManager._lock: 79 active_instances = LangfuseResourceManager._instances 80 81 # If no explicit public_key provided, check execution context 82 if not public_key: 83 public_key = _current_public_key.get(None) 84 85 if not public_key: 86 if len(active_instances) == 0: 87 # No clients initialized yet, create default instance 88 return Langfuse() 89 90 if len(active_instances) == 1: 91 # Only one client exists, safe to use without specifying key 92 instance = list(active_instances.values())[0] 93 94 # Initialize with the credentials bound to the instance 95 # This is important if the original instance was instantiated 96 # via constructor arguments 97 return Langfuse( 98 public_key=instance.public_key, 99 secret_key=instance.secret_key, 100 host=instance.host, 101 tracing_enabled=instance.tracing_enabled, 102 ) 103 104 else: 105 # Multiple clients exist but no key specified - disable tracing 106 # to prevent cross-project data leakage 107 langfuse_logger.warning( 108 "No 'langfuse_public_key' passed to decorated function, but multiple langfuse clients are instantiated in current process. Skipping tracing for this function to avoid cross-project leakage." 109 ) 110 return Langfuse( 111 tracing_enabled=False, public_key="fake", secret_key="fake" 112 ) 113 114 else: 115 # Specific key provided, look up existing instance 116 target_instance: Optional[LangfuseResourceManager] = active_instances.get( 117 public_key, None 118 ) 119 120 if target_instance is None: 121 # No instance found with this key - client not initialized properly 122 langfuse_logger.warning( 123 f"No Langfuse client with public key {public_key} has been initialized. Skipping tracing for decorated function." 124 ) 125 return Langfuse( 126 tracing_enabled=False, public_key="fake", secret_key="fake" 127 ) 128 129 # target_instance is guaranteed to be not None at this point 130 return Langfuse( 131 public_key=public_key, 132 secret_key=target_instance.secret_key, 133 host=target_instance.host, 134 tracing_enabled=target_instance.tracing_enabled, 135 )
Get or create a Langfuse client instance.
Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, providing a public_key is required. Multi-project support is experimental - see Langfuse docs.
Behavior:
- Single project: Returns existing client or creates new one
- Multi-project: Requires public_key to return specific client
- No public_key in multi-project: Returns disabled client to prevent data leakage
The function uses a singleton pattern per public_key to conserve resources and maintain state.
Arguments:
- public_key (Optional[str]): Project identifier
- With key: Returns client for that project
- Without key: Returns single client or disabled client if multiple exist
Returns:
Langfuse: Client instance in one of three states: 1. Client for specified public_key 2. Default client for single-project setup 3. Disabled client when multiple projects exist without key
Security:
Disables tracing when multiple projects exist without explicit key to prevent cross-project data leakage. Multi-project setups are experimental.
Example:
# Single project client = get_client() # Default client # In multi-project usage: client_a = get_client(public_key="project_a_key") # Returns project A's client client_b = get_client(public_key="project_b_key") # Returns project B's client # Without specific key in multi-project setup: client = get_client() # Returns disabled client for safety
89 def observe( 90 self, 91 func: Optional[F] = None, 92 *, 93 name: Optional[str] = None, 94 as_type: Optional[ObservationTypeLiteralNoEvent] = None, 95 capture_input: Optional[bool] = None, 96 capture_output: Optional[bool] = None, 97 transform_to_string: Optional[Callable[[Iterable], str]] = None, 98 ) -> Union[F, Callable[[F], F]]: 99 """Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions. 100 101 This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates 102 spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator 103 intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints. 104 105 Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, 106 enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details. 107 108 Args: 109 func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None. 110 name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used. 111 as_type (Optional[Literal]): Set the observation type. Supported values: 112 "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail". 113 Observation types are highlighted in the Langfuse UI for filtering and visualization. 114 The types "generation" and "embedding" create a span on which additional attributes such as model metrics 115 can be set. 116 117 Returns: 118 Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans. 119 120 Example: 121 For general function tracing with automatic naming: 122 ```python 123 @observe() 124 def process_user_request(user_id, query): 125 # Function is automatically traced with name "process_user_request" 126 return get_response(query) 127 ``` 128 129 For language model generation tracking: 130 ```python 131 @observe(name="answer-generation", as_type="generation") 132 async def generate_answer(query): 133 # Creates a generation-type span with extended LLM metrics 134 response = await openai.chat.completions.create( 135 model="gpt-4", 136 messages=[{"role": "user", "content": query}] 137 ) 138 return response.choices[0].message.content 139 ``` 140 141 For trace context propagation between functions: 142 ```python 143 @observe() 144 def main_process(): 145 # Parent span is created 146 return sub_process() # Child span automatically connected to parent 147 148 @observe() 149 def sub_process(): 150 # Automatically becomes a child span of main_process 151 return "result" 152 ``` 153 154 Raises: 155 Exception: Propagates any exceptions from the wrapped function after logging them in the trace. 156 157 Notes: 158 - The decorator preserves the original function's signature, docstring, and return type. 159 - Proper parent-child relationships between spans are automatically maintained. 160 - Special keyword arguments can be passed to control tracing: 161 - langfuse_trace_id: Explicitly set the trace ID for this function call 162 - langfuse_parent_observation_id: Explicitly set the parent span ID 163 - langfuse_public_key: Use a specific Langfuse project (when multiple clients exist) 164 - For async functions, the decorator returns an async function wrapper. 165 - For sync functions, the decorator returns a synchronous wrapper. 166 """ 167 valid_types = set(get_observation_types_list(ObservationTypeLiteralNoEvent)) 168 if as_type is not None and as_type not in valid_types: 169 self._log.warning( 170 f"Invalid as_type '{as_type}'. Valid types are: {', '.join(sorted(valid_types))}. Defaulting to 'span'." 171 ) 172 as_type = "span" 173 174 function_io_capture_enabled = os.environ.get( 175 LANGFUSE_OBSERVE_DECORATOR_IO_CAPTURE_ENABLED, "True" 176 ).lower() not in ("false", "0") 177 178 should_capture_input = ( 179 capture_input if capture_input is not None else function_io_capture_enabled 180 ) 181 182 should_capture_output = ( 183 capture_output 184 if capture_output is not None 185 else function_io_capture_enabled 186 ) 187 188 def decorator(func: F) -> F: 189 return ( 190 self._async_observe( 191 func, 192 name=name, 193 as_type=as_type, 194 capture_input=should_capture_input, 195 capture_output=should_capture_output, 196 transform_to_string=transform_to_string, 197 ) 198 if asyncio.iscoroutinefunction(func) 199 else self._sync_observe( 200 func, 201 name=name, 202 as_type=as_type, 203 capture_input=should_capture_input, 204 capture_output=should_capture_output, 205 transform_to_string=transform_to_string, 206 ) 207 ) 208 209 """Handle decorator with or without parentheses. 210 211 This logic enables the decorator to work both with and without parentheses: 212 - @observe - Python passes the function directly to the decorator 213 - @observe() - Python calls the decorator first, which must return a function decorator 214 215 When called without arguments (@observe), the func parameter contains the function to decorate, 216 so we directly apply the decorator to it. When called with parentheses (@observe()), 217 func is None, so we return the decorator function itself for Python to apply in the next step. 218 """ 219 if func is None: 220 return decorator 221 else: 222 return decorator(func)
Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.
