langfuse

Langfuse Python SDK
Installation
The SDK was rewritten in v3 and released in June 2025. Refer to the v3 migration guide for instructions on updating your code.
pip install langfuse
Docs
Please see our docs for detailed information on this SDK.
1""".. include:: ../README.md""" 2 3from langfuse.batch_evaluation import ( 4 BatchEvaluationResult, 5 BatchEvaluationResumeToken, 6 CompositeEvaluatorFunction, 7 EvaluatorInputs, 8 EvaluatorStats, 9 MapperFunction, 10) 11from langfuse.experiment import Evaluation 12 13from ._client import client as _client_module 14from ._client.attributes import LangfuseOtelSpanAttributes 15from ._client.constants import ObservationTypeLiteral 16from ._client.get_client import get_client 17from ._client.observe import observe 18from ._client.propagation import propagate_attributes 19from ._client.span import ( 20 LangfuseAgent, 21 LangfuseChain, 22 LangfuseEmbedding, 23 LangfuseEvaluator, 24 LangfuseEvent, 25 LangfuseGeneration, 26 LangfuseGuardrail, 27 LangfuseRetriever, 28 LangfuseSpan, 29 LangfuseTool, 30) 31 32Langfuse = _client_module.Langfuse 33 34__all__ = [ 35 "Langfuse", 36 "get_client", 37 "observe", 38 "propagate_attributes", 39 "ObservationTypeLiteral", 40 "LangfuseSpan", 41 "LangfuseGeneration", 42 "LangfuseEvent", 43 "LangfuseOtelSpanAttributes", 44 "LangfuseAgent", 45 "LangfuseTool", 46 "LangfuseChain", 47 "LangfuseEmbedding", 48 "LangfuseEvaluator", 49 "LangfuseRetriever", 50 "LangfuseGuardrail", 51 "Evaluation", 52 "EvaluatorInputs", 53 "MapperFunction", 54 "CompositeEvaluatorFunction", 55 "EvaluatorStats", 56 "BatchEvaluationResumeToken", 57 "BatchEvaluationResult", 58 "experiment", 59 "api", 60]
128class Langfuse: 129 """Main client for Langfuse tracing and platform features. 130 131 This class provides an interface for creating and managing traces, spans, 132 and generations in Langfuse as well as interacting with the Langfuse API. 133 134 The client features a thread-safe singleton pattern for each unique public API key, 135 ensuring consistent trace context propagation across your application. It implements 136 efficient batching of spans with configurable flush settings and includes background 137 thread management for media uploads and score ingestion. 138 139 Configuration is flexible through either direct parameters or environment variables, 140 with graceful fallbacks and runtime configuration updates. 141 142 Attributes: 143 api: Synchronous API client for Langfuse backend communication 144 async_api: Asynchronous API client for Langfuse backend communication 145 _otel_tracer: Internal LangfuseTracer instance managing OpenTelemetry components 146 147 Parameters: 148 public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable. 149 secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable. 150 base_url (Optional[str]): The Langfuse API base URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_BASE_URL environment variable. 151 host (Optional[str]): Deprecated. Use base_url instead. The Langfuse API host URL. Defaults to "https://cloud.langfuse.com". 152 timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds. 153 httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created. 154 debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable. 155 tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable. 156 flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable. 157 flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable. 158 environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. 159 release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release. 160 media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable. 161 sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable. 162 mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API. 163 blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (`metadata.scope.name`) 164 additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well. 165 tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees. 166 167 Example: 168 ```python 169 from langfuse.otel import Langfuse 170 171 # Initialize the client (reads from env vars if not provided) 172 langfuse = Langfuse( 173 public_key="your-public-key", 174 secret_key="your-secret-key", 175 host="https://cloud.langfuse.com", # Optional, default shown 176 ) 177 178 # Create a trace span 179 with langfuse.start_as_current_span(name="process-query") as span: 180 # Your application code here 181 182 # Create a nested generation span for an LLM call 183 with span.start_as_current_generation( 184 name="generate-response", 185 model="gpt-4", 186 input={"query": "Tell me about AI"}, 187 model_parameters={"temperature": 0.7, "max_tokens": 500} 188 ) as generation: 189 # Generate response here 190 response = "AI is a field of computer science..." 191 192 generation.update( 193 output=response, 194 usage_details={"prompt_tokens": 10, "completion_tokens": 50}, 195 cost_details={"total_cost": 0.0023} 196 ) 197 198 # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL) 199 generation.score(name="relevance", value=0.95, data_type="NUMERIC") 200 ``` 201 """ 202 203 _resources: Optional[LangfuseResourceManager] = None 204 _mask: Optional[MaskFunction] = None 205 _otel_tracer: otel_trace_api.Tracer 206 207 def __init__( 208 self, 209 *, 210 public_key: Optional[str] = None, 211 secret_key: Optional[str] = None, 212 base_url: Optional[str] = None, 213 host: Optional[str] = None, 214 timeout: Optional[int] = None, 215 httpx_client: Optional[httpx.Client] = None, 216 debug: bool = False, 217 tracing_enabled: Optional[bool] = True, 218 flush_at: Optional[int] = None, 219 flush_interval: Optional[float] = None, 220 environment: Optional[str] = None, 221 release: Optional[str] = None, 222 media_upload_thread_count: Optional[int] = None, 223 sample_rate: Optional[float] = None, 224 mask: Optional[MaskFunction] = None, 225 blocked_instrumentation_scopes: Optional[List[str]] = None, 226 additional_headers: Optional[Dict[str, str]] = None, 227 tracer_provider: Optional[TracerProvider] = None, 228 ): 229 self._base_url = ( 230 base_url 231 or os.environ.get(LANGFUSE_BASE_URL) 232 or host 233 or os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com") 234 ) 235 self._environment = environment or cast( 236 str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT) 237 ) 238 self._project_id: Optional[str] = None 239 sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0)) 240 if not 0.0 <= sample_rate <= 1.0: 241 raise ValueError( 242 f"Sample rate must be between 0.0 and 1.0, got {sample_rate}" 243 ) 244 245 timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5)) 246 247 self._tracing_enabled = ( 248 tracing_enabled 249 and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false" 250 ) 251 if not self._tracing_enabled: 252 langfuse_logger.info( 253 "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API." 254 ) 255 256 debug = ( 257 debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true") 258 ) 259 if debug: 260 logging.basicConfig( 261 format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" 262 ) 263 langfuse_logger.setLevel(logging.DEBUG) 264 265 public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY) 266 if public_key is None: 267 langfuse_logger.warning( 268 "Authentication error: Langfuse client initialized without public_key. Client will be disabled. " 269 "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. " 270 ) 271 self._otel_tracer = otel_trace_api.NoOpTracer() 272 return 273 274 secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY) 275 if secret_key is None: 276 langfuse_logger.warning( 277 "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. " 278 "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. " 279 ) 280 self._otel_tracer = otel_trace_api.NoOpTracer() 281 return 282 283 if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true": 284 langfuse_logger.warning( 285 "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI." 286 ) 287 288 # Initialize api and tracer if requirements are met 289 self._resources = LangfuseResourceManager( 290 public_key=public_key, 291 secret_key=secret_key, 292 base_url=self._base_url, 293 timeout=timeout, 294 environment=self._environment, 295 release=release, 296 flush_at=flush_at, 297 flush_interval=flush_interval, 298 httpx_client=httpx_client, 299 media_upload_thread_count=media_upload_thread_count, 300 sample_rate=sample_rate, 301 mask=mask, 302 tracing_enabled=self._tracing_enabled, 303 blocked_instrumentation_scopes=blocked_instrumentation_scopes, 304 additional_headers=additional_headers, 305 tracer_provider=tracer_provider, 306 ) 307 self._mask = self._resources.mask 308 309 self._otel_tracer = ( 310 self._resources.tracer 311 if self._tracing_enabled and self._resources.tracer is not None 312 else otel_trace_api.NoOpTracer() 313 ) 314 self.api = self._resources.api 315 self.async_api = self._resources.async_api 316 317 def start_span( 318 self, 319 *, 320 trace_context: Optional[TraceContext] = None, 321 name: str, 322 input: Optional[Any] = None, 323 output: Optional[Any] = None, 324 metadata: Optional[Any] = None, 325 version: Optional[str] = None, 326 level: Optional[SpanLevel] = None, 327 status_message: Optional[str] = None, 328 ) -> LangfuseSpan: 329 """Create a new span for tracing a unit of work. 330 331 This method creates a new span but does not set it as the current span in the 332 context. To create and use a span within a context, use start_as_current_span(). 333 334 The created span will be the child of the current span in the context. 335 336 Args: 337 trace_context: Optional context for connecting to an existing trace 338 name: Name of the span (e.g., function or operation name) 339 input: Input data for the operation (can be any JSON-serializable object) 340 output: Output data from the operation (can be any JSON-serializable object) 341 metadata: Additional metadata to associate with the span 342 version: Version identifier for the code or component 343 level: Importance level of the span (info, warning, error) 344 status_message: Optional status message for the span 345 346 Returns: 347 A LangfuseSpan object that must be ended with .end() when the operation completes 348 349 Example: 350 ```python 351 span = langfuse.start_span(name="process-data") 352 try: 353 # Do work 354 span.update(output="result") 355 finally: 356 span.end() 357 ``` 358 """ 359 return self.start_observation( 360 trace_context=trace_context, 361 name=name, 362 as_type="span", 363 input=input, 364 output=output, 365 metadata=metadata, 366 version=version, 367 level=level, 368 status_message=status_message, 369 ) 370 371 def start_as_current_span( 372 self, 373 *, 374 trace_context: Optional[TraceContext] = None, 375 name: str, 376 input: Optional[Any] = None, 377 output: Optional[Any] = None, 378 metadata: Optional[Any] = None, 379 version: Optional[str] = None, 380 level: Optional[SpanLevel] = None, 381 status_message: Optional[str] = None, 382 end_on_exit: Optional[bool] = None, 383 ) -> _AgnosticContextManager[LangfuseSpan]: 384 """Create a new span and set it as the current span in a context manager. 385 386 This method creates a new span and sets it as the current span within a context 387 manager. Use this method with a 'with' statement to automatically handle span 388 lifecycle within a code block. 389 390 The created span will be the child of the current span in the context. 391 392 Args: 393 trace_context: Optional context for connecting to an existing trace 394 name: Name of the span (e.g., function or operation name) 395 input: Input data for the operation (can be any JSON-serializable object) 396 output: Output data from the operation (can be any JSON-serializable object) 397 metadata: Additional metadata to associate with the span 398 version: Version identifier for the code or component 399 level: Importance level of the span (info, warning, error) 400 status_message: Optional status message for the span 401 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 402 403 Returns: 404 A context manager that yields a LangfuseSpan 405 406 Example: 407 ```python 408 with langfuse.start_as_current_span(name="process-query") as span: 409 # Do work 410 result = process_data() 411 span.update(output=result) 412 413 # Create a child span automatically 414 with span.start_as_current_span(name="sub-operation") as child_span: 415 # Do sub-operation work 416 child_span.update(output="sub-result") 417 ``` 418 """ 419 return self.start_as_current_observation( 420 trace_context=trace_context, 421 name=name, 422 as_type="span", 423 input=input, 424 output=output, 425 metadata=metadata, 426 version=version, 427 level=level, 428 status_message=status_message, 429 end_on_exit=end_on_exit, 430 ) 431 432 @overload 433 def start_observation( 434 self, 435 *, 436 trace_context: Optional[TraceContext] = None, 437 name: str, 438 as_type: Literal["generation"], 439 input: Optional[Any] = None, 440 output: Optional[Any] = None, 441 metadata: Optional[Any] = None, 442 version: Optional[str] = None, 443 level: Optional[SpanLevel] = None, 444 status_message: Optional[str] = None, 445 completion_start_time: Optional[datetime] = None, 446 model: Optional[str] = None, 447 model_parameters: Optional[Dict[str, MapValue]] = None, 448 usage_details: Optional[Dict[str, int]] = None, 449 cost_details: Optional[Dict[str, float]] = None, 450 prompt: Optional[PromptClient] = None, 451 ) -> LangfuseGeneration: ... 452 453 @overload 454 def start_observation( 455 self, 456 *, 457 trace_context: Optional[TraceContext] = None, 458 name: str, 459 as_type: Literal["span"] = "span", 460 input: Optional[Any] = None, 461 output: Optional[Any] = None, 462 metadata: Optional[Any] = None, 463 version: Optional[str] = None, 464 level: Optional[SpanLevel] = None, 465 status_message: Optional[str] = None, 466 ) -> LangfuseSpan: ... 467 468 @overload 469 def start_observation( 470 self, 471 *, 472 trace_context: Optional[TraceContext] = None, 473 name: str, 474 as_type: Literal["agent"], 475 input: Optional[Any] = None, 476 output: Optional[Any] = None, 477 metadata: Optional[Any] = None, 478 version: Optional[str] = None, 479 level: Optional[SpanLevel] = None, 480 status_message: Optional[str] = None, 481 ) -> LangfuseAgent: ... 482 483 @overload 484 def start_observation( 485 self, 486 *, 487 trace_context: Optional[TraceContext] = None, 488 name: str, 489 as_type: Literal["tool"], 490 input: Optional[Any] = None, 491 output: Optional[Any] = None, 492 metadata: Optional[Any] = None, 493 version: Optional[str] = None, 494 level: Optional[SpanLevel] = None, 495 status_message: Optional[str] = None, 496 ) -> LangfuseTool: ... 497 498 @overload 499 def start_observation( 500 self, 501 *, 502 trace_context: Optional[TraceContext] = None, 503 name: str, 504 as_type: Literal["chain"], 505 input: Optional[Any] = None, 506 output: Optional[Any] = None, 507 metadata: Optional[Any] = None, 508 version: Optional[str] = None, 509 level: Optional[SpanLevel] = None, 510 status_message: Optional[str] = None, 511 ) -> LangfuseChain: ... 512 513 @overload 514 def start_observation( 515 self, 516 *, 517 trace_context: Optional[TraceContext] = None, 518 name: str, 519 as_type: Literal["retriever"], 520 input: Optional[Any] = None, 521 output: Optional[Any] = None, 522 metadata: Optional[Any] = None, 523 version: Optional[str] = None, 524 level: Optional[SpanLevel] = None, 525 status_message: Optional[str] = None, 526 ) -> LangfuseRetriever: ... 527 528 @overload 529 def start_observation( 530 self, 531 *, 532 trace_context: Optional[TraceContext] = None, 533 name: str, 534 as_type: Literal["evaluator"], 535 input: Optional[Any] = None, 536 output: Optional[Any] = None, 537 metadata: Optional[Any] = None, 538 version: Optional[str] = None, 539 level: Optional[SpanLevel] = None, 540 status_message: Optional[str] = None, 541 ) -> LangfuseEvaluator: ... 542 543 @overload 544 def start_observation( 545 self, 546 *, 547 trace_context: Optional[TraceContext] = None, 548 name: str, 549 as_type: Literal["embedding"], 550 input: Optional[Any] = None, 551 output: Optional[Any] = None, 552 metadata: Optional[Any] = None, 553 version: Optional[str] = None, 554 level: Optional[SpanLevel] = None, 555 status_message: Optional[str] = None, 556 completion_start_time: Optional[datetime] = None, 557 model: Optional[str] = None, 558 model_parameters: Optional[Dict[str, MapValue]] = None, 559 usage_details: Optional[Dict[str, int]] = None, 560 cost_details: Optional[Dict[str, float]] = None, 561 prompt: Optional[PromptClient] = None, 562 ) -> LangfuseEmbedding: ... 563 564 @overload 565 def start_observation( 566 self, 567 *, 568 trace_context: Optional[TraceContext] = None, 569 name: str, 570 as_type: Literal["guardrail"], 571 input: Optional[Any] = None, 572 output: Optional[Any] = None, 573 metadata: Optional[Any] = None, 574 version: Optional[str] = None, 575 level: Optional[SpanLevel] = None, 576 status_message: Optional[str] = None, 577 ) -> LangfuseGuardrail: ... 578 579 def start_observation( 580 self, 581 *, 582 trace_context: Optional[TraceContext] = None, 583 name: str, 584 as_type: ObservationTypeLiteralNoEvent = "span", 585 input: Optional[Any] = None, 586 output: Optional[Any] = None, 587 metadata: Optional[Any] = None, 588 version: Optional[str] = None, 589 level: Optional[SpanLevel] = None, 590 status_message: Optional[str] = None, 591 completion_start_time: Optional[datetime] = None, 592 model: Optional[str] = None, 593 model_parameters: Optional[Dict[str, MapValue]] = None, 594 usage_details: Optional[Dict[str, int]] = None, 595 cost_details: Optional[Dict[str, float]] = None, 596 prompt: Optional[PromptClient] = None, 597 ) -> Union[ 598 LangfuseSpan, 599 LangfuseGeneration, 600 LangfuseAgent, 601 LangfuseTool, 602 LangfuseChain, 603 LangfuseRetriever, 604 LangfuseEvaluator, 605 LangfuseEmbedding, 606 LangfuseGuardrail, 607 ]: 608 """Create a new observation of the specified type. 609 610 This method creates a new observation but does not set it as the current span in the 611 context. To create and use an observation within a context, use start_as_current_observation(). 