This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.
Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.
Arguments:
- func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
- name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
- as_type (Optional[Literal]): Set the observation type. Supported values: "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail". Observation types are highlighted in the Langfuse UI for filtering and visualization. The types "generation" and "embedding" create a span on which additional attributes such as model metrics can be set.
Returns:
Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.
Example:
For general function tracing with automatic naming:
@observe() def process_user_request(user_id, query): # Function is automatically traced with name "process_user_request" return get_response(query)
For language model generation tracking:
@observe(name="answer-generation", as_type="generation") async def generate_answer(query): # Creates a generation-type span with extended LLM metrics response = await openai.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": query}] ) return response.choices[0].message.content
For trace context propagation between functions:
@observe() def main_process(): # Parent span is created return sub_process() # Child span automatically connected to parent @observe() def sub_process(): # Automatically becomes a child span of main_process return "result"
Raises:
- Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
Notes:
- The decorator preserves the original function's signature, docstring, and return type.
- Proper parent-child relationships between spans are automatically maintained.
- Special keyword arguments can be passed to control tracing:
- langfuse_trace_id: Explicitly set the trace ID for this function call
- langfuse_parent_observation_id: Explicitly set the parent span ID
- langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
- For async functions, the decorator returns an async function wrapper.
- For sync functions, the decorator returns a synchronous wrapper.
1118class LangfuseSpan(LangfuseObservationWrapper): 1119 """Standard span implementation for general operations in Langfuse. 1120 1121 This class represents a general-purpose span that can be used to trace 1122 any operation in your application. It extends the base LangfuseObservationWrapper 1123 with specific methods for creating child spans, generations, and updating 1124 span-specific attributes. If possible, use a more specific type for 1125 better observability and insights. 1126 """ 1127 1128 def __init__( 1129 self, 1130 *, 1131 otel_span: otel_trace_api.Span, 1132 langfuse_client: "Langfuse", 1133 input: Optional[Any] = None, 1134 output: Optional[Any] = None, 1135 metadata: Optional[Any] = None, 1136 environment: Optional[str] = None, 1137 version: Optional[str] = None, 1138 level: Optional[SpanLevel] = None, 1139 status_message: Optional[str] = None, 1140 ): 1141 """Initialize a new LangfuseSpan. 1142 1143 Args: 1144 otel_span: The OpenTelemetry span to wrap 1145 langfuse_client: Reference to the parent Langfuse client 1146 input: Input data for the span (any JSON-serializable object) 1147 output: Output data from the span (any JSON-serializable object) 1148 metadata: Additional metadata to associate with the span 1149 environment: The tracing environment 1150 version: Version identifier for the code or component 1151 level: Importance level of the span (info, warning, error) 1152 status_message: Optional status message for the span 1153 """ 1154 super().__init__( 1155 otel_span=otel_span, 1156 as_type="span", 1157 langfuse_client=langfuse_client, 1158 input=input, 1159 output=output, 1160 metadata=metadata, 1161 environment=environment, 1162 version=version, 1163 level=level, 1164 status_message=status_message, 1165 ) 1166 1167 def start_span( 1168 self, 1169 name: str, 1170 input: Optional[Any] = None, 1171 output: Optional[Any] = None, 1172 metadata: Optional[Any] = None, 1173 version: Optional[str] = None, 1174 level: Optional[SpanLevel] = None, 1175 status_message: Optional[str] = None, 1176 ) -> "LangfuseSpan": 1177 """Create a new child span. 1178 1179 This method creates a new child span with this span as the parent. 1180 Unlike start_as_current_span(), this method does not set the new span 1181 as the current span in the context. 1182 1183 Args: 1184 name: Name of the span (e.g., function or operation name) 1185 input: Input data for the operation 1186 output: Output data from the operation 1187 metadata: Additional metadata to associate with the span 1188 version: Version identifier for the code or component 1189 level: Importance level of the span (info, warning, error) 1190 status_message: Optional status message for the span 1191 1192 Returns: 1193 A new LangfuseSpan that must be ended with .end() when complete 1194 1195 Example: 1196 ```python 1197 parent_span = langfuse.start_span(name="process-request") 1198 try: 1199 # Create a child span 1200 child_span = parent_span.start_span(name="validate-input") 1201 try: 1202 # Do validation work 1203 validation_result = validate(request_data) 1204 child_span.update(output=validation_result) 1205 finally: 1206 child_span.end() 1207 1208 # Continue with parent span 1209 result = process_validated_data(validation_result) 1210 parent_span.update(output=result) 1211 finally: 1212 parent_span.end() 1213 ``` 1214 """ 1215 return self.start_observation( 1216 name=name, 1217 as_type="span", 1218 input=input, 1219 output=output, 1220 metadata=metadata, 1221 version=version, 1222 level=level, 1223 status_message=status_message, 1224 ) 1225 1226 def start_as_current_span( 1227 self, 1228 *, 1229 name: str, 1230 input: Optional[Any] = None, 1231 output: Optional[Any] = None, 1232 metadata: Optional[Any] = None, 1233 version: Optional[str] = None, 1234 level: Optional[SpanLevel] = None, 1235 status_message: Optional[str] = None, 1236 ) -> _AgnosticContextManager["LangfuseSpan"]: 1237 """[DEPRECATED] Create a new child span and set it as the current span in a context manager. 1238 1239 DEPRECATED: This method is deprecated and will be removed in a future version. 1240 Use start_as_current_observation(as_type='span') instead. 1241 1242 This method creates a new child span and sets it as the current span within 1243 a context manager. It should be used with a 'with' statement to automatically 1244 manage the span's lifecycle. 1245 1246 Args: 1247 name: Name of the span (e.g., function or operation name) 1248 input: Input data for the operation 1249 output: Output data from the operation 1250 metadata: Additional metadata to associate with the span 1251 version: Version identifier for the code or component 1252 level: Importance level of the span (info, warning, error) 1253 status_message: Optional status message for the span 1254 1255 Returns: 1256 A context manager that yields a new LangfuseSpan 1257 1258 Example: 1259 ```python 1260 with langfuse.start_as_current_span(name="process-request") as parent_span: 1261 # Parent span is active here 1262 1263 # Create a child span with context management 1264 with parent_span.start_as_current_span(name="validate-input") as child_span: 1265 # Child span is active here 1266 validation_result = validate(request_data) 1267 child_span.update(output=validation_result) 1268 1269 # Back to parent span context 1270 result = process_validated_data(validation_result) 1271 parent_span.update(output=result) 1272 ``` 1273 """ 1274 warnings.warn( 1275 "start_as_current_span is deprecated and will be removed in a future version. " 1276 "Use start_as_current_observation(as_type='span') instead.", 1277 DeprecationWarning, 1278 stacklevel=2, 1279 ) 1280 return self.start_as_current_observation( 1281 name=name, 1282 as_type="span", 1283 input=input, 1284 output=output, 1285 metadata=metadata, 1286 version=version, 1287 level=level, 1288 status_message=status_message, 1289 ) 1290 1291 def start_generation( 1292 self, 1293 *, 1294 name: str, 1295 input: Optional[Any] = None, 1296 output: Optional[Any] = None, 1297 metadata: Optional[Any] = None, 1298 version: Optional[str] = None, 1299 level: Optional[SpanLevel] = None, 1300 status_message: Optional[str] = None, 1301 completion_start_time: Optional[datetime] = None, 1302 model: Optional[str] = None, 1303 model_parameters: Optional[Dict[str, MapValue]] = None, 1304 usage_details: Optional[Dict[str, int]] = None, 1305 cost_details: Optional[Dict[str, float]] = None, 1306 prompt: Optional[PromptClient] = None, 1307 ) -> "LangfuseGeneration": 1308 """[DEPRECATED] Create a new child generation span. 1309 1310 DEPRECATED: This method is deprecated and will be removed in a future version. 1311 Use start_observation(as_type='generation') instead. 1312 1313 This method creates a new child generation span with this span as the parent. 1314 Generation spans are specialized for AI/LLM operations and include additional 1315 fields for model information, usage stats, and costs. 1316 1317 Unlike start_as_current_generation(), this method does not set the new span 1318 as the current span in the context. 1319 1320 Args: 1321 name: Name of the generation operation 1322 input: Input data for the model (e.g., prompts) 1323 output: Output from the model (e.g., completions) 1324 metadata: Additional metadata to associate with the generation 1325 version: Version identifier for the model or component 1326 level: Importance level of the generation (info, warning, error) 1327 status_message: Optional status message for the generation 1328 completion_start_time: When the model started generating the response 1329 model: Name/identifier of the AI model used (e.g., "gpt-4") 1330 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1331 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1332 cost_details: Cost information for the model call 1333 prompt: Associated prompt template from Langfuse prompt management 1334 1335 Returns: 1336 A new LangfuseGeneration that must be ended with .end() when complete 1337 1338 Example: 1339 ```python 1340 span = langfuse.start_span(name="process-query") 1341 try: 1342 # Create a generation child span 1343 generation = span.start_generation( 1344 name="generate-answer", 1345 model="gpt-4", 1346 input={"prompt": "Explain quantum computing"} 1347 ) 1348 try: 1349 # Call model API 1350 response = llm.generate(...) 1351 1352 generation.update( 1353 output=response.text, 1354 usage_details={ 1355 "prompt_tokens": response.usage.prompt_tokens, 1356 "completion_tokens": response.usage.completion_tokens 1357 } 1358 ) 1359 finally: 1360 generation.end() 1361 1362 # Continue with parent span 1363 span.update(output={"answer": response.text, "source": "gpt-4"}) 1364 finally: 1365 span.end() 1366 ``` 1367 """ 1368 warnings.warn( 1369 "start_generation is deprecated and will be removed in a future version. " 1370 "Use start_observation(as_type='generation') instead.", 1371 DeprecationWarning, 1372 stacklevel=2, 1373 ) 1374 return self.start_observation( 1375 name=name, 1376 as_type="generation", 1377 input=input, 1378 output=output, 1379 metadata=metadata, 1380 version=version, 1381 level=level, 1382 status_message=status_message, 1383 completion_start_time=completion_start_time, 1384 model=model, 1385 model_parameters=model_parameters, 1386 usage_details=usage_details, 1387 cost_details=cost_details, 1388 prompt=prompt, 1389 ) 1390 1391 def start_as_current_generation( 1392 self, 1393 *, 1394 name: str, 1395 input: Optional[Any] = None, 1396 output: Optional[Any] = None, 1397 metadata: Optional[Any] = None, 1398 version: Optional[str] = None, 1399 level: Optional[SpanLevel] = None, 1400 status_message: Optional[str] = None, 1401 completion_start_time: Optional[datetime] = None, 1402 model: Optional[str] = None, 1403 model_parameters: Optional[Dict[str, MapValue]] = None, 1404 usage_details: Optional[Dict[str, int]] = None, 1405 cost_details: Optional[Dict[str, float]] = None, 1406 prompt: Optional[PromptClient] = None, 1407 ) -> _AgnosticContextManager["LangfuseGeneration"]: 1408 """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager. 1409 1410 DEPRECATED: This method is deprecated and will be removed in a future version. 1411 Use start_as_current_observation(as_type='generation') instead. 1412 1413 This method creates a new child generation span and sets it as the current span 1414 within a context manager. Generation spans are specialized for AI/LLM operations 1415 and include additional fields for model information, usage stats, and costs. 