612 613 Args: 614 trace_context: Optional context for connecting to an existing trace 615 name: Name of the observation 616 as_type: Type of observation to create (defaults to "span") 617 input: Input data for the operation 618 output: Output data from the operation 619 metadata: Additional metadata to associate with the observation 620 version: Version identifier for the code or component 621 level: Importance level of the observation 622 status_message: Optional status message for the observation 623 completion_start_time: When the model started generating (for generation types) 624 model: Name/identifier of the AI model used (for generation types) 625 model_parameters: Parameters used for the model (for generation types) 626 usage_details: Token usage information (for generation types) 627 cost_details: Cost information (for generation types) 628 prompt: Associated prompt template (for generation types) 629 630 Returns: 631 An observation object of the appropriate type that must be ended with .end() 632 """ 633 if trace_context: 634 trace_id = trace_context.get("trace_id", None) 635 parent_span_id = trace_context.get("parent_span_id", None) 636 637 if trace_id: 638 remote_parent_span = self._create_remote_parent_span( 639 trace_id=trace_id, parent_span_id=parent_span_id 640 ) 641 642 with otel_trace_api.use_span( 643 cast(otel_trace_api.Span, remote_parent_span) 644 ): 645 otel_span = self._otel_tracer.start_span(name=name) 646 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 647 648 return self._create_observation_from_otel_span( 649 otel_span=otel_span, 650 as_type=as_type, 651 input=input, 652 output=output, 653 metadata=metadata, 654 version=version, 655 level=level, 656 status_message=status_message, 657 completion_start_time=completion_start_time, 658 model=model, 659 model_parameters=model_parameters, 660 usage_details=usage_details, 661 cost_details=cost_details, 662 prompt=prompt, 663 ) 664 665 otel_span = self._otel_tracer.start_span(name=name) 666 667 return self._create_observation_from_otel_span( 668 otel_span=otel_span, 669 as_type=as_type, 670 input=input, 671 output=output, 672 metadata=metadata, 673 version=version, 674 level=level, 675 status_message=status_message, 676 completion_start_time=completion_start_time, 677 model=model, 678 model_parameters=model_parameters, 679 usage_details=usage_details, 680 cost_details=cost_details, 681 prompt=prompt, 682 ) 683 684 def _create_observation_from_otel_span( 685 self, 686 *, 687 otel_span: otel_trace_api.Span, 688 as_type: ObservationTypeLiteralNoEvent, 689 input: Optional[Any] = None, 690 output: Optional[Any] = None, 691 metadata: Optional[Any] = None, 692 version: Optional[str] = None, 693 level: Optional[SpanLevel] = None, 694 status_message: Optional[str] = None, 695 completion_start_time: Optional[datetime] = None, 696 model: Optional[str] = None, 697 model_parameters: Optional[Dict[str, MapValue]] = None, 698 usage_details: Optional[Dict[str, int]] = None, 699 cost_details: Optional[Dict[str, float]] = None, 700 prompt: Optional[PromptClient] = None, 701 ) -> Union[ 702 LangfuseSpan, 703 LangfuseGeneration, 704 LangfuseAgent, 705 LangfuseTool, 706 LangfuseChain, 707 LangfuseRetriever, 708 LangfuseEvaluator, 709 LangfuseEmbedding, 710 LangfuseGuardrail, 711 ]: 712 """Create the appropriate observation type from an OTEL span.""" 713 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 714 observation_class = self._get_span_class(as_type) 715 # Type ignore to prevent overloads of internal _get_span_class function, 716 # issue is that LangfuseEvent could be returned and that classes have diff. args 717 return observation_class( # type: ignore[return-value,call-arg] 718 otel_span=otel_span, 719 langfuse_client=self, 720 environment=self._environment, 721 input=input, 722 output=output, 723 metadata=metadata, 724 version=version, 725 level=level, 726 status_message=status_message, 727 completion_start_time=completion_start_time, 728 model=model, 729 model_parameters=model_parameters, 730 usage_details=usage_details, 731 cost_details=cost_details, 732 prompt=prompt, 733 ) 734 else: 735 # For other types (e.g. span, guardrail), create appropriate class without generation properties 736 observation_class = self._get_span_class(as_type) 737 # Type ignore to prevent overloads of internal _get_span_class function, 738 # issue is that LangfuseEvent could be returned and that classes have diff. args 739 return observation_class( # type: ignore[return-value,call-arg] 740 otel_span=otel_span, 741 langfuse_client=self, 742 environment=self._environment, 743 input=input, 744 output=output, 745 metadata=metadata, 746 version=version, 747 level=level, 748 status_message=status_message, 749 ) 750 # span._observation_type = as_type 751 # span._otel_span.set_attribute("langfuse.observation.type", as_type) 752 # return span 753 754 def start_generation( 755 self, 756 *, 757 trace_context: Optional[TraceContext] = None, 758 name: str, 759 input: Optional[Any] = None, 760 output: Optional[Any] = None, 761 metadata: Optional[Any] = None, 762 version: Optional[str] = None, 763 level: Optional[SpanLevel] = None, 764 status_message: Optional[str] = None, 765 completion_start_time: Optional[datetime] = None, 766 model: Optional[str] = None, 767 model_parameters: Optional[Dict[str, MapValue]] = None, 768 usage_details: Optional[Dict[str, int]] = None, 769 cost_details: Optional[Dict[str, float]] = None, 770 prompt: Optional[PromptClient] = None, 771 ) -> LangfuseGeneration: 772 """Create a new generation span for model generations. 773 774 DEPRECATED: This method is deprecated and will be removed in a future version. 775 Use start_observation(as_type='generation') instead. 776 777 This method creates a specialized span for tracking model generations. 778 It includes additional fields specific to model generations such as model name, 779 token usage, and cost details. 780 781 The created generation span will be the child of the current span in the context. 782 783 Args: 784 trace_context: Optional context for connecting to an existing trace 785 name: Name of the generation operation 786 input: Input data for the model (e.g., prompts) 787 output: Output from the model (e.g., completions) 788 metadata: Additional metadata to associate with the generation 789 version: Version identifier for the model or component 790 level: Importance level of the generation (info, warning, error) 791 status_message: Optional status message for the generation 792 completion_start_time: When the model started generating the response 793 model: Name/identifier of the AI model used (e.g., "gpt-4") 794 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 795 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 796 cost_details: Cost information for the model call 797 prompt: Associated prompt template from Langfuse prompt management 798 799 Returns: 800 A LangfuseGeneration object that must be ended with .end() when complete 801 802 Example: 803 ```python 804 generation = langfuse.start_generation( 805 name="answer-generation", 806 model="gpt-4", 807 input={"prompt": "Explain quantum computing"}, 808 model_parameters={"temperature": 0.7} 809 ) 810 try: 811 # Call model API 812 response = llm.generate(...) 813 814 generation.update( 815 output=response.text, 816 usage_details={ 817 "prompt_tokens": response.usage.prompt_tokens, 818 "completion_tokens": response.usage.completion_tokens 819 } 820 ) 821 finally: 822 generation.end() 823 ``` 824 """ 825 warnings.warn( 826 "start_generation is deprecated and will be removed in a future version. " 827 "Use start_observation(as_type='generation') instead.", 828 DeprecationWarning, 829 stacklevel=2, 830 ) 831 return self.start_observation( 832 trace_context=trace_context, 833 name=name, 834 as_type="generation", 835 input=input, 836 output=output, 837 metadata=metadata, 838 version=version, 839 level=level, 840 status_message=status_message, 841 completion_start_time=completion_start_time, 842 model=model, 843 model_parameters=model_parameters, 844 usage_details=usage_details, 845 cost_details=cost_details, 846 prompt=prompt, 847 ) 848 849 def start_as_current_generation( 850 self, 851 *, 852 trace_context: Optional[TraceContext] = None, 853 name: str, 854 input: Optional[Any] = None, 855 output: Optional[Any] = None, 856 metadata: Optional[Any] = None, 857 version: Optional[str] = None, 858 level: Optional[SpanLevel] = None, 859 status_message: Optional[str] = None, 860 completion_start_time: Optional[datetime] = None, 861 model: Optional[str] = None, 862 model_parameters: Optional[Dict[str, MapValue]] = None, 863 usage_details: Optional[Dict[str, int]] = None, 864 cost_details: Optional[Dict[str, float]] = None, 865 prompt: Optional[PromptClient] = None, 866 end_on_exit: Optional[bool] = None, 867 ) -> _AgnosticContextManager[LangfuseGeneration]: 868 """Create a new generation span and set it as the current span in a context manager. 869 870 DEPRECATED: This method is deprecated and will be removed in a future version. 871 Use start_as_current_observation(as_type='generation') instead. 872 873 This method creates a specialized span for model generations and sets it as the 874 current span within a context manager. Use this method with a 'with' statement to 875 automatically handle the generation span lifecycle within a code block. 876 877 The created generation span will be the child of the current span in the context. 878 879 Args: 880 trace_context: Optional context for connecting to an existing trace 881 name: Name of the generation operation 882 input: Input data for the model (e.g., prompts) 883 output: Output from the model (e.g., completions) 884 metadata: Additional metadata to associate with the generation 885 version: Version identifier for the model or component 886 level: Importance level of the generation (info, warning, error) 887 status_message: Optional status message for the generation 888 completion_start_time: When the model started generating the response 889 model: Name/identifier of the AI model used (e.g., "gpt-4") 890 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 891 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 892 cost_details: Cost information for the model call 893 prompt: Associated prompt template from Langfuse prompt management 894 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 895 896 Returns: 897 A context manager that yields a LangfuseGeneration 898 899 Example: 900 ```python 901 with langfuse.start_as_current_generation( 902 name="answer-generation", 903 model="gpt-4", 904 input={"prompt": "Explain quantum computing"} 905 ) as generation: 906 # Call model API 907 response = llm.generate(...) 908 909 # Update with results 910 generation.update( 911 output=response.text, 912 usage_details={ 913 "prompt_tokens": response.usage.prompt_tokens, 914 "completion_tokens": response.usage.completion_tokens 915 } 916 ) 917 ``` 918 """ 919 warnings.warn( 920 "start_as_current_generation is deprecated and will be removed in a future version. " 921 "Use start_as_current_observation(as_type='generation') instead.", 922 DeprecationWarning, 923 stacklevel=2, 924 ) 925 return self.start_as_current_observation( 926 trace_context=trace_context, 927 name=name, 928 as_type="generation", 929 input=input, 930 output=output, 931 metadata=metadata, 932 version=version, 933 level=level, 934 status_message=status_message, 935 completion_start_time=completion_start_time, 936 model=model, 937 model_parameters=model_parameters, 938 usage_details=usage_details, 939 cost_details=cost_details, 940 prompt=prompt, 941 end_on_exit=end_on_exit, 942 ) 943 944 @overload 945 def start_as_current_observation( 946 self, 947 *, 948 trace_context: Optional[TraceContext] = None, 949 name: str, 950 as_type: Literal["generation"], 951 input: Optional[Any] = None, 952 output: Optional[Any] = None, 953 metadata: Optional[Any] = None, 954 version: Optional[str] = None, 955 level: Optional[SpanLevel] = None, 956 status_message: Optional[str] = None, 957 completion_start_time: Optional[datetime] = None, 958 model: Optional[str] = None, 959 model_parameters: Optional[Dict[str, MapValue]] = None, 960 usage_details: Optional[Dict[str, int]] = None, 961 cost_details: Optional[Dict[str, float]] = None, 962 prompt: Optional[PromptClient] = None, 963 end_on_exit: Optional[bool] = None, 964 ) -> _AgnosticContextManager[LangfuseGeneration]: ... 965 966 @overload 967 def start_as_current_observation( 968 self, 969 *, 970 trace_context: Optional[TraceContext] = None, 971 name: str, 972 as_type: Literal["span"] = "span", 973 input: Optional[Any] = None, 974 output: Optional[Any] = None, 975 metadata: Optional[Any] = None, 976 version: Optional[str] = None, 977 level: Optional[SpanLevel] = None, 978 status_message: Optional[str] = None, 979 end_on_exit: Optional[bool] = None, 980 ) -> _AgnosticContextManager[LangfuseSpan]: ... 981 982 @overload 983 def start_as_current_observation( 984 self, 985 *, 986 trace_context: Optional[TraceContext] = None, 987 name: str, 988 as_type: Literal["agent"], 989 input: Optional[Any] = None, 990 output: Optional[Any] = None, 991 metadata: Optional[Any] = None, 992 version: Optional[str] = None, 993 level: Optional[SpanLevel] = None, 994 status_message: Optional[str] = None, 995 end_on_exit: Optional[bool] = None, 996 ) -> _AgnosticContextManager[LangfuseAgent]: ... 997 998 @overload 999 def start_as_current_observation( 1000 self, 1001 *, 1002 trace_context: Optional[TraceContext] = None, 1003 name: str, 1004 as_type: Literal["tool"], 1005 input: Optional[Any] = None, 1006 output: Optional[Any] = None, 1007 metadata: Optional[Any] = None, 1008 version: Optional[str] = None, 1009 level: Optional[SpanLevel] = None, 1010 status_message: Optional[str] = None, 1011 end_on_exit: Optional[bool] = None, 1012 ) -> _AgnosticContextManager[LangfuseTool]: ... 1013 1014 @overload 1015 def start_as_current_observation( 1016 self, 1017 *, 1018 trace_context: Optional[TraceContext] = None, 1019 name: str, 1020 as_type: Literal["chain"], 1021 input: Optional[Any] = None, 1022 output: Optional[Any] = None, 1023 metadata: Optional[Any] = None, 1024 version: Optional[str] = None, 1025 level: Optional[SpanLevel] = None, 1026 status_message: Optional[str] = None, 1027 end_on_exit: Optional[bool] = None, 1028 ) -> _AgnosticContextManager[LangfuseChain]: ... 1029 1030 @overload 1031 def start_as_current_observation( 1032 self, 1033 *, 1034 trace_context: Optional[TraceContext] = None, 1035 name: str, 1036 as_type: Literal["retriever"], 1037 input: Optional[Any] = None, 1038 output: Optional[Any] = None, 1039 metadata: Optional[Any] = None, 1040 version: Optional[str] = None, 1041 level: Optional[SpanLevel] = None, 1042 status_message: Optional[str] = None, 1043 end_on_exit: Optional[bool] = None, 1044 ) -> _AgnosticContextManager[LangfuseRetriever]: ... 1045 1046 @overload 1047 def start_as_current_observation( 1048 self, 1049 *, 1050 trace_context: Optional[TraceContext] = None, 1051 name: str, 1052 as_type: Literal["evaluator"], 1053 input: Optional[Any] = None, 1054 output: Optional[Any] = None, 1055 metadata: Optional[Any] = None, 1056 version: Optional[str] = None, 1057 level: Optional[SpanLevel] = None, 1058 status_message: Optional[str] = None, 1059 end_on_exit: Optional[bool] = None, 1060 ) -> _AgnosticContextManager[LangfuseEvaluator]: ... 1061 1062 @overload 1063 def start_as_current_observation( 1064 self, 1065 *, 1066 trace_context: Optional[TraceContext] = None, 1067 name: str, 1068 as_type: Literal["embedding"], 1069 input: Optional[Any] = None, 1070 output: Optional[Any] = None, 1071 metadata: Optional[Any] = None, 1072 version: Optional[str] = None, 1073 level: Optional[SpanLevel] = None, 1074 status_message: Optional[str] = None, 1075 completion_start_time: Optional[datetime] = None, 1076 model: Optional[str] = None, 1077 model_parameters: Optional[Dict[str, MapValue]] = None, 1078 usage_details: Optional[Dict[str, int]] = None, 1079 cost_details: Optional[Dict[str, float]] = None, 1080 prompt: Optional[PromptClient] = None, 1081 end_on_exit: Optional[bool] = None, 1082 ) -> _AgnosticContextManager[LangfuseEmbedding]: ... 1083 1084 @overload 1085 def start_as_current_observation( 1086 self, 1087 *, 1088 trace_context: Optional[TraceContext] = None, 1089 name: str, 1090 as_type: Literal["guardrail"], 1091 input: Optional[Any] = None, 1092 output: Optional[Any] = None, 1093 metadata: Optional[Any] = None, 1094 version: Optional[str] = None, 1095 level: Optional[SpanLevel] = None, 1096 status_message: Optional[str] = None, 1097 end_on_exit: Optional[bool] = None, 1098 ) -> _AgnosticContextManager[LangfuseGuardrail]: ... 1099 1100 def start_as_current_observation( 1101 self, 1102 *, 1103 trace_context: Optional[TraceContext] = None, 1104 name: str, 1105 as_type: ObservationTypeLiteralNoEvent = "span", 1106 input: Optional[Any] = None, 1107 output: Optional[Any] = None, 1108 metadata: Optional[Any] = None, 1109 version: Optional[str] = None, 1110 level: Optional[SpanLevel] = None, 1111 status_message: Optional[str] = None, 1112 completion_start_time: Optional[datetime] = None, 1113 model: Optional[str] = None, 1114 model_parameters: Optional[Dict[str, MapValue]] = None, 1115 usage_details: Optional[Dict[str, int]] = None, 1116 cost_details: Optional[Dict[str, float]] = None, 1117 prompt: Optional[PromptClient] = None, 1118 end_on_exit: Optional[bool] = None, 1119 ) -> Union[ 1120 _AgnosticContextManager[LangfuseGeneration], 1121 _AgnosticContextManager[LangfuseSpan], 1122 _AgnosticContextManager[LangfuseAgent], 1123 _AgnosticContextManager[LangfuseTool], 1124 _AgnosticContextManager[LangfuseChain], 1125 _AgnosticContextManager[LangfuseRetriever], 1126 _AgnosticContextManager[LangfuseEvaluator], 1127 _AgnosticContextManager[LangfuseEmbedding], 1128 _AgnosticContextManager[LangfuseGuardrail], 1129 ]: 1130 """Create a new observation and set it as the current span in a context manager. 1131 1132 This method creates a new observation of the specified type and sets it as the 1133 current span within a context manager. Use this method with a 'with' statement to 1134 automatically handle the observation lifecycle within a code block. 1135 1136 The created observation will be the child of the current span in the context. 1137 1138 Args: 1139 trace_context: Optional context for connecting to an existing trace 1140 name: Name of the observation (e.g., function or operation name) 1141 as_type: Type of observation to create (defaults to "span") 1142 input: Input data for the operation (can be any JSON-serializable object) 1143 output: Output data from the operation (can be any JSON-serializable object) 1144 metadata: Additional metadata to associate with the observation 1145 version: Version identifier for the code or component 1146 level: Importance level of the observation (info, warning, error) 1147 status_message: Optional status message for the observation 1148 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 1149 1150 The following parameters are available when as_type is: "generation" or "embedding". 1151 completion_start_time: When the model started generating the response 1152 model: Name/identifier of the AI model used (e.g., "gpt-4") 1153 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1154 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1155 cost_details: Cost information for the model call 1156 prompt: Associated prompt template from Langfuse prompt management 1157 1158 Returns: 1159 A context manager that yields the appropriate observation type based on as_type 1160 1161 Example: 1162 ```python 1163 # Create a span 1164 with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: 1165 # Do work 1166 result = process_data() 1167 span.update(output=result) 1168 1169 # Create a child span automatically 1170 with span.start_as_current_span(name="sub-operation") as child_span: 1171 # Do sub-operation work 1172 child_span.update(output="sub-result") 1173 1174 # Create a tool observation 1175 with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: 1176 # Do tool work 1177 results = search_web(query) 1178 tool.update(output=results) 1179 1180 # Create a generation observation 1181 with langfuse.start_as_current_observation( 1182 name="answer-generation", 1183 as_type="generation", 1184 model="gpt-4" 1185 ) as generation: 1186 # Generate answer 1187 response = llm.generate(...) 