1416 1417 Args: 1418 name: Name of the generation operation 1419 input: Input data for the model (e.g., prompts) 1420 output: Output from the model (e.g., completions) 1421 metadata: Additional metadata to associate with the generation 1422 version: Version identifier for the model or component 1423 level: Importance level of the generation (info, warning, error) 1424 status_message: Optional status message for the generation 1425 completion_start_time: When the model started generating the response 1426 model: Name/identifier of the AI model used (e.g., "gpt-4") 1427 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1428 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1429 cost_details: Cost information for the model call 1430 prompt: Associated prompt template from Langfuse prompt management 1431 1432 Returns: 1433 A context manager that yields a new LangfuseGeneration 1434 1435 Example: 1436 ```python 1437 with langfuse.start_as_current_span(name="process-request") as span: 1438 # Prepare data 1439 query = preprocess_user_query(user_input) 1440 1441 # Create a generation span with context management 1442 with span.start_as_current_generation( 1443 name="generate-answer", 1444 model="gpt-4", 1445 input={"query": query} 1446 ) as generation: 1447 # Generation span is active here 1448 response = llm.generate(query) 1449 1450 # Update with results 1451 generation.update( 1452 output=response.text, 1453 usage_details={ 1454 "prompt_tokens": response.usage.prompt_tokens, 1455 "completion_tokens": response.usage.completion_tokens 1456 } 1457 ) 1458 1459 # Back to parent span context 1460 span.update(output={"answer": response.text, "source": "gpt-4"}) 1461 ``` 1462 """ 1463 warnings.warn( 1464 "start_as_current_generation is deprecated and will be removed in a future version. " 1465 "Use start_as_current_observation(as_type='generation') instead.", 1466 DeprecationWarning, 1467 stacklevel=2, 1468 ) 1469 return self.start_as_current_observation( 1470 name=name, 1471 as_type="generation", 1472 input=input, 1473 output=output, 1474 metadata=metadata, 1475 version=version, 1476 level=level, 1477 status_message=status_message, 1478 completion_start_time=completion_start_time, 1479 model=model, 1480 model_parameters=model_parameters, 1481 usage_details=usage_details, 1482 cost_details=cost_details, 1483 prompt=prompt, 1484 ) 1485 1486 def create_event( 1487 self, 1488 *, 1489 name: str, 1490 input: Optional[Any] = None, 1491 output: Optional[Any] = None, 1492 metadata: Optional[Any] = None, 1493 version: Optional[str] = None, 1494 level: Optional[SpanLevel] = None, 1495 status_message: Optional[str] = None, 1496 ) -> "LangfuseEvent": 1497 """Create a new Langfuse observation of type 'EVENT'. 1498 1499 Args: 1500 name: Name of the span (e.g., function or operation name) 1501 input: Input data for the operation (can be any JSON-serializable object) 1502 output: Output data from the operation (can be any JSON-serializable object) 1503 metadata: Additional metadata to associate with the span 1504 version: Version identifier for the code or component 1505 level: Importance level of the span (info, warning, error) 1506 status_message: Optional status message for the span 1507 1508 Returns: 1509 The LangfuseEvent object 1510 1511 Example: 1512 ```python 1513 event = langfuse.create_event(name="process-event") 1514 ``` 1515 """ 1516 timestamp = time_ns() 1517 1518 with otel_trace_api.use_span(self._otel_span): 1519 new_otel_span = self._langfuse_client._otel_tracer.start_span( 1520 name=name, start_time=timestamp 1521 ) 1522 1523 return cast( 1524 "LangfuseEvent", 1525 LangfuseEvent( 1526 otel_span=new_otel_span, 1527 langfuse_client=self._langfuse_client, 1528 input=input, 1529 output=output, 1530 metadata=metadata, 1531 environment=self._environment, 1532 version=version, 1533 level=level, 1534 status_message=status_message, 1535 ).end(end_time=timestamp), 1536 )
Standard span implementation for general operations in Langfuse.
This class represents a general-purpose span that can be used to trace any operation in your application. It extends the base LangfuseObservationWrapper with specific methods for creating child spans, generations, and updating span-specific attributes. If possible, use a more specific type for better observability and insights.
1128 def __init__( 1129 self, 1130 *, 1131 otel_span: otel_trace_api.Span, 1132 langfuse_client: "Langfuse", 1133 input: Optional[Any] = None, 1134 output: Optional[Any] = None, 1135 metadata: Optional[Any] = None, 1136 environment: Optional[str] = None, 1137 version: Optional[str] = None, 1138 level: Optional[SpanLevel] = None, 1139 status_message: Optional[str] = None, 1140 ): 1141 """Initialize a new LangfuseSpan. 1142 1143 Args: 1144 otel_span: The OpenTelemetry span to wrap 1145 langfuse_client: Reference to the parent Langfuse client 1146 input: Input data for the span (any JSON-serializable object) 1147 output: Output data from the span (any JSON-serializable object) 1148 metadata: Additional metadata to associate with the span 1149 environment: The tracing environment 1150 version: Version identifier for the code or component 1151 level: Importance level of the span (info, warning, error) 1152 status_message: Optional status message for the span 1153 """ 1154 super().__init__( 1155 otel_span=otel_span, 1156 as_type="span", 1157 langfuse_client=langfuse_client, 1158 input=input, 1159 output=output, 1160 metadata=metadata, 1161 environment=environment, 1162 version=version, 1163 level=level, 1164 status_message=status_message, 1165 )
Initialize a new LangfuseSpan.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the span (any JSON-serializable object)
- output: Output data from the span (any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- environment: The tracing environment
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
1167 def start_span( 1168 self, 1169 name: str, 1170 input: Optional[Any] = None, 1171 output: Optional[Any] = None, 1172 metadata: Optional[Any] = None, 1173 version: Optional[str] = None, 1174 level: Optional[SpanLevel] = None, 1175 status_message: Optional[str] = None, 1176 ) -> "LangfuseSpan": 1177 """Create a new child span. 1178 1179 This method creates a new child span with this span as the parent. 1180 Unlike start_as_current_span(), this method does not set the new span 1181 as the current span in the context. 1182 1183 Args: 1184 name: Name of the span (e.g., function or operation name) 1185 input: Input data for the operation 1186 output: Output data from the operation 1187 metadata: Additional metadata to associate with the span 1188 version: Version identifier for the code or component 1189 level: Importance level of the span (info, warning, error) 1190 status_message: Optional status message for the span 1191 1192 Returns: 1193 A new LangfuseSpan that must be ended with .end() when complete 1194 1195 Example: 1196 ```python 1197 parent_span = langfuse.start_span(name="process-request") 1198 try: 1199 # Create a child span 1200 child_span = parent_span.start_span(name="validate-input") 1201 try: 1202 # Do validation work 1203 validation_result = validate(request_data) 1204 child_span.update(output=validation_result) 1205 finally: 1206 child_span.end() 1207 1208 # Continue with parent span 1209 result = process_validated_data(validation_result) 1210 parent_span.update(output=result) 1211 finally: 1212 parent_span.end() 1213 ``` 1214 """ 1215 return self.start_observation( 1216 name=name, 1217 as_type="span", 1218 input=input, 1219 output=output, 1220 metadata=metadata, 1221 version=version, 1222 level=level, 1223 status_message=status_message, 1224 )
Create a new child span.