1188 generation.update(output=response) 1189 ``` 1190 """ 1191 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 1192 if trace_context: 1193 trace_id = trace_context.get("trace_id", None) 1194 parent_span_id = trace_context.get("parent_span_id", None) 1195 1196 if trace_id: 1197 remote_parent_span = self._create_remote_parent_span( 1198 trace_id=trace_id, parent_span_id=parent_span_id 1199 ) 1200 1201 return cast( 1202 Union[ 1203 _AgnosticContextManager[LangfuseGeneration], 1204 _AgnosticContextManager[LangfuseEmbedding], 1205 ], 1206 self._create_span_with_parent_context( 1207 as_type=as_type, 1208 name=name, 1209 remote_parent_span=remote_parent_span, 1210 parent=None, 1211 end_on_exit=end_on_exit, 1212 input=input, 1213 output=output, 1214 metadata=metadata, 1215 version=version, 1216 level=level, 1217 status_message=status_message, 1218 completion_start_time=completion_start_time, 1219 model=model, 1220 model_parameters=model_parameters, 1221 usage_details=usage_details, 1222 cost_details=cost_details, 1223 prompt=prompt, 1224 ), 1225 ) 1226 1227 return cast( 1228 Union[ 1229 _AgnosticContextManager[LangfuseGeneration], 1230 _AgnosticContextManager[LangfuseEmbedding], 1231 ], 1232 self._start_as_current_otel_span_with_processed_media( 1233 as_type=as_type, 1234 name=name, 1235 end_on_exit=end_on_exit, 1236 input=input, 1237 output=output, 1238 metadata=metadata, 1239 version=version, 1240 level=level, 1241 status_message=status_message, 1242 completion_start_time=completion_start_time, 1243 model=model, 1244 model_parameters=model_parameters, 1245 usage_details=usage_details, 1246 cost_details=cost_details, 1247 prompt=prompt, 1248 ), 1249 ) 1250 1251 if as_type in get_observation_types_list(ObservationTypeSpanLike): 1252 if trace_context: 1253 trace_id = trace_context.get("trace_id", None) 1254 parent_span_id = trace_context.get("parent_span_id", None) 1255 1256 if trace_id: 1257 remote_parent_span = self._create_remote_parent_span( 1258 trace_id=trace_id, parent_span_id=parent_span_id 1259 ) 1260 1261 return cast( 1262 Union[ 1263 _AgnosticContextManager[LangfuseSpan], 1264 _AgnosticContextManager[LangfuseAgent], 1265 _AgnosticContextManager[LangfuseTool], 1266 _AgnosticContextManager[LangfuseChain], 1267 _AgnosticContextManager[LangfuseRetriever], 1268 _AgnosticContextManager[LangfuseEvaluator], 1269 _AgnosticContextManager[LangfuseGuardrail], 1270 ], 1271 self._create_span_with_parent_context( 1272 as_type=as_type, 1273 name=name, 1274 remote_parent_span=remote_parent_span, 1275 parent=None, 1276 end_on_exit=end_on_exit, 1277 input=input, 1278 output=output, 1279 metadata=metadata, 1280 version=version, 1281 level=level, 1282 status_message=status_message, 1283 ), 1284 ) 1285 1286 return cast( 1287 Union[ 1288 _AgnosticContextManager[LangfuseSpan], 1289 _AgnosticContextManager[LangfuseAgent], 1290 _AgnosticContextManager[LangfuseTool], 1291 _AgnosticContextManager[LangfuseChain], 1292 _AgnosticContextManager[LangfuseRetriever], 1293 _AgnosticContextManager[LangfuseEvaluator], 1294 _AgnosticContextManager[LangfuseGuardrail], 1295 ], 1296 self._start_as_current_otel_span_with_processed_media( 1297 as_type=as_type, 1298 name=name, 1299 end_on_exit=end_on_exit, 1300 input=input, 1301 output=output, 1302 metadata=metadata, 1303 version=version, 1304 level=level, 1305 status_message=status_message, 1306 ), 1307 ) 1308 1309 # This should never be reached since all valid types are handled above 1310 langfuse_logger.warning( 1311 f"Unknown observation type: {as_type}, falling back to span" 1312 ) 1313 return self._start_as_current_otel_span_with_processed_media( 1314 as_type="span", 1315 name=name, 1316 end_on_exit=end_on_exit, 1317 input=input, 1318 output=output, 1319 metadata=metadata, 1320 version=version, 1321 level=level, 1322 status_message=status_message, 1323 ) 1324 1325 def _get_span_class( 1326 self, 1327 as_type: ObservationTypeLiteral, 1328 ) -> Union[ 1329 Type[LangfuseAgent], 1330 Type[LangfuseTool], 1331 Type[LangfuseChain], 1332 Type[LangfuseRetriever], 1333 Type[LangfuseEvaluator], 1334 Type[LangfuseEmbedding], 1335 Type[LangfuseGuardrail], 1336 Type[LangfuseGeneration], 1337 Type[LangfuseEvent], 1338 Type[LangfuseSpan], 1339 ]: 1340 """Get the appropriate span class based on as_type.""" 1341 normalized_type = as_type.lower() 1342 1343 if normalized_type == "agent": 1344 return LangfuseAgent 1345 elif normalized_type == "tool": 1346 return LangfuseTool 1347 elif normalized_type == "chain": 1348 return LangfuseChain 1349 elif normalized_type == "retriever": 1350 return LangfuseRetriever 1351 elif normalized_type == "evaluator": 1352 return LangfuseEvaluator 1353 elif normalized_type == "embedding": 1354 return LangfuseEmbedding 1355 elif normalized_type == "guardrail": 1356 return LangfuseGuardrail 1357 elif normalized_type == "generation": 1358 return LangfuseGeneration 1359 elif normalized_type == "event": 1360 return LangfuseEvent 1361 elif normalized_type == "span": 1362 return LangfuseSpan 1363 else: 1364 return LangfuseSpan 1365 1366 @_agnosticcontextmanager 1367 def _create_span_with_parent_context( 1368 self, 1369 *, 1370 name: str, 1371 parent: Optional[otel_trace_api.Span] = None, 1372 remote_parent_span: Optional[otel_trace_api.Span] = None, 1373 as_type: ObservationTypeLiteralNoEvent, 1374 end_on_exit: Optional[bool] = None, 1375 input: Optional[Any] = None, 1376 output: Optional[Any] = None, 1377 metadata: Optional[Any] = None, 1378 version: Optional[str] = None, 1379 level: Optional[SpanLevel] = None, 1380 status_message: Optional[str] = None, 1381 completion_start_time: Optional[datetime] = None, 1382 model: Optional[str] = None, 1383 model_parameters: Optional[Dict[str, MapValue]] = None, 1384 usage_details: Optional[Dict[str, int]] = None, 1385 cost_details: Optional[Dict[str, float]] = None, 1386 prompt: Optional[PromptClient] = None, 1387 ) -> Any: 1388 parent_span = parent or cast(otel_trace_api.Span, remote_parent_span) 1389 1390 with otel_trace_api.use_span(parent_span): 1391 with self._start_as_current_otel_span_with_processed_media( 1392 name=name, 1393 as_type=as_type, 1394 end_on_exit=end_on_exit, 1395 input=input, 1396 output=output, 1397 metadata=metadata, 1398 version=version, 1399 level=level, 1400 status_message=status_message, 1401 completion_start_time=completion_start_time, 1402 model=model, 1403 model_parameters=model_parameters, 1404 usage_details=usage_details, 1405 cost_details=cost_details, 1406 prompt=prompt, 1407 ) as langfuse_span: 1408 if remote_parent_span is not None: 1409 langfuse_span._otel_span.set_attribute( 1410 LangfuseOtelSpanAttributes.AS_ROOT, True 1411 ) 1412 1413 yield langfuse_span 1414 1415 @_agnosticcontextmanager 1416 def _start_as_current_otel_span_with_processed_media( 1417 self, 1418 *, 1419 name: str, 1420 as_type: Optional[ObservationTypeLiteralNoEvent] = None, 1421 end_on_exit: Optional[bool] = None, 1422 input: Optional[Any] = None, 1423 output: Optional[Any] = None, 1424 metadata: Optional[Any] = None, 1425 version: Optional[str] = None, 1426 level: Optional[SpanLevel] = None, 1427 status_message: Optional[str] = None, 1428 completion_start_time: Optional[datetime] = None, 1429 model: Optional[str] = None, 1430 model_parameters: Optional[Dict[str, MapValue]] = None, 1431 usage_details: Optional[Dict[str, int]] = None, 1432 cost_details: Optional[Dict[str, float]] = None, 1433 prompt: Optional[PromptClient] = None, 1434 ) -> Any: 1435 with self._otel_tracer.start_as_current_span( 1436 name=name, 1437 end_on_exit=end_on_exit if end_on_exit is not None else True, 1438 ) as otel_span: 1439 span_class = self._get_span_class( 1440 as_type or "generation" 1441 ) # default was "generation" 1442 common_args = { 1443 "otel_span": otel_span, 1444 "langfuse_client": self, 1445 "environment": self._environment, 1446 "input": input, 1447 "output": output, 1448 "metadata": metadata, 1449 "version": version, 1450 "level": level, 1451 "status_message": status_message, 1452 } 1453 1454 if span_class in [ 1455 LangfuseGeneration, 1456 LangfuseEmbedding, 1457 ]: 1458 common_args.update( 1459 { 1460 "completion_start_time": completion_start_time, 1461 "model": model, 1462 "model_parameters": model_parameters, 1463 "usage_details": usage_details, 1464 "cost_details": cost_details, 1465 "prompt": prompt, 1466 } 1467 ) 1468 # For span-like types (span, agent, tool, chain, retriever, evaluator, guardrail), no generation properties needed 1469 1470 yield span_class(**common_args) # type: ignore[arg-type] 1471 1472 def _get_current_otel_span(self) -> Optional[otel_trace_api.Span]: 1473 current_span = otel_trace_api.get_current_span() 1474 1475 if current_span is otel_trace_api.INVALID_SPAN: 1476 langfuse_logger.warning( 1477 "Context error: No active span in current context. Operations that depend on an active span will be skipped. " 1478 "Ensure spans are created with start_as_current_span() or that you're operating within an active span context." 1479 ) 1480 return None 1481 1482 return current_span 1483 1484 def update_current_generation( 1485 self, 1486 *, 1487 name: Optional[str] = None, 1488 input: Optional[Any] = None, 1489 output: Optional[Any] = None, 1490 metadata: Optional[Any] = None, 1491 version: Optional[str] = None, 1492 level: Optional[SpanLevel] = None, 1493 status_message: Optional[str] = None, 1494 completion_start_time: Optional[datetime] = None, 1495 model: Optional[str] = None, 1496 model_parameters: Optional[Dict[str, MapValue]] = None, 1497 usage_details: Optional[Dict[str, int]] = None, 1498 cost_details: Optional[Dict[str, float]] = None, 1499 prompt: Optional[PromptClient] = None, 1500 ) -> None: 1501 """Update the current active generation span with new information. 1502 1503 This method updates the current generation span in the active context with 1504 additional information. It's useful for adding output, usage stats, or other 1505 details that become available during or after model generation. 1506 1507 Args: 1508 name: The generation name 1509 input: Updated input data for the model 1510 output: Output from the model (e.g., completions) 1511 metadata: Additional metadata to associate with the generation 1512 version: Version identifier for the model or component 1513 level: Importance level of the generation (info, warning, error) 1514 status_message: Optional status message for the generation 1515 completion_start_time: When the model started generating the response 1516 model: Name/identifier of the AI model used (e.g., "gpt-4") 1517 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1518 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1519 cost_details: Cost information for the model call 1520 prompt: Associated prompt template from Langfuse prompt management 1521 1522 Example: 1523 ```python 1524 with langfuse.start_as_current_generation(name="answer-query") as generation: 1525 # Initial setup and API call 1526 response = llm.generate(...) 1527 1528 # Update with results that weren't available at creation time 1529 langfuse.update_current_generation( 1530 output=response.text, 1531 usage_details={ 1532 "prompt_tokens": response.usage.prompt_tokens, 1533 "completion_tokens": response.usage.completion_tokens 1534 } 1535 ) 1536 ``` 1537 """ 1538 if not self._tracing_enabled: 1539 langfuse_logger.debug( 1540 "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode." 1541 ) 1542 return 1543 1544 current_otel_span = self._get_current_otel_span() 1545 1546 if current_otel_span is not None: 1547 generation = LangfuseGeneration( 1548 otel_span=current_otel_span, langfuse_client=self 1549 ) 1550 1551 if name: 1552 current_otel_span.update_name(name) 1553 1554 generation.update( 1555 input=input, 1556 output=output, 1557 metadata=metadata, 1558 version=version, 1559 level=level, 1560 status_message=status_message, 1561 completion_start_time=completion_start_time, 1562 model=model, 1563 model_parameters=model_parameters, 1564 usage_details=usage_details, 1565 cost_details=cost_details, 1566 prompt=prompt, 1567 ) 1568 1569 def update_current_span( 1570 self, 1571 *, 1572 name: Optional[str] = None, 1573 input: Optional[Any] = None, 1574 output: Optional[Any] = None, 1575 metadata: Optional[Any] = None, 1576 version: Optional[str] = None, 1577 level: Optional[SpanLevel] = None, 1578 status_message: Optional[str] = None, 1579 ) -> None: 1580 """Update the current active span with new information. 1581 1582 This method updates the current span in the active context with 1583 additional information. It's useful for adding outputs or metadata 1584 that become available during execution. 1585 1586 Args: 1587 name: The span name 1588 input: Updated input data for the operation 1589 output: Output data from the operation 1590 metadata: Additional metadata to associate with the span 1591 version: Version identifier for the code or component 1592 level: Importance level of the span (info, warning, error) 1593 status_message: Optional status message for the span 1594 1595 Example: 1596 ```python 1597 with langfuse.start_as_current_span(name="process-data") as span: 1598 # Initial processing 1599 result = process_first_part() 1600 1601 # Update with intermediate results 1602 langfuse.update_current_span(metadata={"intermediate_result": result}) 1603 1604 # Continue processing 1605 final_result = process_second_part(result) 1606 1607 # Final update 1608 langfuse.update_current_span(output=final_result) 1609 ``` 1610 """ 1611 if not self._tracing_enabled: 1612 langfuse_logger.debug( 1613 "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode." 1614 ) 1615 return 1616 1617 current_otel_span = self._get_current_otel_span() 1618 1619 if current_otel_span is not None: 1620 span = LangfuseSpan( 1621 otel_span=current_otel_span, 1622 langfuse_client=self, 1623 environment=self._environment, 1624 ) 1625 1626 if name: 1627 current_otel_span.update_name(name) 1628 1629 span.update( 1630 input=input, 1631 output=output, 1632 metadata=metadata, 1633 version=version, 1634 level=level, 1635 status_message=status_message, 1636 ) 1637 1638 def update_current_trace( 1639 self, 1640 *, 1641 name: Optional[str] = None, 1642 user_id: Optional[str] = None, 1643 session_id: Optional[str] = None, 1644 version: Optional[str] = None, 1645 input: Optional[Any] = None, 1646 output: Optional[Any] = None, 1647 metadata: Optional[Any] = None, 1648 tags: Optional[List[str]] = None, 1649 public: Optional[bool] = None, 1650 ) -> None: 1651 """Update the current trace with additional information. 1652 1653 Args: 1654 name: Updated name for the Langfuse trace 1655 user_id: ID of the user who initiated the Langfuse trace 1656 session_id: Session identifier for grouping related Langfuse traces 1657 version: Version identifier for the application or service 1658 input: Input data for the overall Langfuse trace 1659 output: Output data from the overall Langfuse trace 1660 metadata: Additional metadata to associate with the Langfuse trace 1661 tags: List of tags to categorize the Langfuse trace 1662 public: Whether the Langfuse trace should be publicly accessible 1663 1664 See Also: 1665 :func:`langfuse.propagate_attributes`: Recommended replacement 1666 """ 1667 if not self._tracing_enabled: 1668 langfuse_logger.debug( 1669 "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode." 1670 ) 1671 return 1672 1673 current_otel_span = self._get_current_otel_span() 1674 1675 if current_otel_span is not None and current_otel_span.is_recording(): 1676 existing_observation_type = current_otel_span.attributes.get( # type: ignore[attr-defined] 1677 LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span" 1678 ) 1679 # We need to preserve the class to keep the correct observation type 1680 span_class = self._get_span_class(existing_observation_type) 1681 span = span_class( 1682 otel_span=current_otel_span, 1683 langfuse_client=self, 1684 environment=self._environment, 1685 ) 1686 1687 span.update_trace( 1688 name=name, 1689 user_id=user_id, 1690 session_id=session_id, 1691 version=version, 1692 input=input, 1693 output=output, 1694 metadata=metadata, 1695 tags=tags, 1696 public=public, 1697 ) 1698 1699 def create_event( 1700 self, 1701 *, 1702 trace_context: Optional[TraceContext] = None, 1703 name: str, 1704 input: Optional[Any] = None, 1705 output: Optional[Any] = None, 1706 metadata: Optional[Any] = None, 1707 version: Optional[str] = None, 1708 level: Optional[SpanLevel] = None, 1709 status_message: Optional[str] = None, 1710 ) -> LangfuseEvent: 1711 """Create a new Langfuse observation of type 'EVENT'. 1712 1713 The created Langfuse Event observation will be the child of the current span in the context. 1714 1715 Args: 1716 trace_context: Optional context for connecting to an existing trace 1717 name: Name of the span (e.g., function or operation name) 1718 input: Input data for the operation (can be any JSON-serializable object) 1719 output: Output data from the operation (can be any JSON-serializable object) 1720 metadata: Additional metadata to associate with the span 1721 version: Version identifier for the code or component 1722 level: Importance level of the span (info, warning, error) 1723 status_message: Optional status message for the span 1724 1725 Returns: 1726 The Langfuse Event object 1727 1728 Example: 1729 ```python 1730 event = langfuse.create_event(name="process-event") 1731 ``` 1732 """ 1733 timestamp = time_ns() 1734 1735 if trace_context: 1736 trace_id = trace_context.get("trace_id", None) 1737 parent_span_id = trace_context.get("parent_span_id", None) 1738 1739 if trace_id: 1740 remote_parent_span = self._create_remote_parent_span( 1741 trace_id=trace_id, parent_span_id=parent_span_id 1742 ) 1743 1744 with otel_trace_api.use_span( 1745 cast(otel_trace_api.Span, remote_parent_span) 1746 ): 1747 otel_span = self._otel_tracer.start_span( 1748 name=name, start_time=timestamp 1749 ) 1750 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 1751 1752 return cast( 1753 LangfuseEvent, 1754 LangfuseEvent( 1755 otel_span=otel_span, 1756 langfuse_client=self, 1757 environment=self._environment, 1758 input=input, 1759 output=output, 1760 metadata=metadata, 1761 version=version, 1762 level=level, 1763 status_message=status_message, 1764 ).end(end_time=timestamp), 1765 ) 1766 1767 otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp) 1768 1769 return cast( 1770 LangfuseEvent, 1771 LangfuseEvent( 1772 otel_span=otel_span, 1773 langfuse_client=self, 1774 environment=self._environment, 1775 input=input, 1776 output=output, 1777 metadata=metadata, 1778 version=version, 1779 level=level, 1780 status_message=status_message, 1781 ).end(end_time=timestamp), 1782 ) 1783 1784 def _create_remote_parent_span( 1785 self, *, trace_id: str, parent_span_id: Optional[str] 1786 ) -> Any: 1787 if not self._is_valid_trace_id(trace_id): 1788 langfuse_logger.warning( 1789 f"Passed trace ID '{trace_id}' is not a valid 32 lowercase hex char Langfuse trace id. Ignoring trace ID." 1790 ) 1791 1792 if parent_span_id and not self._is_valid_span_id(parent_span_id): 1793 langfuse_logger.warning( 1794 f"Passed span ID '{parent_span_id}' is not a valid 16 lowercase hex char Langfuse span id. Ignoring parent span ID." 1795 ) 1796 1797 int_trace_id = int(trace_id, 16) 1798 int_parent_span_id = ( 1799 int(parent_span_id, 16) 1800 if parent_span_id 1801 else RandomIdGenerator().generate_span_id() 1802 ) 1803 1804 span_context = otel_trace_api.SpanContext( 1805 trace_id=int_trace_id, 1806 span_id=int_parent_span_id, 1807 trace_flags=otel_trace_api.TraceFlags(0x01), # mark span as sampled 1808 is_remote=False, 1809 ) 1810 1811 return otel_trace_api.NonRecordingSpan(span_context) 1812 1813 def _is_valid_trace_id(self, trace_id: str) -> bool: 1814 pattern = r"^[0-9a-f]{32}$" 1815 1816 return bool(re.match(pattern, trace_id)) 1817 1818 def _is_valid_span_id(self, span_id: str) -> bool: 1819 pattern = r"^[0-9a-f]{16}$" 1820 1821 return bool(re.match(pattern, span_id)) 1822 1823 def _create_observation_id(self, *, seed: Optional[str] = None) -> str: 1824 """Create a unique observation ID for use with Langfuse. 1825 1826 This method generates a unique observation ID (span ID in OpenTelemetry terms) 1827 for use with various Langfuse APIs. It can either generate a random ID or 1828 create a deterministic ID based on a seed string. 1829 1830 Observation IDs must be 16 lowercase hexadecimal characters, representing 8 bytes. 1831 This method ensures the generated ID meets this requirement. If you need to 1832 correlate an external ID with a Langfuse observation ID, use the external ID as 1833 the seed to get a valid, deterministic observation ID. 1834 1835 Args: 1836 seed: Optional string to use as a seed for deterministic ID generation. 1837 If provided, the same seed will always produce the same ID. 1838 If not provided, a random ID will be generated. 1839 1840 Returns: 1841 A 16-character lowercase hexadecimal string representing the observation ID. 1842 1843 Example: 1844 ```python 1845 # Generate a random observation ID 1846 obs_id = langfuse.create_observation_id() 1847 1848 # Generate a deterministic ID based on a seed 1849 user_obs_id = langfuse.create_observation_id(seed="user-123-feedback") 1850 1851 # Correlate an external item ID with a Langfuse observation ID 1852 item_id = "item-789012" 1853 correlated_obs_id = langfuse.create_observation_id(seed=item_id) 1854 1855 # Use the ID with Langfuse APIs 1856 langfuse.create_score( 1857 name="relevance", 1858 value=0.95, 1859 trace_id=trace_id, 1860 observation_id=obs_id 1861 ) 1862 ``` 1863 """ 1864 if not seed: 1865 span_id_int = RandomIdGenerator().generate_span_id() 1866 1867 return self._format_otel_span_id(span_id_int) 1868 1869 return sha256(seed.encode("utf-8")).digest()[:8].hex() 1870 1871 @staticmethod 1872 def create_trace_id(*, seed: Optional[str] = None) -> str: 1873 """Create a unique trace ID for use with Langfuse. 1874 1875 This method generates a unique trace ID for use with various Langfuse APIs. 1876 It can either generate a random ID or create a deterministic ID based on 1877 a seed string. 1878 1879 Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. 1880 This method ensures the generated ID meets this requirement. If you need to 1881 correlate an external ID with a Langfuse trace ID, use the external ID as the 1882 seed to get a valid, deterministic Langfuse trace ID. 1883 1884 Args: 1885 seed: Optional string to use as a seed for deterministic ID generation. 1886 If provided, the same seed will always produce the same ID. 1887 If not provided, a random ID will be generated. 1888 1889 Returns: 1890 A 32-character lowercase hexadecimal string representing the Langfuse trace ID. 1891 1892 Example: 1893 ```python 1894 # Generate a random trace ID 1895 trace_id = langfuse.create_trace_id() 1896 1897 # Generate a deterministic ID based on a seed 1898 session_trace_id = langfuse.create_trace_id(seed="session-456") 1899 1900 # Correlate an external ID with a Langfuse trace ID 1901 external_id = "external-system-123456" 1902 correlated_trace_id = langfuse.create_trace_id(seed=external_id) 1903 1904 # Use the ID with trace context 1905 with langfuse.start_as_current_span( 1906 name="process-request", 1907 trace_context={"trace_id": trace_id} 1908 ) as span: 1909 # Operation will be part of the specific trace 1910 pass 1911 ``` 1912 """ 1913 if not seed: 1914 trace_id_int = RandomIdGenerator().generate_trace_id() 1915 1916 return Langfuse._format_otel_trace_id(trace_id_int) 1917 1918 return sha256(seed.encode("utf-8")).digest()[:16].hex() 1919 1920 def _get_otel_trace_id(self, otel_span: otel_trace_api.Span) -> str: 1921 span_context = otel_span.get_span_context() 1922 1923 return self._format_otel_trace_id(span_context.trace_id) 1924 1925 def _get_otel_span_id(self, otel_span: otel_trace_api.Span) -> str: 1926 span_context = otel_span.get_span_context() 1927 1928 return self._format_otel_span_id(span_context.span_id) 1929 1930 @staticmethod 1931 def _format_otel_span_id(span_id_int: int) -> str: 1932 """Format an integer span ID to a 16-character lowercase hex string. 