This method creates a new child span with this span as the parent. Unlike start_as_current_span(), this method does not set the new span as the current span in the context.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A new LangfuseSpan that must be ended with .end() when complete
Example:
parent_span = langfuse.start_span(name="process-request") try: # Create a child span child_span = parent_span.start_span(name="validate-input") try: # Do validation work validation_result = validate(request_data) child_span.update(output=validation_result) finally: child_span.end() # Continue with parent span result = process_validated_data(validation_result) parent_span.update(output=result) finally: parent_span.end()
1226 def start_as_current_span( 1227 self, 1228 *, 1229 name: str, 1230 input: Optional[Any] = None, 1231 output: Optional[Any] = None, 1232 metadata: Optional[Any] = None, 1233 version: Optional[str] = None, 1234 level: Optional[SpanLevel] = None, 1235 status_message: Optional[str] = None, 1236 ) -> _AgnosticContextManager["LangfuseSpan"]: 1237 """[DEPRECATED] Create a new child span and set it as the current span in a context manager. 1238 1239 DEPRECATED: This method is deprecated and will be removed in a future version. 1240 Use start_as_current_observation(as_type='span') instead. 1241 1242 This method creates a new child span and sets it as the current span within 1243 a context manager. It should be used with a 'with' statement to automatically 1244 manage the span's lifecycle. 1245 1246 Args: 1247 name: Name of the span (e.g., function or operation name) 1248 input: Input data for the operation 1249 output: Output data from the operation 1250 metadata: Additional metadata to associate with the span 1251 version: Version identifier for the code or component 1252 level: Importance level of the span (info, warning, error) 1253 status_message: Optional status message for the span 1254 1255 Returns: 1256 A context manager that yields a new LangfuseSpan 1257 1258 Example: 1259 ```python 1260 with langfuse.start_as_current_span(name="process-request") as parent_span: 1261 # Parent span is active here 1262 1263 # Create a child span with context management 1264 with parent_span.start_as_current_span(name="validate-input") as child_span: 1265 # Child span is active here 1266 validation_result = validate(request_data) 1267 child_span.update(output=validation_result) 1268 1269 # Back to parent span context 1270 result = process_validated_data(validation_result) 1271 parent_span.update(output=result) 1272 ``` 1273 """ 1274 warnings.warn( 1275 "start_as_current_span is deprecated and will be removed in a future version. " 1276 "Use start_as_current_observation(as_type='span') instead.", 1277 DeprecationWarning, 1278 stacklevel=2, 1279 ) 1280 return self.start_as_current_observation( 1281 name=name, 1282 as_type="span", 1283 input=input, 1284 output=output, 1285 metadata=metadata, 1286 version=version, 1287 level=level, 1288 status_message=status_message, 1289 )
[DEPRECATED] Create a new child span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='span') instead.
This method creates a new child span and sets it as the current span within a context manager. It should be used with a 'with' statement to automatically manage the span's lifecycle.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A context manager that yields a new LangfuseSpan
Example:
with langfuse.start_as_current_span(name="process-request") as parent_span: # Parent span is active here # Create a child span with context management with parent_span.start_as_current_span(name="validate-input") as child_span: # Child span is active here validation_result = validate(request_data) child_span.update(output=validation_result) # Back to parent span context result = process_validated_data(validation_result) parent_span.update(output=result)
1291 def start_generation( 1292 self, 1293 *, 1294 name: str, 1295 input: Optional[Any] = None, 1296 output: Optional[Any] = None, 1297 metadata: Optional[Any] = None, 1298 version: Optional[str] = None, 1299 level: Optional[SpanLevel] = None, 1300 status_message: Optional[str] = None, 1301 completion_start_time: Optional[datetime] = None, 1302 model: Optional[str] = None, 1303 model_parameters: Optional[Dict[str, MapValue]] = None, 1304 usage_details: Optional[Dict[str, int]] = None, 1305 cost_details: Optional[Dict[str, float]] = None, 1306 prompt: Optional[PromptClient] = None, 1307 ) -> "LangfuseGeneration": 1308 """[DEPRECATED] Create a new child generation span. 1309 1310 DEPRECATED: This method is deprecated and will be removed in a future version. 1311 Use start_observation(as_type='generation') instead. 1312 1313 This method creates a new child generation span with this span as the parent. 1314 Generation spans are specialized for AI/LLM operations and include additional 1315 fields for model information, usage stats, and costs. 1316 1317 Unlike start_as_current_generation(), this method does not set the new span 1318 as the current span in the context. 1319 1320 Args: 1321 name: Name of the generation operation 1322 input: Input data for the model (e.g., prompts) 1323 output: Output from the model (e.g., completions) 1324 metadata: Additional metadata to associate with the generation 1325 version: Version identifier for the model or component 1326 level: Importance level of the generation (info, warning, error) 1327 status_message: Optional status message for the generation 1328 completion_start_time: When the model started generating the response 1329 model: Name/identifier of the AI model used (e.g., "gpt-4") 1330 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1331 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1332 cost_details: Cost information for the model call 1333 prompt: Associated prompt template from Langfuse prompt management 1334 1335 Returns: 1336 A new LangfuseGeneration that must be ended with .end() when complete 1337 1338 Example: 1339 ```python 1340 span = langfuse.start_span(name="process-query") 1341 try: 1342 # Create a generation child span 1343 generation = span.start_generation( 1344 name="generate-answer", 1345 model="gpt-4", 1346 input={"prompt": "Explain quantum computing"} 1347 ) 1348 try: 1349 # Call model API 1350 response = llm.generate(...) 1351 1352 generation.update( 1353 output=response.text, 1354 usage_details={ 1355 "prompt_tokens": response.usage.prompt_tokens, 1356 "completion_tokens": response.usage.completion_tokens 1357 } 1358 ) 1359 finally: 1360 generation.end() 1361 1362 # Continue with parent span 1363 span.update(output={"answer": response.text, "source": "gpt-4"}) 1364 finally: 1365 span.end() 1366 ``` 1367 """ 1368 warnings.warn( 1369 "start_generation is deprecated and will be removed in a future version. " 1370 "Use start_observation(as_type='generation') instead.", 1371 DeprecationWarning, 1372 stacklevel=2, 1373 ) 1374 return self.start_observation( 1375 name=name, 1376 as_type="generation", 1377 input=input, 1378 output=output, 1379 metadata=metadata, 1380 version=version, 1381 level=level, 1382 status_message=status_message, 1383 completion_start_time=completion_start_time, 1384 model=model, 1385 model_parameters=model_parameters, 1386 usage_details=usage_details, 1387 cost_details=cost_details, 1388 prompt=prompt, 1389 )
[DEPRECATED] Create a new child generation span.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.
This method creates a new child generation span with this span as the parent. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.
Unlike start_as_current_generation(), this method does not set the new span as the current span in the context.