1933 1934 Internal method to convert an OpenTelemetry integer span ID to the standard 1935 W3C Trace Context format (16-character lowercase hex string). 1936 1937 Args: 1938 span_id_int: 64-bit integer representing a span ID 1939 1940 Returns: 1941 A 16-character lowercase hexadecimal string 1942 """ 1943 return format(span_id_int, "016x") 1944 1945 @staticmethod 1946 def _format_otel_trace_id(trace_id_int: int) -> str: 1947 """Format an integer trace ID to a 32-character lowercase hex string. 1948 1949 Internal method to convert an OpenTelemetry integer trace ID to the standard 1950 W3C Trace Context format (32-character lowercase hex string). 1951 1952 Args: 1953 trace_id_int: 128-bit integer representing a trace ID 1954 1955 Returns: 1956 A 32-character lowercase hexadecimal string 1957 """ 1958 return format(trace_id_int, "032x") 1959 1960 @overload 1961 def create_score( 1962 self, 1963 *, 1964 name: str, 1965 value: float, 1966 session_id: Optional[str] = None, 1967 dataset_run_id: Optional[str] = None, 1968 trace_id: Optional[str] = None, 1969 observation_id: Optional[str] = None, 1970 score_id: Optional[str] = None, 1971 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1972 comment: Optional[str] = None, 1973 config_id: Optional[str] = None, 1974 metadata: Optional[Any] = None, 1975 ) -> None: ... 1976 1977 @overload 1978 def create_score( 1979 self, 1980 *, 1981 name: str, 1982 value: str, 1983 session_id: Optional[str] = None, 1984 dataset_run_id: Optional[str] = None, 1985 trace_id: Optional[str] = None, 1986 score_id: Optional[str] = None, 1987 observation_id: Optional[str] = None, 1988 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1989 comment: Optional[str] = None, 1990 config_id: Optional[str] = None, 1991 metadata: Optional[Any] = None, 1992 ) -> None: ... 1993 1994 def create_score( 1995 self, 1996 *, 1997 name: str, 1998 value: Union[float, str], 1999 session_id: Optional[str] = None, 2000 dataset_run_id: Optional[str] = None, 2001 trace_id: Optional[str] = None, 2002 observation_id: Optional[str] = None, 2003 score_id: Optional[str] = None, 2004 data_type: Optional[ScoreDataType] = None, 2005 comment: Optional[str] = None, 2006 config_id: Optional[str] = None, 2007 metadata: Optional[Any] = None, 2008 ) -> None: 2009 """Create a score for a specific trace or observation. 2010 2011 This method creates a score for evaluating a Langfuse trace or observation. Scores can be 2012 used to track quality metrics, user feedback, or automated evaluations. 2013 2014 Args: 2015 name: Name of the score (e.g., "relevance", "accuracy") 2016 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2017 session_id: ID of the Langfuse session to associate the score with 2018 dataset_run_id: ID of the Langfuse dataset run to associate the score with 2019 trace_id: ID of the Langfuse trace to associate the score with 2020 observation_id: Optional ID of the specific observation to score. Trace ID must be provided too. 2021 score_id: Optional custom ID for the score (auto-generated if not provided) 2022 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2023 comment: Optional comment or explanation for the score 2024 config_id: Optional ID of a score config defined in Langfuse 2025 metadata: Optional metadata to be attached to the score 2026 2027 Example: 2028 ```python 2029 # Create a numeric score for accuracy 2030 langfuse.create_score( 2031 name="accuracy", 2032 value=0.92, 2033 trace_id="abcdef1234567890abcdef1234567890", 2034 data_type="NUMERIC", 2035 comment="High accuracy with minor irrelevant details" 2036 ) 2037 2038 # Create a categorical score for sentiment 2039 langfuse.create_score( 2040 name="sentiment", 2041 value="positive", 2042 trace_id="abcdef1234567890abcdef1234567890", 2043 observation_id="abcdef1234567890", 2044 data_type="CATEGORICAL" 2045 ) 2046 ``` 2047 """ 2048 if not self._tracing_enabled: 2049 return 2050 2051 score_id = score_id or self._create_observation_id() 2052 2053 try: 2054 new_body = ScoreBody( 2055 id=score_id, 2056 sessionId=session_id, 2057 datasetRunId=dataset_run_id, 2058 traceId=trace_id, 2059 observationId=observation_id, 2060 name=name, 2061 value=value, 2062 dataType=data_type, # type: ignore 2063 comment=comment, 2064 configId=config_id, 2065 environment=self._environment, 2066 metadata=metadata, 2067 ) 2068 2069 event = { 2070 "id": self.create_trace_id(), 2071 "type": "score-create", 2072 "timestamp": _get_timestamp(), 2073 "body": new_body, 2074 } 2075 2076 if self._resources is not None: 2077 # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar 2078 force_sample = ( 2079 not self._is_valid_trace_id(trace_id) if trace_id else True 2080 ) 2081 2082 self._resources.add_score_task( 2083 event, 2084 force_sample=force_sample, 2085 ) 2086 2087 except Exception as e: 2088 langfuse_logger.exception( 2089 f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}" 2090 ) 2091 2092 @overload 2093 def score_current_span( 2094 self, 2095 *, 2096 name: str, 2097 value: float, 2098 score_id: Optional[str] = None, 2099 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2100 comment: Optional[str] = None, 2101 config_id: Optional[str] = None, 2102 ) -> None: ... 2103 2104 @overload 2105 def score_current_span( 2106 self, 2107 *, 2108 name: str, 2109 value: str, 2110 score_id: Optional[str] = None, 2111 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2112 comment: Optional[str] = None, 2113 config_id: Optional[str] = None, 2114 ) -> None: ... 2115 2116 def score_current_span( 2117 self, 2118 *, 2119 name: str, 2120 value: Union[float, str], 2121 score_id: Optional[str] = None, 2122 data_type: Optional[ScoreDataType] = None, 2123 comment: Optional[str] = None, 2124 config_id: Optional[str] = None, 2125 ) -> None: 2126 """Create a score for the current active span. 2127 2128 This method scores the currently active span in the context. It's a convenient 2129 way to score the current operation without needing to know its trace and span IDs. 2130 2131 Args: 2132 name: Name of the score (e.g., "relevance", "accuracy") 2133 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2134 score_id: Optional custom ID for the score (auto-generated if not provided) 2135 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2136 comment: Optional comment or explanation for the score 2137 config_id: Optional ID of a score config defined in Langfuse 2138 2139 Example: 2140 ```python 2141 with langfuse.start_as_current_generation(name="answer-query") as generation: 2142 # Generate answer 2143 response = generate_answer(...) 2144 generation.update(output=response) 2145 2146 # Score the generation 2147 langfuse.score_current_span( 2148 name="relevance", 2149 value=0.85, 2150 data_type="NUMERIC", 2151 comment="Mostly relevant but contains some tangential information" 2152 ) 2153 ``` 2154 """ 2155 current_span = self._get_current_otel_span() 2156 2157 if current_span is not None: 2158 trace_id = self._get_otel_trace_id(current_span) 2159 observation_id = self._get_otel_span_id(current_span) 2160 2161 langfuse_logger.info( 2162 f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}" 2163 ) 2164 2165 self.create_score( 2166 trace_id=trace_id, 2167 observation_id=observation_id, 2168 name=name, 2169 value=cast(str, value), 2170 score_id=score_id, 2171 data_type=cast(Literal["CATEGORICAL"], data_type), 2172 comment=comment, 2173 config_id=config_id, 2174 ) 2175 2176 @overload 2177 def score_current_trace( 2178 self, 2179 *, 2180 name: str, 2181 value: float, 2182 score_id: Optional[str] = None, 2183 data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2184 comment: Optional[str] = None, 2185 config_id: Optional[str] = None, 2186 ) -> None: ... 2187 2188 @overload 2189 def score_current_trace( 2190 self, 2191 *, 2192 name: str, 2193 value: str, 2194 score_id: Optional[str] = None, 2195 data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2196 comment: Optional[str] = None, 2197 config_id: Optional[str] = None, 2198 ) -> None: ... 2199 2200 def score_current_trace( 2201 self, 2202 *, 2203 name: str, 2204 value: Union[float, str], 2205 score_id: Optional[str] = None, 2206 data_type: Optional[ScoreDataType] = None, 2207 comment: Optional[str] = None, 2208 config_id: Optional[str] = None, 2209 ) -> None: 2210 """Create a score for the current trace. 2211 2212 This method scores the trace of the currently active span. Unlike score_current_span, 2213 this method associates the score with the entire trace rather than a specific span. 2214 It's useful for scoring overall performance or quality of the entire operation. 2215 2216 Args: 2217 name: Name of the score (e.g., "user_satisfaction", "overall_quality") 2218 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2219 score_id: Optional custom ID for the score (auto-generated if not provided) 2220 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2221 comment: Optional comment or explanation for the score 2222 config_id: Optional ID of a score config defined in Langfuse 2223 2224 Example: 2225 ```python 2226 with langfuse.start_as_current_span(name="process-user-request") as span: 2227 # Process request 2228 result = process_complete_request() 2229 span.update(output=result) 2230 2231 # Score the overall trace 2232 langfuse.score_current_trace( 2233 name="overall_quality", 2234 value=0.95, 2235 data_type="NUMERIC", 2236 comment="High quality end-to-end response" 2237 ) 2238 ``` 2239 """ 2240 current_span = self._get_current_otel_span() 2241 2242 if current_span is not None: 2243 trace_id = self._get_otel_trace_id(current_span) 2244 2245 langfuse_logger.info( 2246 f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}" 2247 ) 2248 2249 self.create_score( 2250 trace_id=trace_id, 2251 name=name, 2252 value=cast(str, value), 2253 score_id=score_id, 2254 data_type=cast(Literal["CATEGORICAL"], data_type), 2255 comment=comment, 2256 config_id=config_id, 2257 ) 2258 2259 def flush(self) -> None: 2260 """Force flush all pending spans and events to the Langfuse API. 2261 2262 This method manually flushes any pending spans, scores, and other events to the 2263 Langfuse API. It's useful in scenarios where you want to ensure all data is sent 2264 before proceeding, without waiting for the automatic flush interval. 2265 2266 Example: 2267 ```python 2268 # Record some spans and scores 2269 with langfuse.start_as_current_span(name="operation") as span: 2270 # Do work... 2271 pass 2272 2273 # Ensure all data is sent to Langfuse before proceeding 2274 langfuse.flush() 2275 2276 # Continue with other work 2277 ``` 2278 """ 2279 if self._resources is not None: 2280 self._resources.flush() 2281 2282 def shutdown(self) -> None: 2283 """Shut down the Langfuse client and flush all pending data. 2284 2285 This method cleanly shuts down the Langfuse client, ensuring all pending data 2286 is flushed to the API and all background threads are properly terminated. 2287 2288 It's important to call this method when your application is shutting down to 2289 prevent data loss and resource leaks. For most applications, using the client 2290 as a context manager or relying on the automatic shutdown via atexit is sufficient. 2291 2292 Example: 2293 ```python 2294 # Initialize Langfuse 2295 langfuse = Langfuse(public_key="...", secret_key="...") 2296 2297 # Use Langfuse throughout your application 2298 # ... 2299 2300 # When application is shutting down 2301 langfuse.shutdown() 2302 ``` 2303 """ 2304 if self._resources is not None: 2305 self._resources.shutdown() 2306 2307 def get_current_trace_id(self) -> Optional[str]: 2308 """Get the trace ID of the current active span. 2309 2310 This method retrieves the trace ID from the currently active span in the context. 2311 It can be used to get the trace ID for referencing in logs, external systems, 2312 or for creating related operations. 2313 2314 Returns: 2315 The current trace ID as a 32-character lowercase hexadecimal string, 2316 or None if there is no active span. 2317 2318 Example: 2319 ```python 2320 with langfuse.start_as_current_span(name="process-request") as span: 2321 # Get the current trace ID for reference 2322 trace_id = langfuse.get_current_trace_id() 2323 2324 # Use it for external correlation 2325 log.info(f"Processing request with trace_id: {trace_id}") 2326 2327 # Or pass to another system 2328 external_system.process(data, trace_id=trace_id) 2329 ``` 2330 """ 2331 if not self._tracing_enabled: 2332 langfuse_logger.debug( 2333 "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode." 2334 ) 2335 return None 2336 2337 current_otel_span = self._get_current_otel_span() 2338 2339 return self._get_otel_trace_id(current_otel_span) if current_otel_span else None 2340 2341 def get_current_observation_id(self) -> Optional[str]: 2342 """Get the observation ID (span ID) of the current active span. 2343 2344 This method retrieves the observation ID from the currently active span in the context. 2345 It can be used to get the observation ID for referencing in logs, external systems, 2346 or for creating scores or other related operations. 2347 2348 Returns: 2349 The current observation ID as a 16-character lowercase hexadecimal string, 2350 or None if there is no active span. 2351 2352 Example: 2353 ```python 2354 with langfuse.start_as_current_span(name="process-user-query") as span: 2355 # Get the current observation ID 2356 observation_id = langfuse.get_current_observation_id() 2357 2358 # Store it for later reference 2359 cache.set(f"query_{query_id}_observation", observation_id) 2360 2361 # Process the query... 2362 ``` 2363 """ 2364 if not self._tracing_enabled: 2365 langfuse_logger.debug( 2366 "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode." 2367 ) 2368 return None 2369 2370 current_otel_span = self._get_current_otel_span() 2371 2372 return self._get_otel_span_id(current_otel_span) if current_otel_span else None 2373 2374 def _get_project_id(self) -> Optional[str]: 2375 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 2376 if not self._project_id: 2377 proj = self.api.projects.get() 2378 if not proj.data or not proj.data[0].id: 2379 return None 2380 2381 self._project_id = proj.data[0].id 2382 2383 return self._project_id 2384 2385 def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]: 2386 """Get the URL to view a trace in the Langfuse UI. 2387 2388 This method generates a URL that links directly to a trace in the Langfuse UI. 2389 It's useful for providing links in logs, notifications, or debugging tools. 2390 2391 Args: 2392 trace_id: Optional trace ID to generate a URL for. If not provided, 2393 the trace ID of the current active span will be used. 2394 2395 Returns: 2396 A URL string pointing to the trace in the Langfuse UI, 2397 or None if the project ID couldn't be retrieved or no trace ID is available. 2398 2399 Example: 2400 ```python 2401 # Get URL for the current trace 2402 with langfuse.start_as_current_span(name="process-request") as span: 2403 trace_url = langfuse.get_trace_url() 2404 log.info(f"Processing trace: {trace_url}") 2405 2406 # Get URL for a specific trace 2407 specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") 2408 send_notification(f"Review needed for trace: {specific_trace_url}") 2409 ``` 2410 """ 2411 project_id = self._get_project_id() 2412 final_trace_id = trace_id or self.get_current_trace_id() 2413 2414 return ( 2415 f"{self._base_url}/project/{project_id}/traces/{final_trace_id}" 2416 if project_id and final_trace_id 2417 else None 2418 ) 2419 2420 def get_dataset( 2421 self, name: str, *, fetch_items_page_size: Optional[int] = 50 2422 ) -> "DatasetClient": 2423 """Fetch a dataset by its name. 2424 2425 Args: 2426 name (str): The name of the dataset to fetch. 2427 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 2428 2429 Returns: 2430 DatasetClient: The dataset with the given name. 2431 """ 2432 try: 2433 langfuse_logger.debug(f"Getting datasets {name}") 2434 dataset = self.api.datasets.get(dataset_name=name) 2435 2436 dataset_items = [] 2437 page = 1 2438 2439 while True: 2440 new_items = self.api.dataset_items.list( 2441 dataset_name=self._url_encode(name, is_url_param=True), 2442 page=page, 2443 limit=fetch_items_page_size, 2444 ) 2445 dataset_items.extend(new_items.data) 2446 2447 if new_items.meta.total_pages <= page: 2448 break 2449 2450 page += 1 2451 2452 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 2453 2454 return DatasetClient(dataset, items=items) 2455 2456 except Error as e: 2457 handle_fern_exception(e) 2458 raise e 2459 2460 def run_experiment( 2461 self, 2462 *, 2463 name: str, 2464 run_name: Optional[str] = None, 2465 description: Optional[str] = None, 2466 data: ExperimentData, 2467 task: TaskFunction, 2468 evaluators: List[EvaluatorFunction] = [], 2469 composite_evaluator: Optional[CompositeEvaluatorFunction] = None, 2470 run_evaluators: List[RunEvaluatorFunction] = [], 2471 max_concurrency: int = 50, 2472 metadata: Optional[Dict[str, str]] = None, 2473 ) -> ExperimentResult: 2474 """Run an experiment on a dataset with automatic tracing and evaluation. 2475 2476 This method executes a task function on each item in the provided dataset, 2477 automatically traces all executions with Langfuse for observability, runs 2478 item-level and run-level evaluators on the outputs, and returns comprehensive 2479 results with evaluation metrics. 2480 2481 The experiment system provides: 2482 - Automatic tracing of all task executions 2483 - Concurrent processing with configurable limits 2484 - Comprehensive error handling that isolates failures 2485 - Integration with Langfuse datasets for experiment tracking 2486 - Flexible evaluation framework supporting both sync and async evaluators 2487 2488 Args: 2489 name: Human-readable name for the experiment. Used for identification 2490 in the Langfuse UI. 2491 run_name: Optional exact name for the experiment run. If provided, this will be 2492 used as the exact dataset run name if the `data` contains Langfuse dataset items. 2493 If not provided, this will default to the experiment name appended with an ISO timestamp. 2494 description: Optional description explaining the experiment's purpose, 2495 methodology, or expected outcomes. 2496 data: Array of data items to process. Can be either: 2497 - List of dict-like items with 'input', 'expected_output', 'metadata' keys 2498 - List of Langfuse DatasetItem objects from dataset.items 2499 task: Function that processes each data item and returns output. 2500 Must accept 'item' as keyword argument and can return sync or async results. 2501 The task function signature should be: task(*, item, **kwargs) -> Any 2502 evaluators: List of functions to evaluate each item's output individually. 2503 Each evaluator receives input, output, expected_output, and metadata. 2504 Can return single Evaluation dict or list of Evaluation dicts. 2505 composite_evaluator: Optional function that creates composite scores from item-level evaluations. 2506 Receives the same inputs as item-level evaluators (input, output, expected_output, metadata) 2507 plus the list of evaluations from item-level evaluators. Useful for weighted averages, 2508 pass/fail decisions based on multiple criteria, or custom scoring logic combining multiple metrics. 2509 run_evaluators: List of functions to evaluate the entire experiment run. 2510 Each run evaluator receives all item_results and can compute aggregate metrics. 2511 Useful for calculating averages, distributions, or cross-item comparisons. 2512 max_concurrency: Maximum number of concurrent task executions (default: 50). 2513 Controls the number of items processed simultaneously. Adjust based on 2514 API rate limits and system resources. 2515 metadata: Optional metadata dictionary to attach to all experiment traces. 2516 This metadata will be included in every trace created during the experiment. 2517 If `data` are Langfuse dataset items, the metadata will be attached to the dataset run, too. 2518 2519 Returns: 2520 ExperimentResult containing: 2521 - run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset. 2522 - item_results: List of results for each processed item with outputs and evaluations 2523 - run_evaluations: List of aggregate evaluation results for the entire run 2524 - dataset_run_id: ID of the dataset run (if using Langfuse datasets) 2525 - dataset_run_url: Direct URL to view results in Langfuse UI (if applicable) 2526 2527 Raises: 2528 ValueError: If required parameters are missing or invalid 2529 Exception: If experiment setup fails (individual item failures are handled gracefully) 2530 2531 Examples: 2532 Basic experiment with local data: 2533 ```python 2534 def summarize_text(*, item, **kwargs): 2535 return f"Summary: {item['input'][:50]}..." 2536 2537 def length_evaluator(*, input, output, expected_output=None, **kwargs): 2538 return { 2539 "name": "output_length", 2540 "value": len(output), 2541 "comment": f"Output contains {len(output)} characters" 2542 } 2543 2544 result = langfuse.run_experiment( 2545 name="Text Summarization Test", 2546 description="Evaluate summarization quality and length", 2547 data=[ 2548 {"input": "Long article text...", "expected_output": "Expected summary"}, 2549 {"input": "Another article...", "expected_output": "Another summary"} 2550 ], 2551 task=summarize_text, 2552 evaluators=[length_evaluator] 2553 ) 2554 2555 print(f"Processed {len(result.item_results)} items") 2556 for item_result in result.item_results: 2557 print(f"Input: {item_result.item['input']}") 2558 print(f"Output: {item_result.output}") 2559 print(f"Evaluations: {item_result.evaluations}") 2560 ``` 2561 2562 Advanced experiment with async task and multiple evaluators: 2563 ```python 2564 async def llm_task(*, item, **kwargs): 2565 # Simulate async LLM call 2566 response = await openai_client.chat.completions.create( 2567 model="gpt-4", 2568 messages=[{"role": "user", "content": item["input"]}] 2569 ) 2570 return response.choices[0].message.content 2571 2572 def accuracy_evaluator(*, input, output, expected_output=None, **kwargs): 2573 if expected_output and expected_output.lower() in output.lower(): 2574 return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"} 2575 return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"} 2576 2577 def toxicity_evaluator(*, input, output, expected_output=None, **kwargs): 2578 # Simulate toxicity check 2579 toxicity_score = check_toxicity(output) # Your toxicity checker 2580 return { 2581 "name": "toxicity", 2582 "value": toxicity_score, 2583 "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}" 2584 } 2585 2586 def average_accuracy(*, item_results, **kwargs): 2587 accuracies = [ 2588 eval.value for result in item_results 2589 for eval in result.evaluations 2590 if eval.name == "accuracy" 2591 ] 2592 return { 2593 "name": "average_accuracy", 2594 "value": sum(accuracies) / len(accuracies) if accuracies else 0, 2595 "comment": f"Average accuracy across {len(accuracies)} items" 2596 } 2597 2598 result = langfuse.run_experiment( 2599 name="LLM Safety and Accuracy Test", 2600 description="Evaluate model accuracy and safety across diverse prompts", 2601 data=test_dataset, # Your dataset items 2602 task=llm_task, 2603 evaluators=[accuracy_evaluator, toxicity_evaluator], 2604 run_evaluators=[average_accuracy], 2605 max_concurrency=5, # Limit concurrent API calls 2606 metadata={"model": "gpt-4", "temperature": 0.7} 2607 ) 2608 ``` 2609 2610 Using with Langfuse datasets: 2611 ```python 2612 # Get dataset from Langfuse 2613 dataset = langfuse.get_dataset("my-eval-dataset") 2614 2615 result = dataset.run_experiment( 2616 name="Production Model Evaluation", 2617 description="Monthly evaluation of production model performance", 2618 task=my_production_task, 2619 evaluators=[accuracy_evaluator, latency_evaluator] 2620 ) 2621 2622 # Results automatically linked to dataset in Langfuse UI 2623 print(f"View results: {result['dataset_run_url']}") 2624 ``` 2625 2626 Note: 2627 - Task and evaluator functions can be either synchronous or asynchronous 2628 - Individual item failures are logged but don't stop the experiment 2629 - All executions are automatically traced and visible in Langfuse UI 2630 - When using Langfuse datasets, results are automatically linked for easy comparison 2631 - This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.) 2632 - Async execution is handled automatically with smart event loop detection 2633 """ 2634 return cast( 2635 ExperimentResult, 2636 run_async_safely( 2637 self._run_experiment_async( 2638 name=name, 2639 run_name=self._create_experiment_run_name( 2640 name=name, run_name=run_name 2641 ), 2642 description=description, 2643 data=data, 2644 task=task, 2645 evaluators=evaluators or [], 2646 composite_evaluator=composite_evaluator, 2647 run_evaluators=run_evaluators or [], 2648 max_concurrency=max_concurrency, 2649 metadata=metadata, 2650 ), 2651 ), 2652 ) 2653 2654 async def _run_experiment_async( 2655 self, 2656 *, 2657 name: str, 2658 run_name: str, 2659 description: Optional[str], 2660 data: ExperimentData, 2661 task: TaskFunction, 2662 evaluators: List[EvaluatorFunction], 2663 composite_evaluator: Optional[CompositeEvaluatorFunction], 2664 run_evaluators: List[RunEvaluatorFunction], 2665 max_concurrency: int, 2666 metadata: Optional[Dict[str, Any]] = None, 2667 ) -> ExperimentResult: 2668 langfuse_logger.debug( 2669 f"Starting experiment '{name}' run '{run_name}' with {len(data)} items" 2670 ) 2671 2672 # Set up concurrency control 2673 semaphore = asyncio.Semaphore(max_concurrency) 2674 2675 # Process all items 2676 async def process_item(item: ExperimentItem) -> ExperimentItemResult: 2677 async with semaphore: 2678 return await self._process_experiment_item( 2679 item, 2680 task, 2681 evaluators, 2682 composite_evaluator, 2683 name, 2684 run_name, 2685 description, 2686 metadata, 2687 ) 2688 2689 # Run all items concurrently 2690 tasks = [process_item(item) for item in data] 2691 item_results = await asyncio.gather(*tasks, return_exceptions=True) 2692 2693 # Filter out any exceptions and log errors 2694 valid_results: List[ExperimentItemResult] = [] 2695 for i, result in enumerate(item_results): 2696 if isinstance(result, Exception): 2697 langfuse_logger.error(f"Item {i} failed: {result}") 2698 elif isinstance(result, ExperimentItemResult): 2699 valid_results.append(result) # type: ignore 2700 2701 # Run experiment-level evaluators 2702 run_evaluations: List[Evaluation] = [] 2703 for run_evaluator in run_evaluators: 2704 try: 2705 evaluations = await _run_evaluator( 2706 run_evaluator, item_results=valid_results 2707 ) 2708 run_evaluations.extend(evaluations) 2709 except Exception as e: 2710 langfuse_logger.error(f"Run evaluator failed: {e}") 2711 2712 # Generate dataset run URL if applicable 2713 dataset_run_id = valid_results[0].dataset_run_id if valid_results else None 2714 dataset_run_url = None 2715 if dataset_run_id and data: 2716 try: 2717 # Check if the first item has dataset_id (for DatasetItem objects) 2718 first_item = data[0] 2719 dataset_id = None 2720 2721 if hasattr(first_item, "dataset_id"): 2722 dataset_id = getattr(first_item, "dataset_id", None) 2723 2724 if dataset_id: 2725 project_id = self._get_project_id() 2726 2727 if project_id: 2728 dataset_run_url = f"{self._base_url}/project/{project_id}/datasets/{dataset_id}/runs/{dataset_run_id}" 2729 2730 except Exception: 2731 pass # URL generation is optional 2732 2733 # Store run-level evaluations as scores 2734 for evaluation in run_evaluations: 2735 try: 2736 if dataset_run_id: 2737 self.create_score( 2738 dataset_run_id=dataset_run_id, 2739 name=evaluation.name or "<unknown>", 2740 value=evaluation.value, # type: ignore 2741 comment=evaluation.comment, 2742 metadata=evaluation.metadata, 2743 data_type=evaluation.data_type, # type: ignore 2744 config_id=evaluation.config_id, 2745 ) 2746 2747 except Exception as e: 2748 langfuse_logger.error(f"Failed to store run evaluation: {e}") 2749 2750 # Flush scores and traces 2751 self.flush() 2752 2753 return ExperimentResult( 2754 name=name, 2755 run_name=run_name, 2756 description=description, 2757 item_results=valid_results, 2758 run_evaluations=run_evaluations, 2759 dataset_run_id=dataset_run_id, 2760 dataset_run_url=dataset_run_url, 2761 ) 2762 2763 async def _process_experiment_item( 2764 self, 2765 item: ExperimentItem, 2766 task: Callable, 2767 evaluators: List[Callable], 2768 composite_evaluator: Optional[CompositeEvaluatorFunction], 2769 experiment_name: str, 2770 experiment_run_name: str, 2771 experiment_description: Optional[str], 2772 experiment_metadata: Optional[Dict[str, Any]] = None, 2773 ) -> ExperimentItemResult: 2774 span_name = "experiment-item-run" 2775 2776 with self.start_as_current_span(name=span_name) as span: 2777 try: 2778 input_data = ( 2779 item.get("input") 2780 if isinstance(item, dict) 2781 else getattr(item, "input", None) 2782 ) 2783 2784 if input_data is None: 2785 raise ValueError("Experiment Item is missing input. Skipping item.") 2786 2787 expected_output = ( 2788 item.get("expected_output") 2789 if isinstance(item, dict) 2790 else getattr(item, "expected_output", None) 2791 ) 2792 2793 item_metadata = ( 2794 item.get("metadata") 2795 if isinstance(item, dict) 2796 else getattr(item, "metadata", None) 2797 ) 2798 2799 final_observation_metadata = { 2800 "experiment_name": experiment_name, 2801 "experiment_run_name": experiment_run_name, 2802 **(experiment_metadata or {}), 2803 } 2804 2805 trace_id = span.trace_id 2806 dataset_id = None 2807 dataset_item_id = None 2808 dataset_run_id = None 2809 2810 # Link to dataset run if this is a dataset item 2811 if hasattr(item, "id") and hasattr(item, "dataset_id"): 2812 try: 2813 # Use sync API to avoid event loop issues when run_async_safely 2814 # creates multiple event loops across different threads 2815 dataset_run_item = await asyncio.to_thread( 2816 self.api.dataset_run_items.create, 2817 request=CreateDatasetRunItemRequest( 2818 runName=experiment_run_name, 2819 runDescription=experiment_description, 2820 metadata=experiment_metadata, 2821 datasetItemId=item.id, # type: ignore 2822 traceId=trace_id, 2823 observationId=span.id, 2824 ), 2825 ) 2826 2827 dataset_run_id = dataset_run_item.dataset_run_id 2828 2829 except Exception as e: 2830 langfuse_logger.error(f"Failed to create dataset run item: {e}") 2831 2832 if ( 2833 not isinstance(item, dict) 2834 and hasattr(item, "dataset_id") 2835 and hasattr(item, "id") 2836 ): 2837 dataset_id = item.dataset_id 2838 dataset_item_id = item.id 2839 2840 final_observation_metadata.update( 2841 {"dataset_id": dataset_id, "dataset_item_id": dataset_item_id} 2842 ) 2843 2844 if isinstance(item_metadata, dict): 2845 final_observation_metadata.update(item_metadata) 2846 2847 experiment_id = dataset_run_id or self._create_observation_id() 2848 experiment_item_id = ( 2849 dataset_item_id or get_sha256_hash_hex(_serialize(input_data))[:16] 2850 ) 2851 span._otel_span.set_attributes( 2852 { 2853 k: v 2854 for k, v in { 2855 LangfuseOtelSpanAttributes.ENVIRONMENT: LANGFUSE_SDK_EXPERIMENT_ENVIRONMENT, 2856 LangfuseOtelSpanAttributes.EXPERIMENT_DESCRIPTION: experiment_description, 2857 LangfuseOtelSpanAttributes.EXPERIMENT_ITEM_EXPECTED_OUTPUT: _serialize( 2858 expected_output 2859 ), 2860 }.items() 2861 if v is not None 2862 } 2863 ) 2864 2865 with _propagate_attributes( 2866 experiment=PropagatedExperimentAttributes( 2867 experiment_id=experiment_id, 2868 experiment_name=experiment_run_name, 2869 experiment_metadata=_serialize(experiment_metadata), 2870 experiment_dataset_id=dataset_id, 2871 experiment_item_id=experiment_item_id, 2872 experiment_item_metadata=_serialize(item_metadata), 2873 experiment_item_root_observation_id=span.id, 2874 ) 2875 ): 2876 output = await _run_task(task, item) 2877 2878 span.update( 2879 input=input_data, 2880 output=output, 2881 metadata=final_observation_metadata, 2882 ) 2883 2884 except Exception as e: 2885 span.update( 2886 output=f"Error: {str(e)}", level="ERROR", status_message=str(e) 2887 ) 2888 raise e 2889 2890 # Run evaluators 2891 evaluations = [] 2892 2893 for evaluator in evaluators: 2894 try: 2895 eval_metadata: Optional[Dict[str, Any]] = None 2896 2897 if isinstance(item, dict): 2898 eval_metadata = item.get("metadata") 2899 elif hasattr(item, "metadata"): 2900 eval_metadata = item.metadata 2901 2902 eval_results = await _run_evaluator( 2903 evaluator, 2904 input=input_data, 2905 output=output, 2906 expected_output=expected_output, 2907 metadata=eval_metadata, 2908 ) 2909 evaluations.extend(eval_results) 2910 2911 # Store evaluations as scores 2912 for evaluation in eval_results: 2913 self.create_score( 2914 trace_id=trace_id, 2915 observation_id=span.id, 2916 name=evaluation.name, 2917 value=evaluation.value, # type: ignore 2918 comment=evaluation.comment, 2919 metadata=evaluation.metadata, 2920 config_id=evaluation.config_id, 2921 data_type=evaluation.data_type, # type: ignore 2922 ) 2923 2924 except Exception as e: 2925 langfuse_logger.error(f"Evaluator failed: {e}") 2926 2927 # Run composite evaluator if provided and we have evaluations 2928 if composite_evaluator and evaluations: 2929 try: 2930 composite_eval_metadata: Optional[Dict[str, Any]] = None 2931 if isinstance(item, dict): 2932 composite_eval_metadata = item.get("metadata") 2933 elif hasattr(item, "metadata"): 2934 composite_eval_metadata = item.metadata 2935 2936 result = composite_evaluator( 2937 input=input_data, 2938 output=output, 2939 expected_output=expected_output, 2940 metadata=composite_eval_metadata, 2941 evaluations=evaluations, 2942 ) 2943 2944 # Handle async composite evaluators 2945 if asyncio.iscoroutine(result): 2946 result = await result 2947 2948 # Normalize to list 2949 composite_evals: List[Evaluation] = [] 2950 if isinstance(result, (dict, Evaluation)): 2951 composite_evals = [result] # type: ignore 2952 elif isinstance(result, list): 2953 composite_evals = result # type: ignore 2954 2955 # Store composite evaluations as scores and add to evaluations list 2956 for composite_evaluation in composite_evals: 2957 self.create_score( 2958 trace_id=trace_id, 2959 observation_id=span.id, 2960 name=composite_evaluation.name, 2961 value=composite_evaluation.value, # type: ignore 2962 comment=composite_evaluation.comment, 2963 metadata=composite_evaluation.metadata, 2964 config_id=composite_evaluation.config_id, 2965 data_type=composite_evaluation.data_type, # type: ignore 2966 ) 2967 evaluations.append(composite_evaluation) 2968 2969 except Exception as e: 2970 langfuse_logger.error(f"Composite evaluator failed: {e}") 2971 2972 return ExperimentItemResult( 2973 item=item, 2974 output=output, 2975 evaluations=evaluations, 2976 trace_id=trace_id, 2977 dataset_run_id=dataset_run_id, 2978 ) 2979 2980 def _create_experiment_run_name( 2981 self, *, name: Optional[str] = None, run_name: Optional[str] = None 2982 ) -> str: 2983 if run_name: 2984 return run_name 2985 2986 iso_timestamp = _get_timestamp().isoformat().replace("+00:00", "Z") 2987 2988 return f"{name} - {iso_timestamp}" 2989 2990 def run_batched_evaluation( 2991 self, 2992 *, 2993 scope: Literal["traces", "observations"], 2994 mapper: MapperFunction, 2995 filter: Optional[str] = None, 2996 fetch_batch_size: int = 50, 2997 max_items: Optional[int] = None, 2998 max_retries: int = 3, 2999 evaluators: List[EvaluatorFunction], 3000 composite_evaluator: Optional[CompositeEvaluatorFunction] = None, 3001 max_concurrency: int = 50, 3002 metadata: Optional[Dict[str, Any]] = None, 3003 resume_from: Optional[BatchEvaluationResumeToken] = None, 3004 verbose: bool = False, 3005 ) -> BatchEvaluationResult: 3006 """Fetch traces or observations and run evaluations on each item. 3007 3008 This method provides a powerful way to evaluate existing data in Langfuse at scale. 3009 It fetches items based on filters, transforms them using a mapper function, runs 3010 evaluators on each item, and creates scores that are linked back to the original 3011 entities. This is ideal for: 3012 3013 - Running evaluations on production traces after deployment 3014 - Backtesting new evaluation metrics on historical data 3015 - Batch scoring of observations for quality monitoring 3016 - Periodic evaluation runs on recent data 3017 3018 The method uses a streaming/pipeline approach to process items in batches, making 3019 it memory-efficient for large datasets. It includes comprehensive error handling, 3020 retry logic, and resume capability for long-running evaluations. 3021 3022 Args: 3023 scope: The type of items to evaluate. Must be one of: 3024 - "traces": Evaluate complete traces with all their observations 3025 - "observations": Evaluate individual observations (spans, generations, events) 3026 mapper: Function that transforms API response objects into evaluator inputs. 3027 Receives a trace/observation object and returns an EvaluatorInputs 3028 instance with input, output, expected_output, and metadata fields. 3029 Can be sync or async. 3030 evaluators: List of evaluation functions to run on each item. Each evaluator 3031 receives the mapped inputs and returns Evaluation object(s). Evaluator 3032 failures are logged but don't stop the batch evaluation. 3033 filter: Optional JSON filter string for querying items (same format as Langfuse API). Examples: 3034 - '{"tags": ["production"]}' 3035 - '{"user_id": "user123", "timestamp": {"operator": ">", "value": "2024-01-01"}}' 3036 Default: None (fetches all items). 3037 fetch_batch_size: Number of items to fetch per API call and hold in memory. 3038 Larger values may be faster but use more memory. Default: 50. 3039 max_items: Maximum total number of items to process. If None, processes all 3040 items matching the filter. Useful for testing or limiting evaluation runs. 3041 Default: None (process all). 3042 max_concurrency: Maximum number of items to evaluate concurrently. Controls 3043 parallelism and resource usage. Default: 50. 3044 composite_evaluator: Optional function that creates a composite score from 3045 item-level evaluations. Receives the original item and its evaluations, 3046 returns a single Evaluation. Useful for weighted averages or combined metrics. 3047 Default: None. 3048 metadata: Optional metadata dict to add to all created scores. Useful for 3049 tracking evaluation runs, versions, or other context. Default: None. 3050 max_retries: Maximum number of retry attempts for failed batch fetches. 3051 Uses exponential backoff (1s, 2s, 4s). Default: 3. 3052 verbose: If True, logs progress information to console. Useful for monitoring 3053 long-running evaluations. Default: False. 3054 resume_from: Optional resume token from a previous incomplete run. Allows 3055 continuing evaluation after interruption or failure. Default: None. 3056 3057 3058 Returns: 3059 BatchEvaluationResult containing: 3060 - total_items_fetched: Number of items fetched from API 3061 - total_items_processed: Number of items successfully evaluated 3062 - total_items_failed: Number of items that failed evaluation 3063 - total_scores_created: Scores created by item-level evaluators 3064 - total_composite_scores_created: Scores created by composite evaluator 3065 - total_evaluations_failed: Individual evaluator failures 3066 - evaluator_stats: Per-evaluator statistics (success rate, scores created) 3067 - resume_token: Token for resuming if incomplete (None if completed) 3068 - completed: True if all items processed 3069 - duration_seconds: Total execution time 3070 - failed_item_ids: IDs of items that failed 3071 - error_summary: Error types and counts 3072 - has_more_items: True if max_items reached but more exist 3073 3074 Raises: 3075 ValueError: If invalid scope is provided. 3076 3077 Examples: 3078 Basic trace evaluation: 3079 ```python 3080 from langfuse import Langfuse, EvaluatorInputs, Evaluation 3081 3082 client = Langfuse() 3083 3084 # Define mapper to extract fields from traces 3085 def trace_mapper(trace): 3086 return EvaluatorInputs( 3087 input=trace.input, 3088 output=trace.output, 3089 expected_output=None, 3090 metadata={"trace_id": trace.id} 3091 ) 3092 3093 # Define evaluator 3094 def length_evaluator(*, input, output, expected_output, metadata): 3095 return Evaluation( 3096 name="output_length", 3097 value=len(output) if output else 0 3098 ) 3099 3100 # Run batch evaluation 3101 result = client.run_batched_evaluation( 3102 scope="traces", 3103 mapper=trace_mapper, 3104 evaluators=[length_evaluator], 3105 filter='{"tags": ["production"]}', 3106 max_items=1000, 3107 verbose=True 3108 ) 3109 3110 print(f"Processed {result.total_items_processed} traces") 3111 print(f"Created {result.total_scores_created} scores") 3112 ``` 3113 3114 Evaluation with composite scorer: 3115 ```python 3116 def accuracy_evaluator(*, input, output, expected_output, metadata): 3117 # ... evaluation logic 3118 return Evaluation(name="accuracy", value=0.85) 3119 3120 def relevance_evaluator(*, input, output, expected_output, metadata): 3121 # ... evaluation logic 3122 return Evaluation(name="relevance", value=0.92) 3123 3124 def composite_evaluator(*, item, evaluations): 3125 # Weighted average of evaluations 3126 weights = {"accuracy": 0.6, "relevance": 0.4} 3127 total = sum( 3128 e.value * weights.get(e.name, 0) 3129 for e in evaluations 3130 if isinstance(e.value, (int, float)) 3131 ) 3132 return Evaluation( 3133 name="composite_score", 3134 value=total, 3135 comment=f"Weighted average of {len(evaluations)} metrics" 3136 ) 3137 3138 result = client.run_batched_evaluation( 3139 scope="traces", 3140 mapper=trace_mapper, 3141 evaluators=[accuracy_evaluator, relevance_evaluator], 3142 composite_evaluator=composite_evaluator, 3143 filter='{"user_id": "important_user"}', 3144 verbose=True 3145 ) 3146 ``` 3147 3148 Handling incomplete runs with resume: 3149 ```python 3150 # Initial run that may fail or timeout 3151 result = client.run_batched_evaluation( 3152 scope="observations", 3153 mapper=obs_mapper, 3154 evaluators=[my_evaluator], 3155 max_items=10000, 3156 verbose=True 3157 ) 3158 3159 # Check if incomplete 3160 if not result.completed and result.resume_token: 3161 print(f"Processed {result.resume_token.items_processed} items before interruption") 3162 3163 # Resume from where it left off 3164 result = client.run_batched_evaluation( 3165 scope="observations", 3166 mapper=obs_mapper, 3167 evaluators=[my_evaluator], 3168 resume_from=result.resume_token, 3169 verbose=True 3170 ) 3171 3172 print(f"Total items processed: {result.total_items_processed}") 3173 ``` 3174 3175 Monitoring evaluator performance: 3176 ```python 3177 result = client.run_batched_evaluation(...) 