Arguments:
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A new LangfuseGeneration that must be ended with .end() when complete
Example:
span = langfuse.start_span(name="process-query") try: # Create a generation child span generation = span.start_generation( name="generate-answer", model="gpt-4", input={"prompt": "Explain quantum computing"} ) try: # Call model API response = llm.generate(...) generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) finally: generation.end() # Continue with parent span span.update(output={"answer": response.text, "source": "gpt-4"}) finally: span.end()
1391 def start_as_current_generation( 1392 self, 1393 *, 1394 name: str, 1395 input: Optional[Any] = None, 1396 output: Optional[Any] = None, 1397 metadata: Optional[Any] = None, 1398 version: Optional[str] = None, 1399 level: Optional[SpanLevel] = None, 1400 status_message: Optional[str] = None, 1401 completion_start_time: Optional[datetime] = None, 1402 model: Optional[str] = None, 1403 model_parameters: Optional[Dict[str, MapValue]] = None, 1404 usage_details: Optional[Dict[str, int]] = None, 1405 cost_details: Optional[Dict[str, float]] = None, 1406 prompt: Optional[PromptClient] = None, 1407 ) -> _AgnosticContextManager["LangfuseGeneration"]: 1408 """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager. 1409 1410 DEPRECATED: This method is deprecated and will be removed in a future version. 1411 Use start_as_current_observation(as_type='generation') instead. 1412 1413 This method creates a new child generation span and sets it as the current span 1414 within a context manager. Generation spans are specialized for AI/LLM operations 1415 and include additional fields for model information, usage stats, and costs. 1416 1417 Args: 1418 name: Name of the generation operation 1419 input: Input data for the model (e.g., prompts) 1420 output: Output from the model (e.g., completions) 1421 metadata: Additional metadata to associate with the generation 1422 version: Version identifier for the model or component 1423 level: Importance level of the generation (info, warning, error) 1424 status_message: Optional status message for the generation 1425 completion_start_time: When the model started generating the response 1426 model: Name/identifier of the AI model used (e.g., "gpt-4") 1427 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1428 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1429 cost_details: Cost information for the model call 1430 prompt: Associated prompt template from Langfuse prompt management 1431 1432 Returns: 1433 A context manager that yields a new LangfuseGeneration 1434 1435 Example: 1436 ```python 1437 with langfuse.start_as_current_span(name="process-request") as span: 1438 # Prepare data 1439 query = preprocess_user_query(user_input) 1440 1441 # Create a generation span with context management 1442 with span.start_as_current_generation( 1443 name="generate-answer", 1444 model="gpt-4", 1445 input={"query": query} 1446 ) as generation: 1447 # Generation span is active here 1448 response = llm.generate(query) 1449 1450 # Update with results 1451 generation.update( 1452 output=response.text, 1453 usage_details={ 1454 "prompt_tokens": response.usage.prompt_tokens, 1455 "completion_tokens": response.usage.completion_tokens 1456 } 1457 ) 1458 1459 # Back to parent span context 1460 span.update(output={"answer": response.text, "source": "gpt-4"}) 1461 ``` 1462 """ 1463 warnings.warn( 1464 "start_as_current_generation is deprecated and will be removed in a future version. " 1465 "Use start_as_current_observation(as_type='generation') instead.", 1466 DeprecationWarning, 1467 stacklevel=2, 1468 ) 1469 return self.start_as_current_observation( 1470 name=name, 1471 as_type="generation", 1472 input=input, 1473 output=output, 1474 metadata=metadata, 1475 version=version, 1476 level=level, 1477 status_message=status_message, 1478 completion_start_time=completion_start_time, 1479 model=model, 1480 model_parameters=model_parameters, 1481 usage_details=usage_details, 1482 cost_details=cost_details, 1483 prompt=prompt, 1484 )
[DEPRECATED] Create a new child generation span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.
This method creates a new child generation span and sets it as the current span within a context manager. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.
Arguments:
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A context manager that yields a new LangfuseGeneration
Example:
with langfuse.start_as_current_span(name="process-request") as span: # Prepare data query = preprocess_user_query(user_input) # Create a generation span with context management with span.start_as_current_generation( name="generate-answer", model="gpt-4", input={"query": query} ) as generation: # Generation span is active here response = llm.generate(query) # Update with results generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) # Back to parent span context span.update(output={"answer": response.text, "source": "gpt-4"})
1486 def create_event( 1487 self, 1488 *, 1489 name: str, 1490 input: Optional[Any] = None, 1491 output: Optional[Any] = None, 1492 metadata: Optional[Any] = None, 1493 version: Optional[str] = None, 1494 level: Optional[SpanLevel] = None, 1495 status_message: Optional[str] = None, 1496 ) -> "LangfuseEvent": 1497 """Create a new Langfuse observation of type 'EVENT'. 1498 1499 Args: 1500 name: Name of the span (e.g., function or operation name) 1501 input: Input data for the operation (can be any JSON-serializable object) 1502 output: Output data from the operation (can be any JSON-serializable object) 1503 metadata: Additional metadata to associate with the span 1504 version: Version identifier for the code or component 1505 level: Importance level of the span (info, warning, error) 1506 status_message: Optional status message for the span 1507 1508 Returns: 1509 The LangfuseEvent object 1510 1511 Example: 1512 ```python 1513 event = langfuse.create_event(name="process-event") 1514 ``` 1515 """ 1516 timestamp = time_ns() 1517 1518 with otel_trace_api.use_span(self._otel_span): 1519 new_otel_span = self._langfuse_client._otel_tracer.start_span( 1520 name=name, start_time=timestamp 1521 ) 1522 1523 return cast( 1524 "LangfuseEvent", 1525 LangfuseEvent( 1526 otel_span=new_otel_span, 1527 langfuse_client=self._langfuse_client, 1528 input=input, 1529 output=output, 1530 metadata=metadata, 1531 environment=self._environment, 1532 version=version, 1533 level=level, 1534 status_message=status_message, 1535 ).end(end_time=timestamp), 1536 )
Create a new Langfuse observation of type 'EVENT'.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
The LangfuseEvent object
Example:
event = langfuse.create_event(name="process-event")
1539class LangfuseGeneration(LangfuseObservationWrapper): 1540 """Specialized span implementation for AI model generations in Langfuse. 1541 1542 This class represents a generation span specifically designed for tracking 1543 AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized 1544 attributes for model details, token usage, and costs. 1545 """ 1546 1547 def __init__( 1548 self, 1549 *, 1550 otel_span: otel_trace_api.Span, 1551 langfuse_client: "Langfuse", 1552 input: Optional[Any] = None, 1553 output: Optional[Any] = None, 1554 metadata: Optional[Any] = None, 1555 environment: Optional[str] = None, 1556 version: Optional[str] = None, 1557 level: Optional[SpanLevel] = None, 1558 status_message: Optional[str] = None, 1559 completion_start_time: Optional[datetime] = None, 1560 model: Optional[str] = None, 1561 model_parameters: Optional[Dict[str, MapValue]] = None, 1562 usage_details: Optional[Dict[str, int]] = None, 1563 cost_details: Optional[Dict[str, float]] = None, 1564 prompt: Optional[PromptClient] = None, 1565 ): 1566 """Initialize a new LangfuseGeneration span. 1567 1568 Args: 1569 otel_span: The OpenTelemetry span to wrap 1570 langfuse_client: Reference to the parent Langfuse client 1571 input: Input data for the generation (e.g., prompts) 1572 output: Output from the generation (e.g., completions) 1573 metadata: Additional metadata to associate with the generation 1574 environment: The tracing environment 1575 version: Version identifier for the model or component 1576 level: Importance level of the generation (info, warning, error) 1577 status_message: Optional status message for the generation 1578 completion_start_time: When the model started generating the response 1579 model: Name/identifier of the AI model used (e.g., "gpt-4") 1580 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1581 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1582 cost_details: Cost information for the model call 1583 prompt: Associated prompt template from Langfuse prompt management 1584 """ 1585 super().__init__( 1586 as_type="generation", 1587 otel_span=otel_span, 1588 langfuse_client=langfuse_client, 1589 input=input, 1590 output=output, 1591 metadata=metadata, 1592 environment=environment, 1593 version=version, 1594 level=level, 1595 status_message=status_message, 1596 completion_start_time=completion_start_time, 1597 model=model, 1598 model_parameters=model_parameters, 1599 usage_details=usage_details, 1600 cost_details=cost_details, 1601 prompt=prompt, 1602 )
Specialized span implementation for AI model generations in Langfuse.