3178 3179 for stats in result.evaluator_stats: 3180 success_rate = stats.successful_runs / stats.total_runs 3181 print(f"{stats.name}:") 3182 print(f" Success rate: {success_rate:.1%}") 3183 print(f" Scores created: {stats.total_scores_created}") 3184 3185 if stats.failed_runs > 0: 3186 print(f" â ī¸ Failed {stats.failed_runs} times") 3187 ``` 3188 3189 Note: 3190 - Evaluator failures are logged but don't stop the batch evaluation 3191 - Individual item failures are tracked but don't stop processing 3192 - Fetch failures are retried with exponential backoff 3193 - All scores are automatically flushed to Langfuse at the end 3194 - The resume mechanism uses timestamp-based filtering to avoid duplicates 3195 """ 3196 runner = BatchEvaluationRunner(self) 3197 3198 return cast( 3199 BatchEvaluationResult, 3200 run_async_safely( 3201 runner.run_async( 3202 scope=scope, 3203 mapper=mapper, 3204 evaluators=evaluators, 3205 filter=filter, 3206 fetch_batch_size=fetch_batch_size, 3207 max_items=max_items, 3208 max_concurrency=max_concurrency, 3209 composite_evaluator=composite_evaluator, 3210 metadata=metadata, 3211 max_retries=max_retries, 3212 verbose=verbose, 3213 resume_from=resume_from, 3214 ) 3215 ), 3216 ) 3217 3218 def auth_check(self) -> bool: 3219 """Check if the provided credentials (public and secret key) are valid. 3220 3221 Raises: 3222 Exception: If no projects were found for the provided credentials. 3223 3224 Note: 3225 This method is blocking. It is discouraged to use it in production code. 3226 """ 3227 try: 3228 projects = self.api.projects.get() 3229 langfuse_logger.debug( 3230 f"Auth check successful, found {len(projects.data)} projects" 3231 ) 3232 if len(projects.data) == 0: 3233 raise Exception( 3234 "Auth check failed, no project found for the keys provided." 3235 ) 3236 return True 3237 3238 except AttributeError as e: 3239 langfuse_logger.warning( 3240 f"Auth check failed: Client not properly initialized. Error: {e}" 3241 ) 3242 return False 3243 3244 except Error as e: 3245 handle_fern_exception(e) 3246 raise e 3247 3248 def create_dataset( 3249 self, 3250 *, 3251 name: str, 3252 description: Optional[str] = None, 3253 metadata: Optional[Any] = None, 3254 ) -> Dataset: 3255 """Create a dataset with the given name on Langfuse. 3256 3257 Args: 3258 name: Name of the dataset to create. 3259 description: Description of the dataset. Defaults to None. 3260 metadata: Additional metadata. Defaults to None. 3261 3262 Returns: 3263 Dataset: The created dataset as returned by the Langfuse API. 3264 """ 3265 try: 3266 body = CreateDatasetRequest( 3267 name=name, description=description, metadata=metadata 3268 ) 3269 langfuse_logger.debug(f"Creating datasets {body}") 3270 3271 return self.api.datasets.create(request=body) 3272 3273 except Error as e: 3274 handle_fern_exception(e) 3275 raise e 3276 3277 def create_dataset_item( 3278 self, 3279 *, 3280 dataset_name: str, 3281 input: Optional[Any] = None, 3282 expected_output: Optional[Any] = None, 3283 metadata: Optional[Any] = None, 3284 source_trace_id: Optional[str] = None, 3285 source_observation_id: Optional[str] = None, 3286 status: Optional[DatasetStatus] = None, 3287 id: Optional[str] = None, 3288 ) -> DatasetItem: 3289 """Create a dataset item. 3290 3291 Upserts if an item with id already exists. 3292 3293 Args: 3294 dataset_name: Name of the dataset in which the dataset item should be created. 3295 input: Input data. Defaults to None. Can contain any dict, list or scalar. 3296 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 3297 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 3298 source_trace_id: Id of the source trace. Defaults to None. 3299 source_observation_id: Id of the source observation. Defaults to None. 3300 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 3301 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 3302 3303 Returns: 3304 DatasetItem: The created dataset item as returned by the Langfuse API. 3305 3306 Example: 3307 ```python 3308 from langfuse import Langfuse 3309 3310 langfuse = Langfuse() 3311 3312 # Uploading items to the Langfuse dataset named "capital_cities" 3313 langfuse.create_dataset_item( 3314 dataset_name="capital_cities", 3315 input={"input": {"country": "Italy"}}, 3316 expected_output={"expected_output": "Rome"}, 3317 metadata={"foo": "bar"} 3318 ) 3319 ``` 3320 """ 3321 try: 3322 body = CreateDatasetItemRequest( 3323 datasetName=dataset_name, 3324 input=input, 3325 expectedOutput=expected_output, 3326 metadata=metadata, 3327 sourceTraceId=source_trace_id, 3328 sourceObservationId=source_observation_id, 3329 status=status, 3330 id=id, 3331 ) 3332 langfuse_logger.debug(f"Creating dataset item {body}") 3333 return self.api.dataset_items.create(request=body) 3334 except Error as e: 3335 handle_fern_exception(e) 3336 raise e 3337 3338 def resolve_media_references( 3339 self, 3340 *, 3341 obj: Any, 3342 resolve_with: Literal["base64_data_uri"], 3343 max_depth: int = 10, 3344 content_fetch_timeout_seconds: int = 5, 3345 ) -> Any: 3346 """Replace media reference strings in an object with base64 data URIs. 3347 3348 This method recursively traverses an object (up to max_depth) looking for media reference strings 3349 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 3350 the provided Langfuse client and replaces the reference string with a base64 data URI. 3351 3352 If fetching media content fails for a reference string, a warning is logged and the reference 3353 string is left unchanged. 3354 3355 Args: 3356 obj: The object to process. Can be a primitive value, array, or nested object. 3357 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 3358 resolve_with: The representation of the media content to replace the media reference string with. 3359 Currently only "base64_data_uri" is supported. 3360 max_depth: int: The maximum depth to traverse the object. Default is 10. 3361 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5. 3362 3363 Returns: 3364 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 3365 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 3366 3367 Example: 3368 obj = { 3369 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 3370 "nested": { 3371 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 3372 } 3373 } 3374 3375 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 3376 3377 # Result: 3378 # { 3379 # "image": "...", 3380 # "nested": { 3381 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 3382 # } 3383 # } 3384 """ 3385 return LangfuseMedia.resolve_media_references( 3386 langfuse_client=self, 3387 obj=obj, 3388 resolve_with=resolve_with, 3389 max_depth=max_depth, 3390 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 3391 ) 3392 3393 @overload 3394 def get_prompt( 3395 self, 3396 name: str, 3397 *, 3398 version: Optional[int] = None, 3399 label: Optional[str] = None, 3400 type: Literal["chat"], 3401 cache_ttl_seconds: Optional[int] = None, 3402 fallback: Optional[List[ChatMessageDict]] = None, 3403 max_retries: Optional[int] = None, 3404 fetch_timeout_seconds: Optional[int] = None, 3405 ) -> ChatPromptClient: ... 3406 3407 @overload 3408 def get_prompt( 3409 self, 3410 name: str, 3411 *, 3412 version: Optional[int] = None, 3413 label: Optional[str] = None, 3414 type: Literal["text"] = "text", 3415 cache_ttl_seconds: Optional[int] = None, 3416 fallback: Optional[str] = None, 3417 max_retries: Optional[int] = None, 3418 fetch_timeout_seconds: Optional[int] = None, 3419 ) -> TextPromptClient: ... 3420 3421 def get_prompt( 3422 self, 3423 name: str, 3424 *, 3425 version: Optional[int] = None, 3426 label: Optional[str] = None, 3427 type: Literal["chat", "text"] = "text", 3428 cache_ttl_seconds: Optional[int] = None, 3429 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 3430 max_retries: Optional[int] = None, 3431 fetch_timeout_seconds: Optional[int] = None, 3432 ) -> PromptClient: 3433 """Get a prompt. 3434 3435 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 3436 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 3437 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 3438 return the expired prompt as a fallback. 3439 3440 Args: 3441 name (str): The name of the prompt to retrieve. 3442 3443 Keyword Args: 3444 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 3445 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 3446 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 3447 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 3448 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 3449 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 3450 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 3451 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default. 3452 3453 Returns: 3454 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 3455 - TextPromptClient, if type argument is 'text'. 3456 - ChatPromptClient, if type argument is 'chat'. 3457 3458 Raises: 3459 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 3460 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 3461 """ 3462 if self._resources is None: 3463 raise Error( 3464 "SDK is not correctly initialized. Check the init logs for more details." 3465 ) 3466 if version is not None and label is not None: 3467 raise ValueError("Cannot specify both version and label at the same time.") 3468 3469 if not name: 3470 raise ValueError("Prompt name cannot be empty.") 3471 3472 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 3473 bounded_max_retries = self._get_bounded_max_retries( 3474 max_retries, default_max_retries=2, max_retries_upper_bound=4 3475 ) 3476 3477 langfuse_logger.debug(f"Getting prompt '{cache_key}'") 3478 cached_prompt = self._resources.prompt_cache.get(cache_key) 3479 3480 if cached_prompt is None or cache_ttl_seconds == 0: 3481 langfuse_logger.debug( 3482 f"Prompt '{cache_key}' not found in cache or caching disabled." 3483 ) 3484 try: 3485 return self._fetch_prompt_and_update_cache( 3486 name, 3487 version=version, 3488 label=label, 3489 ttl_seconds=cache_ttl_seconds, 3490 max_retries=bounded_max_retries, 3491 fetch_timeout_seconds=fetch_timeout_seconds, 3492 ) 3493 except Exception as e: 3494 if fallback: 3495 langfuse_logger.warning( 3496 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 3497 ) 3498 3499 fallback_client_args: Dict[str, Any] = { 3500 "name": name, 3501 "prompt": fallback, 3502 "type": type, 3503 "version": version or 0, 3504 "config": {}, 3505 "labels": [label] if label else [], 3506 "tags": [], 3507 } 3508 3509 if type == "text": 3510 return TextPromptClient( 3511 prompt=Prompt_Text(**fallback_client_args), 3512 is_fallback=True, 3513 ) 3514 3515 if type == "chat": 3516 return ChatPromptClient( 3517 prompt=Prompt_Chat(**fallback_client_args), 3518 is_fallback=True, 3519 ) 3520 3521 raise e 3522 3523 if cached_prompt.is_expired(): 3524 langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.") 3525 try: 3526 # refresh prompt in background thread, refresh_prompt deduplicates tasks 3527 langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.") 3528 3529 def refresh_task() -> None: 3530 self._fetch_prompt_and_update_cache( 3531 name, 3532 version=version, 3533 label=label, 3534 ttl_seconds=cache_ttl_seconds, 3535 max_retries=bounded_max_retries, 3536 fetch_timeout_seconds=fetch_timeout_seconds, 3537 ) 3538 3539 self._resources.prompt_cache.add_refresh_prompt_task( 3540 cache_key, 3541 refresh_task, 3542 ) 3543 langfuse_logger.debug( 3544 f"Returning stale prompt '{cache_key}' from cache." 3545 ) 3546 # return stale prompt 3547 return cached_prompt.value 3548 3549 except Exception as e: 3550 langfuse_logger.warning( 3551 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 3552 ) 3553 # creation of refresh prompt task failed, return stale prompt 3554 return cached_prompt.value 3555 3556 return cached_prompt.value 3557 3558 def _fetch_prompt_and_update_cache( 3559 self, 3560 name: str, 3561 *, 3562 version: Optional[int] = None, 3563 label: Optional[str] = None, 3564 ttl_seconds: Optional[int] = None, 3565 max_retries: int, 3566 fetch_timeout_seconds: Optional[int], 3567 ) -> PromptClient: 3568 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 3569 langfuse_logger.debug(f"Fetching prompt '{cache_key}' from server...") 3570 3571 try: 3572 3573 @backoff.on_exception( 3574 backoff.constant, Exception, max_tries=max_retries + 1, logger=None 3575 ) 3576 def fetch_prompts() -> Any: 3577 return self.api.prompts.get( 3578 self._url_encode(name), 3579 version=version, 3580 label=label, 3581 request_options={ 3582 "timeout_in_seconds": fetch_timeout_seconds, 3583 } 3584 if fetch_timeout_seconds is not None 3585 else None, 3586 ) 3587 3588 prompt_response = fetch_prompts() 3589 3590 prompt: PromptClient 3591 if prompt_response.type == "chat": 3592 prompt = ChatPromptClient(prompt_response) 3593 else: 3594 prompt = TextPromptClient(prompt_response) 3595 3596 if self._resources is not None: 3597 self._resources.prompt_cache.set(cache_key, prompt, ttl_seconds) 3598 3599 return prompt 3600 3601 except Exception as e: 3602 langfuse_logger.error( 3603 f"Error while fetching prompt '{cache_key}': {str(e)}" 3604 ) 3605 raise e 3606 3607 def _get_bounded_max_retries( 3608 self, 3609 max_retries: Optional[int], 3610 *, 3611 default_max_retries: int = 2, 3612 max_retries_upper_bound: int = 4, 3613 ) -> int: 3614 if max_retries is None: 3615 return default_max_retries 3616 3617 bounded_max_retries = min( 3618 max(max_retries, 0), 3619 max_retries_upper_bound, 3620 ) 3621 3622 return bounded_max_retries 3623 3624 @overload 3625 def create_prompt( 3626 self, 3627 *, 3628 name: str, 3629 prompt: List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]], 3630 labels: List[str] = [], 3631 tags: Optional[List[str]] = None, 3632 type: Optional[Literal["chat"]], 3633 config: Optional[Any] = None, 3634 commit_message: Optional[str] = None, 3635 ) -> ChatPromptClient: ... 3636 3637 @overload 3638 def create_prompt( 3639 self, 3640 *, 3641 name: str, 3642 prompt: str, 3643 labels: List[str] = [], 3644 tags: Optional[List[str]] = None, 3645 type: Optional[Literal["text"]] = "text", 3646 config: Optional[Any] = None, 3647 commit_message: Optional[str] = None, 3648 ) -> TextPromptClient: ... 3649 3650 def create_prompt( 3651 self, 3652 *, 3653 name: str, 3654 prompt: Union[ 3655 str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]] 3656 ], 3657 labels: List[str] = [], 3658 tags: Optional[List[str]] = None, 3659 type: Optional[Literal["chat", "text"]] = "text", 3660 config: Optional[Any] = None, 3661 commit_message: Optional[str] = None, 3662 ) -> PromptClient: 3663 """Create a new prompt in Langfuse. 3664 3665 Keyword Args: 3666 name : The name of the prompt to be created. 3667 prompt : The content of the prompt to be created. 3668 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 3669 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 3670 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 3671 config: Additional structured data to be saved with the prompt. Defaults to None. 3672 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 3673 commit_message: Optional string describing the change. 3674 3675 Returns: 3676 TextPromptClient: The prompt if type argument is 'text'. 3677 ChatPromptClient: The prompt if type argument is 'chat'. 3678 """ 3679 try: 3680 langfuse_logger.debug(f"Creating prompt {name=}, {labels=}") 3681 3682 if type == "chat": 3683 if not isinstance(prompt, list): 3684 raise ValueError( 3685 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 3686 ) 3687 request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = ( 3688 CreatePromptRequest_Chat( 3689 name=name, 3690 prompt=cast(Any, prompt), 3691 labels=labels, 3692 tags=tags, 3693 config=config or {}, 3694 commitMessage=commit_message, 3695 type="chat", 3696 ) 3697 ) 3698 server_prompt = self.api.prompts.create(request=request) 3699 3700 if self._resources is not None: 3701 self._resources.prompt_cache.invalidate(name) 3702 3703 return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt)) 3704 3705 if not isinstance(prompt, str): 3706 raise ValueError("For 'text' type, 'prompt' must be a string.") 3707 3708 request = CreatePromptRequest_Text( 3709 name=name, 3710 prompt=prompt, 3711 labels=labels, 3712 tags=tags, 3713 config=config or {}, 3714 commitMessage=commit_message, 3715 type="text", 3716 ) 3717 3718 server_prompt = self.api.prompts.create(request=request) 3719 3720 if self._resources is not None: 3721 self._resources.prompt_cache.invalidate(name) 3722 3723 return TextPromptClient(prompt=cast(Prompt_Text, server_prompt)) 3724 3725 except Error as e: 3726 handle_fern_exception(e) 3727 raise e 3728 3729 def update_prompt( 3730 self, 3731 *, 3732 name: str, 3733 version: int, 3734 new_labels: List[str] = [], 3735 ) -> Any: 3736 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 3737 3738 Args: 3739 name (str): The name of the prompt to update. 3740 version (int): The version number of the prompt to update. 3741 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 3742 3743 Returns: 3744 Prompt: The updated prompt from the Langfuse API. 3745 3746 """ 3747 updated_prompt = self.api.prompt_version.update( 3748 name=self._url_encode(name), 3749 version=version, 3750 new_labels=new_labels, 3751 ) 3752 3753 if self._resources is not None: 3754 self._resources.prompt_cache.invalidate(name) 3755 3756 return updated_prompt 3757 3758 def _url_encode(self, url: str, *, is_url_param: Optional[bool] = False) -> str: 3759 # httpx âĨ 0.28 does its own WHATWG-compliant quoting (eg. encodes bare 3760 # â%â, â?â, â#â, â|â, âĻ in query/path parts). Re-quoting here would 3761 # double-encode, so we skip when the value is about to be sent straight 3762 # to httpx (`is_url_param=True`) and the installed version is âĨ 0.28. 3763 if is_url_param and Version(httpx.__version__) >= Version("0.28.0"): 3764 return url 3765 3766 # urllib.parse.quote does not escape slashes "/" by default; we need to add safe="" to force escaping 3767 # we need add safe="" to force escaping of slashes 3768 # This is necessary for prompts in prompt folders 3769 return urllib.parse.quote(url, safe="") 3770 3771 def clear_prompt_cache(self) -> None: 3772 """Clear the entire prompt cache, removing all cached prompts. 3773 3774 This method is useful when you want to force a complete refresh of all 3775 cached prompts, for example after major updates or when you need to 3776 ensure the latest versions are fetched from the server. 3777 """ 3778 if self._resources is not None: 3779 self._resources.prompt_cache.clear()
Main client for Langfuse tracing and platform features.
This class provides an interface for creating and managing traces, spans, and generations in Langfuse as well as interacting with the Langfuse API.
The client features a thread-safe singleton pattern for each unique public API key, ensuring consistent trace context propagation across your application. It implements efficient batching of spans with configurable flush settings and includes background thread management for media uploads and score ingestion.
Configuration is flexible through either direct parameters or environment variables, with graceful fallbacks and runtime configuration updates.
Attributes:
- api: Synchronous API client for Langfuse backend communication
- async_api: Asynchronous API client for Langfuse backend communication
- _otel_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
Arguments:
- public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
- secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
- base_url (Optional[str]): The Langfuse API base URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_BASE_URL environment variable.
- host (Optional[str]): Deprecated. Use base_url instead. The Langfuse API host URL. Defaults to "https://cloud.langfuse.com".
- timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
- httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
- debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
- tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
- flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
- flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
- environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
- release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
- media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
- sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
- mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
- blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (
metadata.scope.name) - additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
- tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
Example:
from langfuse.otel import Langfuse # Initialize the client (reads from env vars if not provided) langfuse = Langfuse( public_key="your-public-key", secret_key="your-secret-key", host="https://cloud.langfuse.com", # Optional, default shown ) # Create a trace span with langfuse.start_as_current_span(name="process-query") as span: # Your application code here # Create a nested generation span for an LLM call with span.start_as_current_generation( name="generate-response", model="gpt-4", input={"query": "Tell me about AI"}, model_parameters={"temperature": 0.7, "max_tokens": 500} ) as generation: # Generate response here response = "AI is a field of computer science..." generation.update( output=response, usage_details={"prompt_tokens": 10, "completion_tokens": 50}, cost_details={"total_cost": 0.0023} ) # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL) generation.score(name="relevance", value=0.95, data_type="NUMERIC")
207 def __init__( 208 self, 209 *, 210 public_key: Optional[str] = None, 211 secret_key: Optional[str] = None, 212 base_url: Optional[str] = None, 213 host: Optional[str] = None, 214 timeout: Optional[int] = None, 215 httpx_client: Optional[httpx.Client] = None, 216 debug: bool = False, 217 tracing_enabled: Optional[bool] = True, 218 flush_at: Optional[int] = None, 219 flush_interval: Optional[float] = None, 220 environment: Optional[str] = None, 221 release: Optional[str] = None, 222 media_upload_thread_count: Optional[int] = None, 223 sample_rate: Optional[float] = None, 224 mask: Optional[MaskFunction] = None, 225 blocked_instrumentation_scopes: Optional[List[str]] = None, 226 additional_headers: Optional[Dict[str, str]] = None, 227 tracer_provider: Optional[TracerProvider] = None, 228 ): 229 self._base_url = ( 230 base_url 231 or os.environ.get(LANGFUSE_BASE_URL) 232 or host 233 or os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com") 234 ) 235 self._environment = environment or cast( 236 str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT) 237 ) 238 self._project_id: Optional[str] = None 239 sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0)) 240 if not 0.0 <= sample_rate <= 1.0: 241 raise ValueError( 242 f"Sample rate must be between 0.0 and 1.0, got {sample_rate}" 243 ) 244 245 timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5)) 246 247 self._tracing_enabled = ( 248 tracing_enabled 249 and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false" 250 ) 251 if not self._tracing_enabled: 252 langfuse_logger.info( 253 "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API." 254 ) 255 256 debug = ( 257 debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true") 258 ) 259 if debug: 260 logging.basicConfig( 261 format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" 262 ) 263 langfuse_logger.setLevel(logging.DEBUG) 264 265 public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY) 266 if public_key is None: 267 langfuse_logger.warning( 268 "Authentication error: Langfuse client initialized without public_key. Client will be disabled. " 269 "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. " 270 ) 271 self._otel_tracer = otel_trace_api.NoOpTracer() 272 return 273 274 secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY) 275 if secret_key is None: 276 langfuse_logger.warning( 277 "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. " 278 "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. " 279 ) 280 self._otel_tracer = otel_trace_api.NoOpTracer() 281 return 282 283 if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true": 284 langfuse_logger.warning( 285 "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI." 286 ) 287 288 # Initialize api and tracer if requirements are met 289 self._resources = LangfuseResourceManager( 290 public_key=public_key, 291 secret_key=secret_key, 292 base_url=self._base_url, 293 timeout=timeout, 294 environment=self._environment, 295 release=release, 296 flush_at=flush_at, 297 flush_interval=flush_interval, 298 httpx_client=httpx_client, 299 media_upload_thread_count=media_upload_thread_count, 300 sample_rate=sample_rate, 301 mask=mask, 302 tracing_enabled=self._tracing_enabled, 303 blocked_instrumentation_scopes=blocked_instrumentation_scopes, 304 additional_headers=additional_headers, 305 tracer_provider=tracer_provider, 306 ) 307 self._mask = self._resources.mask 308 309 self._otel_tracer = ( 310 self._resources.tracer 311 if self._tracing_enabled and self._resources.tracer is not None 312 else otel_trace_api.NoOpTracer() 313 ) 314 self.api = self._resources.api 315 self.async_api = self._resources.async_api
317 def start_span( 318 self, 319 *, 320 trace_context: Optional[TraceContext] = None, 321 name: str, 322 input: Optional[Any] = None, 323 output: Optional[Any] = None, 324 metadata: Optional[Any] = None, 325 version: Optional[str] = None, 326 level: Optional[SpanLevel] = None, 327 status_message: Optional[str] = None, 328 ) -> LangfuseSpan: 329 """Create a new span for tracing a unit of work. 330 331 This method creates a new span but does not set it as the current span in the 332 context. To create and use a span within a context, use start_as_current_span(). 333 334 The created span will be the child of the current span in the context. 335 336 Args: 337 trace_context: Optional context for connecting to an existing trace 338 name: Name of the span (e.g., function or operation name) 339 input: Input data for the operation (can be any JSON-serializable object) 340 output: Output data from the operation (can be any JSON-serializable object) 341 metadata: Additional metadata to associate with the span 342 version: Version identifier for the code or component 343 level: Importance level of the span (info, warning, error) 344 status_message: Optional status message for the span 345 346 Returns: 347 A LangfuseSpan object that must be ended with .end() when the operation completes 348 349 Example: 350 ```python 351 span = langfuse.start_span(name="process-data") 352 try: 353 # Do work 354 span.update(output="result") 355 finally: 356 span.end() 357 ``` 358 """ 359 return self.start_observation( 360 trace_context=trace_context, 361 name=name, 362 as_type="span", 363 input=input, 364 output=output, 365 metadata=metadata, 366 version=version, 367 level=level, 368 status_message=status_message, 369 )
Create a new span for tracing a unit of work.
This method creates a new span but does not set it as the current span in the context. To create and use a span within a context, use start_as_current_span().
The created span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A LangfuseSpan object that must be ended with .end() when the operation completes
Example:
span = langfuse.start_span(name="process-data") try: # Do work span.update(output="result") finally: span.end()
371 def start_as_current_span( 372 self, 373 *, 374 trace_context: Optional[TraceContext] = None, 375 name: str, 376 input: Optional[Any] = None, 377 output: Optional[Any] = None, 378 metadata: Optional[Any] = None, 379 version: Optional[str] = None, 380 level: Optional[SpanLevel] = None, 381 status_message: Optional[str] = None, 382 end_on_exit: Optional[bool] = None, 383 ) -> _AgnosticContextManager[LangfuseSpan]: 384 """Create a new span and set it as the current span in a context manager. 385 386 This method creates a new span and sets it as the current span within a context 387 manager. Use this method with a 'with' statement to automatically handle span 388 lifecycle within a code block. 389 390 The created span will be the child of the current span in the context. 391 392 Args: 393 trace_context: Optional context for connecting to an existing trace 394 name: Name of the span (e.g., function or operation name) 395 input: Input data for the operation (can be any JSON-serializable object) 396 output: Output data from the operation (can be any JSON-serializable object) 397 metadata: Additional metadata to associate with the span 398 version: Version identifier for the code or component 399 level: Importance level of the span (info, warning, error) 400 status_message: Optional status message for the span 401 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 402 403 Returns: 404 A context manager that yields a LangfuseSpan 405 406 Example: 407 ```python 408 with langfuse.start_as_current_span(name="process-query") as span: 409 # Do work 410 result = process_data() 411 span.update(output=result) 412 413 # Create a child span automatically 414 with span.start_as_current_span(name="sub-operation") as child_span: 415 # Do sub-operation work 416 child_span.update(output="sub-result") 417 ``` 418 """ 419 return self.start_as_current_observation( 420 trace_context=trace_context, 421 name=name, 422 as_type="span", 423 input=input, 424 output=output, 425 metadata=metadata, 426 version=version, 427 level=level, 428 status_message=status_message, 429 end_on_exit=end_on_exit, 430 )
Create a new span and set it as the current span in a context manager.
This method creates a new span and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle span lifecycle within a code block.
The created span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:
A context manager that yields a LangfuseSpan
Example:
with langfuse.start_as_current_span(name="process-query") as span: # Do work result = process_data() span.update(output=result) # Create a child span automatically with span.start_as_current_span(name="sub-operation") as child_span: # Do sub-operation work child_span.update(output="sub-result")
579 def start_observation( 580 self, 581 *, 582 trace_context: Optional[TraceContext] = None, 583 name: str, 584 as_type: ObservationTypeLiteralNoEvent = "span", 585 input: Optional[Any] = None, 586 output: Optional[Any] = None, 587 metadata: Optional[Any] = None, 588 version: Optional[str] = None, 589 level: Optional[SpanLevel] = None, 590 status_message: Optional[str] = None, 591 completion_start_time: Optional[datetime] = None, 592 model: Optional[str] = None, 593 model_parameters: Optional[Dict[str, MapValue]] = None, 594 usage_details: Optional[Dict[str, int]] = None, 595 cost_details: Optional[Dict[str, float]] = None, 596 prompt: Optional[PromptClient] = None, 597 ) -> Union[ 598 LangfuseSpan, 599 LangfuseGeneration, 600 LangfuseAgent, 601 LangfuseTool, 602 LangfuseChain, 603 LangfuseRetriever, 604 LangfuseEvaluator, 605 LangfuseEmbedding, 606 LangfuseGuardrail, 607 ]: 608 """Create a new observation of the specified type. 609 610 This method creates a new observation but does not set it as the current span in the 611 context. To create and use an observation within a context, use start_as_current_observation(). 612 613 Args: 614 trace_context: Optional context for connecting to an existing trace 615 name: Name of the observation 616 as_type: Type of observation to create (defaults to "span") 617 input: Input data for the operation 618 output: Output data from the operation 619 metadata: Additional metadata to associate with the observation 620 version: Version identifier for the code or component 621 level: Importance level of the observation 622 status_message: Optional status message for the observation 623 completion_start_time: When the model started generating (for generation types) 624 model: Name/identifier of the AI model used (for generation types) 625 model_parameters: Parameters used for the model (for generation types) 626 usage_details: Token usage information (for generation types) 627 cost_details: Cost information (for generation types) 628 prompt: Associated prompt template (for generation types) 629 630 Returns: 631 An observation object of the appropriate type that must be ended with .end() 632 """ 633 if trace_context: 634 trace_id = trace_context.get("trace_id", None) 635 parent_span_id = trace_context.get("parent_span_id", None) 636 637 if trace_id: 638 remote_parent_span = self._create_remote_parent_span( 639 trace_id=trace_id, parent_span_id=parent_span_id 640 ) 641 642 with otel_trace_api.use_span( 643 cast(otel_trace_api.Span, remote_parent_span) 644 ): 645 otel_span = self._otel_tracer.start_span(name=name) 646 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 647 648 return self._create_observation_from_otel_span( 649 otel_span=otel_span, 650 as_type=as_type, 651 input=input, 652 output=output, 653 metadata=metadata, 654 version=version, 655 level=level, 656 status_message=status_message, 657 completion_start_time=completion_start_time, 658 model=model, 659 model_parameters=model_parameters, 660 usage_details=usage_details, 661 cost_details=cost_details, 662 prompt=prompt, 663 ) 664 665 otel_span = self._otel_tracer.start_span(name=name) 666 667 return self._create_observation_from_otel_span( 668 otel_span=otel_span, 669 as_type=as_type, 670 input=input, 671 output=output, 672 metadata=metadata, 673 version=version, 674 level=level, 675 status_message=status_message, 676 completion_start_time=completion_start_time, 677 model=model, 678 model_parameters=model_parameters, 679 usage_details=usage_details, 680 cost_details=cost_details, 681 prompt=prompt, 682 )
Create a new observation of the specified type.
This method creates a new observation but does not set it as the current span in the context. To create and use an observation within a context, use start_as_current_observation().
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the observation
- as_type: Type of observation to create (defaults to "span")
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the observation
- version: Version identifier for the code or component
- level: Importance level of the observation
- status_message: Optional status message for the observation
- completion_start_time: When the model started generating (for generation types)
- model: Name/identifier of the AI model used (for generation types)
- model_parameters: Parameters used for the model (for generation types)
- usage_details: Token usage information (for generation types)
- cost_details: Cost information (for generation types)
- prompt: Associated prompt template (for generation types)
Returns:
An observation object of the appropriate type that must be ended with .end()
754 def start_generation( 755 self, 756 *, 757 trace_context: Optional[TraceContext] = None, 758 name: str, 759 input: Optional[Any] = None, 760 output: Optional[Any] = None, 761 metadata: Optional[Any] = None, 762 version: Optional[str] = None, 763 level: Optional[SpanLevel] = None, 764 status_message: Optional[str] = None, 765 completion_start_time: Optional[datetime] = None, 766 model: Optional[str] = None, 767 model_parameters: Optional[Dict[str, MapValue]] = None, 768 usage_details: Optional[Dict[str, int]] = None, 769 cost_details: Optional[Dict[str, float]] = None, 770 prompt: Optional[PromptClient] = None, 771 ) -> LangfuseGeneration: 772 """Create a new generation span for model generations. 773 774 DEPRECATED: This method is deprecated and will be removed in a future version. 775 Use start_observation(as_type='generation') instead. 776 777 This method creates a specialized span for tracking model generations. 778 It includes additional fields specific to model generations such as model name, 779 token usage, and cost details. 780 781 The created generation span will be the child of the current span in the context. 782 783 Args: 784 trace_context: Optional context for connecting to an existing trace 785 name: Name of the generation operation 786 input: Input data for the model (e.g., prompts) 787 output: Output from the model (e.g., completions) 788 metadata: Additional metadata to associate with the generation 789 version: Version identifier for the model or component 790 level: Importance level of the generation (info, warning, error) 791 status_message: Optional status message for the generation 792 completion_start_time: When the model started generating the response 793 model: Name/identifier of the AI model used (e.g., "gpt-4") 794 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 795 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 796 cost_details: Cost information for the model call 797 prompt: Associated prompt template from Langfuse prompt management 798 799 Returns: 800 A LangfuseGeneration object that must be ended with .end() when complete 801 802 Example: 803 ```python 804 generation = langfuse.start_generation( 805 name="answer-generation", 806 model="gpt-4", 807 input={"prompt": "Explain quantum computing"}, 808 model_parameters={"temperature": 0.7} 809 ) 810 try: 811 # Call model API 812 response = llm.generate(...) 813 814 generation.update( 815 output=response.text, 816 usage_details={ 817 "prompt_tokens": response.usage.prompt_tokens, 818 "completion_tokens": response.usage.completion_tokens 819 } 820 ) 821 finally: 822 generation.end() 823 ``` 824 """ 825 warnings.warn( 826 "start_generation is deprecated and will be removed in a future version. " 827 "Use start_observation(as_type='generation') instead.", 828 DeprecationWarning, 829 stacklevel=2, 830 ) 831 return self.start_observation( 832 trace_context=trace_context, 833 name=name, 834 as_type="generation", 835 input=input, 836 output=output, 837 metadata=metadata, 838 version=version, 839 level=level, 840 status_message=status_message, 841 completion_start_time=completion_start_time, 842 model=model, 843 model_parameters=model_parameters, 844 usage_details=usage_details, 845 cost_details=cost_details, 846 prompt=prompt, 847 )
Create a new generation span for model generations.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.
This method creates a specialized span for tracking model generations. It includes additional fields specific to model generations such as model name, token usage, and cost details.
The created generation span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A LangfuseGeneration object that must be ended with .end() when complete
Example:
generation = langfuse.start_generation( name="answer-generation", model="gpt-4", input={"prompt": "Explain quantum computing"}, model_parameters={"temperature": 0.7} ) try: # Call model API response = llm.generate(...) generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) finally: generation.end()
849 def start_as_current_generation( 850 self, 851 *, 852 trace_context: Optional[TraceContext] = None, 853 name: str, 854 input: Optional[Any] = None, 855 output: Optional[Any] = None, 856 metadata: Optional[Any] = None, 857 version: Optional[str] = None, 858 level: Optional[SpanLevel] = None, 859 status_message: Optional[str] = None, 860 completion_start_time: Optional[datetime] = None, 861 model: Optional[str] = None, 862 model_parameters: Optional[Dict[str, MapValue]] = None, 863 usage_details: Optional[Dict[str, int]] = None, 864 cost_details: Optional[Dict[str, float]] = None, 865 prompt: Optional[PromptClient] = None, 866 end_on_exit: Optional[bool] = None, 867 ) -> _AgnosticContextManager[LangfuseGeneration]: 868 """Create a new generation span and set it as the current span in a context manager. 869 870 DEPRECATED: This method is deprecated and will be removed in a future version. 871 Use start_as_current_observation(as_type='generation') instead. 872 873 This method creates a specialized span for model generations and sets it as the 874 current span within a context manager. Use this method with a 'with' statement to 875 automatically handle the generation span lifecycle within a code block. 876 877 The created generation span will be the child of the current span in the context. 878 879 Args: 880 trace_context: Optional context for connecting to an existing trace 881 name: Name of the generation operation 882 input: Input data for the model (e.g., prompts) 883 output: Output from the model (e.g., completions) 884 metadata: Additional metadata to associate with the generation 885 version: Version identifier for the model or component 886 level: Importance level of the generation (info, warning, error) 887 status_message: Optional status message for the generation 888 completion_start_time: When the model started generating the response 889 model: Name/identifier of the AI model used (e.g., "gpt-4") 890 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 891 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 892 cost_details: Cost information for the model call 893 prompt: Associated prompt template from Langfuse prompt management 894 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 895 896 Returns: 897 A context manager that yields a LangfuseGeneration 898 899 Example: 900 ```python 901 with langfuse.start_as_current_generation( 902 name="answer-generation", 903 model="gpt-4", 904 input={"prompt": "Explain quantum computing"} 905 ) as generation: 906 # Call model API 907 response = llm.generate(...) 908 909 # Update with results 910 generation.update( 911 output=response.text, 912 usage_details={ 913 "prompt_tokens": response.usage.prompt_tokens, 914 "completion_tokens": response.usage.completion_tokens 915 } 916 ) 917 ``` 918 """ 919 warnings.warn( 920 "start_as_current_generation is deprecated and will be removed in a future version. " 921 "Use start_as_current_observation(as_type='generation') instead.", 922 DeprecationWarning, 923 stacklevel=2, 924 ) 925 return self.start_as_current_observation( 926 trace_context=trace_context, 927 name=name, 928 as_type="generation", 929 input=input, 930 output=output, 931 metadata=metadata, 932 version=version, 933 level=level, 934 status_message=status_message, 935 completion_start_time=completion_start_time, 936 model=model, 937 model_parameters=model_parameters, 938 usage_details=usage_details, 939 cost_details=cost_details, 940 prompt=prompt, 941 end_on_exit=end_on_exit, 942 )
Create a new generation span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.
This method creates a specialized span for model generations and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the generation span lifecycle within a code block.
The created generation span will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:
A context manager that yields a LangfuseGeneration
Example:
with langfuse.start_as_current_generation( name="answer-generation", model="gpt-4", input={"prompt": "Explain quantum computing"} ) as generation: # Call model API response = llm.generate(...) # Update with results generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } )
1100 def start_as_current_observation( 1101 self, 1102 *, 1103 trace_context: Optional[TraceContext] = None, 1104 name: str, 1105 as_type: ObservationTypeLiteralNoEvent = "span", 1106 input: Optional[Any] = None, 1107 output: Optional[Any] = None, 1108 metadata: Optional[Any] = None, 1109 version: Optional[str] = None, 1110 level: Optional[SpanLevel] = None, 1111 status_message: Optional[str] = None, 1112 completion_start_time: Optional[datetime] = None, 1113 model: Optional[str] = None, 1114 model_parameters: Optional[Dict[str, MapValue]] = None, 1115 usage_details: Optional[Dict[str, int]] = None, 1116 cost_details: Optional[Dict[str, float]] = None, 1117 prompt: Optional[PromptClient] = None, 1118 end_on_exit: Optional[bool] = None, 1119 ) -> Union[ 1120 _AgnosticContextManager[LangfuseGeneration], 1121 _AgnosticContextManager[LangfuseSpan], 1122 _AgnosticContextManager[LangfuseAgent], 1123 _AgnosticContextManager[LangfuseTool], 1124 _AgnosticContextManager[LangfuseChain], 1125 _AgnosticContextManager[LangfuseRetriever], 1126 _AgnosticContextManager[LangfuseEvaluator], 1127 _AgnosticContextManager[LangfuseEmbedding], 1128 _AgnosticContextManager[LangfuseGuardrail], 1129 ]: 1130 """Create a new observation and set it as the current span in a context manager. 1131 1132 This method creates a new observation of the specified type and sets it as the 1133 current span within a context manager. Use this method with a 'with' statement to 1134 automatically handle the observation lifecycle within a code block. 1135 1136 The created observation will be the child of the current span in the context. 1137 1138 Args: 1139 trace_context: Optional context for connecting to an existing trace 1140 name: Name of the observation (e.g., function or operation name) 1141 as_type: Type of observation to create (defaults to "span") 1142 input: Input data for the operation (can be any JSON-serializable object) 1143 output: Output data from the operation (can be any JSON-serializable object) 1144 metadata: Additional metadata to associate with the observation 1145 version: Version identifier for the code or component 1146 level: Importance level of the observation (info, warning, error) 1147 status_message: Optional status message for the observation 1148 end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks. 1149 1150 The following parameters are available when as_type is: "generation" or "embedding". 1151 completion_start_time: When the model started generating the response 1152 model: Name/identifier of the AI model used (e.g., "gpt-4") 1153 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1154 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1155 cost_details: Cost information for the model call 1156 prompt: Associated prompt template from Langfuse prompt management 1157 1158 Returns: 1159 A context manager that yields the appropriate observation type based on as_type 1160 1161 Example: 1162 ```python 1163 # Create a span 1164 with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: 1165 # Do work 1166 result = process_data() 1167 span.update(output=result) 1168 1169 # Create a child span automatically 1170 with span.start_as_current_span(name="sub-operation") as child_span: 1171 # Do sub-operation work 1172 child_span.update(output="sub-result") 1173 1174 # Create a tool observation 1175 with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: 1176 # Do tool work 1177 results = search_web(query) 1178 tool.update(output=results) 1179 1180 # Create a generation observation 1181 with langfuse.start_as_current_observation( 1182 name="answer-generation", 1183 as_type="generation", 1184 model="gpt-4" 1185 ) as generation: 1186 # Generate answer 1187 response = llm.generate(...) 1188 generation.update(output=response) 1189 ``` 1190 """ 1191 if as_type in get_observation_types_list(ObservationTypeGenerationLike): 1192 if trace_context: 1193 trace_id = trace_context.get("trace_id", None) 1194 parent_span_id = trace_context.get("parent_span_id", None) 1195 1196 if trace_id: 1197 remote_parent_span = self._create_remote_parent_span( 1198 trace_id=trace_id, parent_span_id=parent_span_id 1199 ) 1200 1201 return cast( 1202 Union[ 1203 _AgnosticContextManager[LangfuseGeneration], 1204 _AgnosticContextManager[LangfuseEmbedding], 1205 ], 1206 self._create_span_with_parent_context( 1207 as_type=as_type, 1208 name=name, 1209 remote_parent_span=remote_parent_span, 1210 parent=None, 1211 end_on_exit=end_on_exit, 1212 input=input, 1213 output=output, 1214 metadata=metadata, 1215 version=version, 1216 level=level, 1217 status_message=status_message, 1218 completion_start_time=completion_start_time, 1219 model=model, 1220 model_parameters=model_parameters, 1221 usage_details=usage_details, 1222 cost_details=cost_details, 1223 prompt=prompt, 1224 ), 1225 ) 1226 1227 return cast( 1228 Union[ 1229 _AgnosticContextManager[LangfuseGeneration], 1230 _AgnosticContextManager[LangfuseEmbedding], 1231 ], 1232 self._start_as_current_otel_span_with_processed_media( 1233 as_type=as_type, 1234 name=name, 1235 end_on_exit=end_on_exit, 1236 input=input, 1237 output=output, 1238 metadata=metadata, 1239 version=version, 1240 level=level, 1241 status_message=status_message, 1242 completion_start_time=completion_start_time, 1243 model=model, 1244 model_parameters=model_parameters, 1245 usage_details=usage_details, 1246 cost_details=cost_details, 1247 prompt=prompt, 1248 ), 1249 ) 1250 1251 if as_type in get_observation_types_list(ObservationTypeSpanLike): 1252 if trace_context: 1253 trace_id = trace_context.get("trace_id", None) 1254 parent_span_id = trace_context.get("parent_span_id", None) 1255 1256 if trace_id: 1257 remote_parent_span = self._create_remote_parent_span( 1258 trace_id=trace_id, parent_span_id=parent_span_id 1259 ) 1260 1261 return cast( 1262 Union[ 1263 _AgnosticContextManager[LangfuseSpan], 1264 _AgnosticContextManager[LangfuseAgent], 1265 _AgnosticContextManager[LangfuseTool], 1266 _AgnosticContextManager[LangfuseChain], 1267 _AgnosticContextManager[LangfuseRetriever], 1268 _AgnosticContextManager[LangfuseEvaluator], 1269 _AgnosticContextManager[LangfuseGuardrail], 1270 ], 1271 self._create_span_with_parent_context( 1272 as_type=as_type, 1273 name=name, 1274 remote_parent_span=remote_parent_span, 1275 parent=None, 1276 end_on_exit=end_on_exit, 1277 input=input, 1278 output=output, 1279 metadata=metadata, 1280 version=version, 1281 level=level, 1282 status_message=status_message, 1283 ), 1284 ) 1285 1286 return cast( 1287 Union[ 1288 _AgnosticContextManager[LangfuseSpan], 1289 _AgnosticContextManager[LangfuseAgent], 1290 _AgnosticContextManager[LangfuseTool], 1291 _AgnosticContextManager[LangfuseChain], 1292 _AgnosticContextManager[LangfuseRetriever], 1293 _AgnosticContextManager[LangfuseEvaluator], 1294 _AgnosticContextManager[LangfuseGuardrail], 1295 ], 1296 self._start_as_current_otel_span_with_processed_media( 1297 as_type=as_type, 1298 name=name, 1299 end_on_exit=end_on_exit, 1300 input=input, 1301 output=output, 1302 metadata=metadata, 1303 version=version, 1304 level=level, 1305 status_message=status_message, 1306 ), 1307 ) 1308 1309 # This should never be reached since all valid types are handled above 1310 langfuse_logger.warning( 1311 f"Unknown observation type: {as_type}, falling back to span" 1312 ) 1313 return self._start_as_current_otel_span_with_processed_media( 1314 as_type="span", 1315 name=name, 1316 end_on_exit=end_on_exit, 1317 input=input, 1318 output=output, 1319 metadata=metadata, 1320 version=version, 1321 level=level, 1322 status_message=status_message, 1323 )
Create a new observation and set it as the current span in a context manager.