This class represents a generation span specifically designed for tracking AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized attributes for model details, token usage, and costs.
1547 def __init__( 1548 self, 1549 *, 1550 otel_span: otel_trace_api.Span, 1551 langfuse_client: "Langfuse", 1552 input: Optional[Any] = None, 1553 output: Optional[Any] = None, 1554 metadata: Optional[Any] = None, 1555 environment: Optional[str] = None, 1556 version: Optional[str] = None, 1557 level: Optional[SpanLevel] = None, 1558 status_message: Optional[str] = None, 1559 completion_start_time: Optional[datetime] = None, 1560 model: Optional[str] = None, 1561 model_parameters: Optional[Dict[str, MapValue]] = None, 1562 usage_details: Optional[Dict[str, int]] = None, 1563 cost_details: Optional[Dict[str, float]] = None, 1564 prompt: Optional[PromptClient] = None, 1565 ): 1566 """Initialize a new LangfuseGeneration span. 1567 1568 Args: 1569 otel_span: The OpenTelemetry span to wrap 1570 langfuse_client: Reference to the parent Langfuse client 1571 input: Input data for the generation (e.g., prompts) 1572 output: Output from the generation (e.g., completions) 1573 metadata: Additional metadata to associate with the generation 1574 environment: The tracing environment 1575 version: Version identifier for the model or component 1576 level: Importance level of the generation (info, warning, error) 1577 status_message: Optional status message for the generation 1578 completion_start_time: When the model started generating the response 1579 model: Name/identifier of the AI model used (e.g., "gpt-4") 1580 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1581 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1582 cost_details: Cost information for the model call 1583 prompt: Associated prompt template from Langfuse prompt management 1584 """ 1585 super().__init__( 1586 as_type="generation", 1587 otel_span=otel_span, 1588 langfuse_client=langfuse_client, 1589 input=input, 1590 output=output, 1591 metadata=metadata, 1592 environment=environment, 1593 version=version, 1594 level=level, 1595 status_message=status_message, 1596 completion_start_time=completion_start_time, 1597 model=model, 1598 model_parameters=model_parameters, 1599 usage_details=usage_details, 1600 cost_details=cost_details, 1601 prompt=prompt, 1602 )
Initialize a new LangfuseGeneration span.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the generation (e.g., prompts)
- output: Output from the generation (e.g., completions)
- metadata: Additional metadata to associate with the generation
- environment: The tracing environment
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
1605class LangfuseEvent(LangfuseObservationWrapper): 1606 """Specialized span implementation for Langfuse Events.""" 1607 1608 def __init__( 1609 self, 1610 *, 1611 otel_span: otel_trace_api.Span, 1612 langfuse_client: "Langfuse", 1613 input: Optional[Any] = None, 1614 output: Optional[Any] = None, 1615 metadata: Optional[Any] = None, 1616 environment: Optional[str] = None, 1617 version: Optional[str] = None, 1618 level: Optional[SpanLevel] = None, 1619 status_message: Optional[str] = None, 1620 ): 1621 """Initialize a new LangfuseEvent span. 1622 1623 Args: 1624 otel_span: The OpenTelemetry span to wrap 1625 langfuse_client: Reference to the parent Langfuse client 1626 input: Input data for the event 1627 output: Output from the event 1628 metadata: Additional metadata to associate with the generation 1629 environment: The tracing environment 1630 version: Version identifier for the model or component 1631 level: Importance level of the generation (info, warning, error) 1632 status_message: Optional status message for the generation 1633 """ 1634 super().__init__( 1635 otel_span=otel_span, 1636 as_type="event", 1637 langfuse_client=langfuse_client, 1638 input=input, 1639 output=output, 1640 metadata=metadata, 1641 environment=environment, 1642 version=version, 1643 level=level, 1644 status_message=status_message, 1645 ) 1646 1647 def update( 1648 self, 1649 *, 1650 name: Optional[str] = None, 1651 input: Optional[Any] = None, 1652 output: Optional[Any] = None, 1653 metadata: Optional[Any] = None, 1654 version: Optional[str] = None, 1655 level: Optional[SpanLevel] = None, 1656 status_message: Optional[str] = None, 1657 completion_start_time: Optional[datetime] = None, 1658 model: Optional[str] = None, 1659 model_parameters: Optional[Dict[str, MapValue]] = None, 1660 usage_details: Optional[Dict[str, int]] = None, 1661 cost_details: Optional[Dict[str, float]] = None, 1662 prompt: Optional[PromptClient] = None, 1663 **kwargs: Any, 1664 ) -> "LangfuseEvent": 1665 """Update is not allowed for LangfuseEvent because events cannot be updated. 1666 1667 This method logs a warning and returns self without making changes. 1668 1669 Returns: 1670 self: Returns the unchanged LangfuseEvent instance 1671 """ 1672 langfuse_logger.warning( 1673 "Attempted to update LangfuseEvent observation. Events cannot be updated after creation." 1674 ) 1675 return self
Specialized span implementation for Langfuse Events.
1608 def __init__( 1609 self, 1610 *, 1611 otel_span: otel_trace_api.Span, 1612 langfuse_client: "Langfuse", 1613 input: Optional[Any] = None, 1614 output: Optional[Any] = None, 1615 metadata: Optional[Any] = None, 1616 environment: Optional[str] = None, 1617 version: Optional[str] = None, 1618 level: Optional[SpanLevel] = None, 1619 status_message: Optional[str] = None, 1620 ): 1621 """Initialize a new LangfuseEvent span. 1622 1623 Args: 1624 otel_span: The OpenTelemetry span to wrap 1625 langfuse_client: Reference to the parent Langfuse client 1626 input: Input data for the event 1627 output: Output from the event 1628 metadata: Additional metadata to associate with the generation 1629 environment: The tracing environment 1630 version: Version identifier for the model or component 1631 level: Importance level of the generation (info, warning, error) 1632 status_message: Optional status message for the generation 1633 """ 1634 super().__init__( 1635 otel_span=otel_span, 1636 as_type="event", 1637 langfuse_client=langfuse_client, 1638 input=input, 1639 output=output, 1640 metadata=metadata, 1641 environment=environment, 1642 version=version, 1643 level=level, 1644 status_message=status_message, 1645 )
Initialize a new LangfuseEvent span.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the event
- output: Output from the event
- metadata: Additional metadata to associate with the generation
- environment: The tracing environment
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
1647 def update( 1648 self, 1649 *, 1650 name: Optional[str] = None, 1651 input: Optional[Any] = None, 1652 output: Optional[Any] = None, 1653 metadata: Optional[Any] = None, 1654 version: Optional[str] = None, 1655 level: Optional[SpanLevel] = None, 1656 status_message: Optional[str] = None, 1657 completion_start_time: Optional[datetime] = None, 1658 model: Optional[str] = None, 1659 model_parameters: Optional[Dict[str, MapValue]] = None, 1660 usage_details: Optional[Dict[str, int]] = None, 1661 cost_details: Optional[Dict[str, float]] = None, 1662 prompt: Optional[PromptClient] = None, 1663 **kwargs: Any, 1664 ) -> "LangfuseEvent": 1665 """Update is not allowed for LangfuseEvent because events cannot be updated. 1666 1667 This method logs a warning and returns self without making changes. 1668 1669 Returns: 1670 self: Returns the unchanged LangfuseEvent instance 1671 """ 1672 langfuse_logger.warning( 1673 "Attempted to update LangfuseEvent observation. Events cannot be updated after creation." 1674 ) 1675 return self
Update is not allowed for LangfuseEvent because events cannot be updated.
This method logs a warning and returns self without making changes.
Returns:
self: Returns the unchanged LangfuseEvent instance
28class LangfuseOtelSpanAttributes: 29 # Langfuse-Trace attributes 30 TRACE_NAME = "langfuse.trace.name" 31 TRACE_USER_ID = "user.id" 32 TRACE_SESSION_ID = "session.id" 33 TRACE_TAGS = "langfuse.trace.tags" 34 TRACE_PUBLIC = "langfuse.trace.public" 35 TRACE_METADATA = "langfuse.trace.metadata" 36 TRACE_INPUT = "langfuse.trace.input" 37 TRACE_OUTPUT = "langfuse.trace.output" 38 39 # Langfuse-observation attributes 40 OBSERVATION_TYPE = "langfuse.observation.type" 41 OBSERVATION_METADATA = "langfuse.observation.metadata" 42 OBSERVATION_LEVEL = "langfuse.observation.level" 43 OBSERVATION_STATUS_MESSAGE = "langfuse.observation.status_message" 44 OBSERVATION_INPUT = "langfuse.observation.input" 45 OBSERVATION_OUTPUT = "langfuse.observation.output" 46 47 # Langfuse-observation of type Generation attributes 48 OBSERVATION_COMPLETION_START_TIME = "langfuse.observation.completion_start_time" 49 OBSERVATION_MODEL = "langfuse.observation.model.name" 50 OBSERVATION_MODEL_PARAMETERS = "langfuse.observation.model.parameters" 51 OBSERVATION_USAGE_DETAILS = "langfuse.observation.usage_details" 52 OBSERVATION_COST_DETAILS = "langfuse.observation.cost_details" 53 OBSERVATION_PROMPT_NAME = "langfuse.observation.prompt.name" 54 OBSERVATION_PROMPT_VERSION = "langfuse.observation.prompt.version" 55 56 # General 57 ENVIRONMENT = "langfuse.environment" 58 RELEASE = "langfuse.release" 59 VERSION = "langfuse.version" 60 61 # Internal 62 AS_ROOT = "langfuse.internal.as_root"
1678class LangfuseAgent(LangfuseObservationWrapper): 1679 """Agent observation for reasoning blocks that act on tools using LLM guidance.""" 1680 1681 def __init__(self, **kwargs: Any) -> None: 1682 """Initialize a new LangfuseAgent span.""" 1683 kwargs["as_type"] = "agent" 1684 super().__init__(**kwargs)
Agent observation for reasoning blocks that act on tools using LLM guidance.
1687class LangfuseTool(LangfuseObservationWrapper): 1688 """Tool observation representing external tool calls, e.g., calling a weather API.""" 1689 1690 def __init__(self, **kwargs: Any) -> None: 1691 """Initialize a new LangfuseTool span.""" 1692 kwargs["as_type"] = "tool" 1693 super().__init__(**kwargs)
Tool observation representing external tool calls, e.g., calling a weather API.
1696class LangfuseChain(LangfuseObservationWrapper): 1697 """Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM.""" 1698 1699 def __init__(self, **kwargs: Any) -> None: 1700 """Initialize a new LangfuseChain span.""" 1701 kwargs["as_type"] = "chain" 1702 super().__init__(**kwargs)
Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM.
1714class LangfuseEmbedding(LangfuseObservationWrapper): 1715 """Embedding observation for LLM embedding calls, typically used before retrieval.""" 1716 1717 def __init__(self, **kwargs: Any) -> None: 1718 """Initialize a new LangfuseEmbedding span.""" 1719 kwargs["as_type"] = "embedding" 1720 super().__init__(**kwargs)
Embedding observation for LLM embedding calls, typically used before retrieval.
1723class LangfuseEvaluator(LangfuseObservationWrapper): 1724 """Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs.""" 1725 1726 def __init__(self, **kwargs: Any) -> None: 1727 """Initialize a new LangfuseEvaluator span.""" 1728 kwargs["as_type"] = "evaluator" 1729 super().__init__(**kwargs)
Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs.
1705class LangfuseRetriever(LangfuseObservationWrapper): 1706 """Retriever observation for data retrieval steps, e.g. vector store or database queries.""" 1707 1708 def __init__(self, **kwargs: Any) -> None: 1709 """Initialize a new LangfuseRetriever span.""" 1710 kwargs["as_type"] = "retriever" 1711 super().__init__(**kwargs)
Retriever observation for data retrieval steps, e.g. vector store or database queries.
1732class LangfuseGuardrail(LangfuseObservationWrapper): 1733 """Guardrail observation for protection e.g. against jailbreaks or offensive content.""" 1734 1735 def __init__(self, **kwargs: Any) -> None: 1736 """Initialize a new LangfuseGuardrail span.""" 1737 kwargs["as_type"] = "guardrail" 1738 super().__init__(**kwargs)
Guardrail observation for protection e.g. against jailbreaks or offensive content.