This method creates a new observation of the specified type and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the observation lifecycle within a code block.
The created observation will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the observation (e.g., function or operation name)
- as_type: Type of observation to create (defaults to "span")
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the observation
- version: Version identifier for the code or component
- level: Importance level of the observation (info, warning, error)
- status_message: Optional status message for the observation
- end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
- The following parameters are available when as_type is: "generation" or "embedding".
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A context manager that yields the appropriate observation type based on as_type
Example:
# Create a span with langfuse.start_as_current_observation(name="process-query", as_type="span") as span: # Do work result = process_data() span.update(output=result) # Create a child span automatically with span.start_as_current_span(name="sub-operation") as child_span: # Do sub-operation work child_span.update(output="sub-result") # Create a tool observation with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool: # Do tool work results = search_web(query) tool.update(output=results) # Create a generation observation with langfuse.start_as_current_observation( name="answer-generation", as_type="generation", model="gpt-4" ) as generation: # Generate answer response = llm.generate(...) generation.update(output=response)
1484 def update_current_generation( 1485 self, 1486 *, 1487 name: Optional[str] = None, 1488 input: Optional[Any] = None, 1489 output: Optional[Any] = None, 1490 metadata: Optional[Any] = None, 1491 version: Optional[str] = None, 1492 level: Optional[SpanLevel] = None, 1493 status_message: Optional[str] = None, 1494 completion_start_time: Optional[datetime] = None, 1495 model: Optional[str] = None, 1496 model_parameters: Optional[Dict[str, MapValue]] = None, 1497 usage_details: Optional[Dict[str, int]] = None, 1498 cost_details: Optional[Dict[str, float]] = None, 1499 prompt: Optional[PromptClient] = None, 1500 ) -> None: 1501 """Update the current active generation span with new information. 1502 1503 This method updates the current generation span in the active context with 1504 additional information. It's useful for adding output, usage stats, or other 1505 details that become available during or after model generation. 1506 1507 Args: 1508 name: The generation name 1509 input: Updated input data for the model 1510 output: Output from the model (e.g., completions) 1511 metadata: Additional metadata to associate with the generation 1512 version: Version identifier for the model or component 1513 level: Importance level of the generation (info, warning, error) 1514 status_message: Optional status message for the generation 1515 completion_start_time: When the model started generating the response 1516 model: Name/identifier of the AI model used (e.g., "gpt-4") 1517 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1518 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1519 cost_details: Cost information for the model call 1520 prompt: Associated prompt template from Langfuse prompt management 1521 1522 Example: 1523 ```python 1524 with langfuse.start_as_current_generation(name="answer-query") as generation: 1525 # Initial setup and API call 1526 response = llm.generate(...) 1527 1528 # Update with results that weren't available at creation time 1529 langfuse.update_current_generation( 1530 output=response.text, 1531 usage_details={ 1532 "prompt_tokens": response.usage.prompt_tokens, 1533 "completion_tokens": response.usage.completion_tokens 1534 } 1535 ) 1536 ``` 1537 """ 1538 if not self._tracing_enabled: 1539 langfuse_logger.debug( 1540 "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode." 1541 ) 1542 return 1543 1544 current_otel_span = self._get_current_otel_span() 1545 1546 if current_otel_span is not None: 1547 generation = LangfuseGeneration( 1548 otel_span=current_otel_span, langfuse_client=self 1549 ) 1550 1551 if name: 1552 current_otel_span.update_name(name) 1553 1554 generation.update( 1555 input=input, 1556 output=output, 1557 metadata=metadata, 1558 version=version, 1559 level=level, 1560 status_message=status_message, 1561 completion_start_time=completion_start_time, 1562 model=model, 1563 model_parameters=model_parameters, 1564 usage_details=usage_details, 1565 cost_details=cost_details, 1566 prompt=prompt, 1567 )
Update the current active generation span with new information.
This method updates the current generation span in the active context with additional information. It's useful for adding output, usage stats, or other details that become available during or after model generation.
Arguments:
- name: The generation name
- input: Updated input data for the model
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation: # Initial setup and API call response = llm.generate(...) # Update with results that weren't available at creation time langfuse.update_current_generation( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } )
1569 def update_current_span( 1570 self, 1571 *, 1572 name: Optional[str] = None, 1573 input: Optional[Any] = None, 1574 output: Optional[Any] = None, 1575 metadata: Optional[Any] = None, 1576 version: Optional[str] = None, 1577 level: Optional[SpanLevel] = None, 1578 status_message: Optional[str] = None, 1579 ) -> None: 1580 """Update the current active span with new information. 1581 1582 This method updates the current span in the active context with 1583 additional information. It's useful for adding outputs or metadata 1584 that become available during execution. 1585 1586 Args: 1587 name: The span name 1588 input: Updated input data for the operation 1589 output: Output data from the operation 1590 metadata: Additional metadata to associate with the span 1591 version: Version identifier for the code or component 1592 level: Importance level of the span (info, warning, error) 1593 status_message: Optional status message for the span 1594 1595 Example: 1596 ```python 1597 with langfuse.start_as_current_span(name="process-data") as span: 1598 # Initial processing 1599 result = process_first_part() 1600 1601 # Update with intermediate results 1602 langfuse.update_current_span(metadata={"intermediate_result": result}) 1603 1604 # Continue processing 1605 final_result = process_second_part(result) 1606 1607 # Final update 1608 langfuse.update_current_span(output=final_result) 1609 ``` 1610 """ 1611 if not self._tracing_enabled: 1612 langfuse_logger.debug( 1613 "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode." 1614 ) 1615 return 1616 1617 current_otel_span = self._get_current_otel_span() 1618 1619 if current_otel_span is not None: 1620 span = LangfuseSpan( 1621 otel_span=current_otel_span, 1622 langfuse_client=self, 1623 environment=self._environment, 1624 ) 1625 1626 if name: 1627 current_otel_span.update_name(name) 1628 1629 span.update( 1630 input=input, 1631 output=output, 1632 metadata=metadata, 1633 version=version, 1634 level=level, 1635 status_message=status_message, 1636 )
Update the current active span with new information.
This method updates the current span in the active context with additional information. It's useful for adding outputs or metadata that become available during execution.
Arguments:
- name: The span name
- input: Updated input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Example:
with langfuse.start_as_current_span(name="process-data") as span: # Initial processing result = process_first_part() # Update with intermediate results langfuse.update_current_span(metadata={"intermediate_result": result}) # Continue processing final_result = process_second_part(result) # Final update langfuse.update_current_span(output=final_result)
1638 def update_current_trace( 1639 self, 1640 *, 1641 name: Optional[str] = None, 1642 user_id: Optional[str] = None, 1643 session_id: Optional[str] = None, 1644 version: Optional[str] = None, 1645 input: Optional[Any] = None, 1646 output: Optional[Any] = None, 1647 metadata: Optional[Any] = None, 1648 tags: Optional[List[str]] = None, 1649 public: Optional[bool] = None, 1650 ) -> None: 1651 """Update the current trace with additional information. 1652 1653 Args: 1654 name: Updated name for the Langfuse trace 1655 user_id: ID of the user who initiated the Langfuse trace 1656 session_id: Session identifier for grouping related Langfuse traces 1657 version: Version identifier for the application or service 1658 input: Input data for the overall Langfuse trace 1659 output: Output data from the overall Langfuse trace 1660 metadata: Additional metadata to associate with the Langfuse trace 1661 tags: List of tags to categorize the Langfuse trace 1662 public: Whether the Langfuse trace should be publicly accessible 1663 1664 See Also: 1665 :func:`langfuse.propagate_attributes`: Recommended replacement 1666 """ 1667 if not self._tracing_enabled: 1668 langfuse_logger.debug( 1669 "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode." 1670 ) 1671 return 1672 1673 current_otel_span = self._get_current_otel_span() 1674 1675 if current_otel_span is not None and current_otel_span.is_recording(): 1676 existing_observation_type = current_otel_span.attributes.get( # type: ignore[attr-defined] 1677 LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span" 1678 ) 1679 # We need to preserve the class to keep the correct observation type 1680 span_class = self._get_span_class(existing_observation_type) 1681 span = span_class( 1682 otel_span=current_otel_span, 1683 langfuse_client=self, 1684 environment=self._environment, 1685 ) 1686 1687 span.update_trace( 1688 name=name, 1689 user_id=user_id, 1690 session_id=session_id, 1691 version=version, 1692 input=input, 1693 output=output, 1694 metadata=metadata, 1695 tags=tags, 1696 public=public, 1697 )
Update the current trace with additional information.
Arguments:
- name: Updated name for the Langfuse trace
- user_id: ID of the user who initiated the Langfuse trace
- session_id: Session identifier for grouping related Langfuse traces
- version: Version identifier for the application or service
- input: Input data for the overall Langfuse trace
- output: Output data from the overall Langfuse trace
- metadata: Additional metadata to associate with the Langfuse trace
- tags: List of tags to categorize the Langfuse trace
- public: Whether the Langfuse trace should be publicly accessible
See Also:
langfuse.propagate_attributes(): Recommended replacement
1699 def create_event( 1700 self, 1701 *, 1702 trace_context: Optional[TraceContext] = None, 1703 name: str, 1704 input: Optional[Any] = None, 1705 output: Optional[Any] = None, 1706 metadata: Optional[Any] = None, 1707 version: Optional[str] = None, 1708 level: Optional[SpanLevel] = None, 1709 status_message: Optional[str] = None, 1710 ) -> LangfuseEvent: 1711 """Create a new Langfuse observation of type 'EVENT'. 1712 1713 The created Langfuse Event observation will be the child of the current span in the context. 1714 1715 Args: 1716 trace_context: Optional context for connecting to an existing trace 1717 name: Name of the span (e.g., function or operation name) 1718 input: Input data for the operation (can be any JSON-serializable object) 1719 output: Output data from the operation (can be any JSON-serializable object) 1720 metadata: Additional metadata to associate with the span 1721 version: Version identifier for the code or component 1722 level: Importance level of the span (info, warning, error) 1723 status_message: Optional status message for the span 1724 1725 Returns: 1726 The Langfuse Event object 1727 1728 Example: 1729 ```python 1730 event = langfuse.create_event(name="process-event") 1731 ``` 1732 """ 1733 timestamp = time_ns() 1734 1735 if trace_context: 1736 trace_id = trace_context.get("trace_id", None) 1737 parent_span_id = trace_context.get("parent_span_id", None) 1738 1739 if trace_id: 1740 remote_parent_span = self._create_remote_parent_span( 1741 trace_id=trace_id, parent_span_id=parent_span_id 1742 ) 1743 1744 with otel_trace_api.use_span( 1745 cast(otel_trace_api.Span, remote_parent_span) 1746 ): 1747 otel_span = self._otel_tracer.start_span( 1748 name=name, start_time=timestamp 1749 ) 1750 otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True) 1751 1752 return cast( 1753 LangfuseEvent, 1754 LangfuseEvent( 1755 otel_span=otel_span, 1756 langfuse_client=self, 1757 environment=self._environment, 1758 input=input, 1759 output=output, 1760 metadata=metadata, 1761 version=version, 1762 level=level, 1763 status_message=status_message, 1764 ).end(end_time=timestamp), 1765 ) 1766 1767 otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp) 1768 1769 return cast( 1770 LangfuseEvent, 1771 LangfuseEvent( 1772 otel_span=otel_span, 1773 langfuse_client=self, 1774 environment=self._environment, 1775 input=input, 1776 output=output, 1777 metadata=metadata, 1778 version=version, 1779 level=level, 1780 status_message=status_message, 1781 ).end(end_time=timestamp), 1782 )
Create a new Langfuse observation of type 'EVENT'.
The created Langfuse Event observation will be the child of the current span in the context.
Arguments:
- trace_context: Optional context for connecting to an existing trace
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
The Langfuse Event object
Example:
event = langfuse.create_event(name="process-event")
1871 @staticmethod 1872 def create_trace_id(*, seed: Optional[str] = None) -> str: 1873 """Create a unique trace ID for use with Langfuse. 1874 1875 This method generates a unique trace ID for use with various Langfuse APIs. 1876 It can either generate a random ID or create a deterministic ID based on 1877 a seed string. 1878 1879 Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. 1880 This method ensures the generated ID meets this requirement. If you need to 1881 correlate an external ID with a Langfuse trace ID, use the external ID as the 1882 seed to get a valid, deterministic Langfuse trace ID. 1883 1884 Args: 1885 seed: Optional string to use as a seed for deterministic ID generation. 1886 If provided, the same seed will always produce the same ID. 1887 If not provided, a random ID will be generated. 1888 1889 Returns: 1890 A 32-character lowercase hexadecimal string representing the Langfuse trace ID. 1891 1892 Example: 1893 ```python 1894 # Generate a random trace ID 1895 trace_id = langfuse.create_trace_id() 1896 1897 # Generate a deterministic ID based on a seed 1898 session_trace_id = langfuse.create_trace_id(seed="session-456") 1899 1900 # Correlate an external ID with a Langfuse trace ID 1901 external_id = "external-system-123456" 1902 correlated_trace_id = langfuse.create_trace_id(seed=external_id) 1903 1904 # Use the ID with trace context 1905 with langfuse.start_as_current_span( 1906 name="process-request", 1907 trace_context={"trace_id": trace_id} 1908 ) as span: 1909 # Operation will be part of the specific trace 1910 pass 1911 ``` 1912 """ 1913 if not seed: 1914 trace_id_int = RandomIdGenerator().generate_trace_id() 1915 1916 return Langfuse._format_otel_trace_id(trace_id_int) 1917 1918 return sha256(seed.encode("utf-8")).digest()[:16].hex()
Create a unique trace ID for use with Langfuse.
This method generates a unique trace ID for use with various Langfuse APIs. It can either generate a random ID or create a deterministic ID based on a seed string.
Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. This method ensures the generated ID meets this requirement. If you need to correlate an external ID with a Langfuse trace ID, use the external ID as the seed to get a valid, deterministic Langfuse trace ID.
Arguments:
- seed: Optional string to use as a seed for deterministic ID generation. If provided, the same seed will always produce the same ID. If not provided, a random ID will be generated.
Returns:
A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
Example:
# Generate a random trace ID trace_id = langfuse.create_trace_id() # Generate a deterministic ID based on a seed session_trace_id = langfuse.create_trace_id(seed="session-456") # Correlate an external ID with a Langfuse trace ID external_id = "external-system-123456" correlated_trace_id = langfuse.create_trace_id(seed=external_id) # Use the ID with trace context with langfuse.start_as_current_span( name="process-request", trace_context={"trace_id": trace_id} ) as span: # Operation will be part of the specific trace pass
1994 def create_score( 1995 self, 1996 *, 1997 name: str, 1998 value: Union[float, str], 1999 session_id: Optional[str] = None, 2000 dataset_run_id: Optional[str] = None, 2001 trace_id: Optional[str] = None, 2002 observation_id: Optional[str] = None, 2003 score_id: Optional[str] = None, 2004 data_type: Optional[ScoreDataType] = None, 2005 comment: Optional[str] = None, 2006 config_id: Optional[str] = None, 2007 metadata: Optional[Any] = None, 2008 ) -> None: 2009 """Create a score for a specific trace or observation. 2010 2011 This method creates a score for evaluating a Langfuse trace or observation. Scores can be 2012 used to track quality metrics, user feedback, or automated evaluations. 2013 2014 Args: 2015 name: Name of the score (e.g., "relevance", "accuracy") 2016 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2017 session_id: ID of the Langfuse session to associate the score with 2018 dataset_run_id: ID of the Langfuse dataset run to associate the score with 2019 trace_id: ID of the Langfuse trace to associate the score with 2020 observation_id: Optional ID of the specific observation to score. Trace ID must be provided too. 2021 score_id: Optional custom ID for the score (auto-generated if not provided) 2022 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2023 comment: Optional comment or explanation for the score 2024 config_id: Optional ID of a score config defined in Langfuse 2025 metadata: Optional metadata to be attached to the score 2026 2027 Example: 2028 ```python 2029 # Create a numeric score for accuracy 2030 langfuse.create_score( 2031 name="accuracy", 2032 value=0.92, 2033 trace_id="abcdef1234567890abcdef1234567890", 2034 data_type="NUMERIC", 2035 comment="High accuracy with minor irrelevant details" 2036 ) 2037 2038 # Create a categorical score for sentiment 2039 langfuse.create_score( 2040 name="sentiment", 2041 value="positive", 2042 trace_id="abcdef1234567890abcdef1234567890", 2043 observation_id="abcdef1234567890", 2044 data_type="CATEGORICAL" 2045 ) 2046 ``` 2047 """ 2048 if not self._tracing_enabled: 2049 return 2050 2051 score_id = score_id or self._create_observation_id() 2052 2053 try: 2054 new_body = ScoreBody( 2055 id=score_id, 2056 sessionId=session_id, 2057 datasetRunId=dataset_run_id, 2058 traceId=trace_id, 2059 observationId=observation_id, 2060 name=name, 2061 value=value, 2062 dataType=data_type, # type: ignore 2063 comment=comment, 2064 configId=config_id, 2065 environment=self._environment, 2066 metadata=metadata, 2067 ) 2068 2069 event = { 2070 "id": self.create_trace_id(), 2071 "type": "score-create", 2072 "timestamp": _get_timestamp(), 2073 "body": new_body, 2074 } 2075 2076 if self._resources is not None: 2077 # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar 2078 force_sample = ( 2079 not self._is_valid_trace_id(trace_id) if trace_id else True 2080 ) 2081 2082 self._resources.add_score_task( 2083 event, 2084 force_sample=force_sample, 2085 ) 2086 2087 except Exception as e: 2088 langfuse_logger.exception( 2089 f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}" 2090 )
Create a score for a specific trace or observation.
This method creates a score for evaluating a Langfuse trace or observation. Scores can be used to track quality metrics, user feedback, or automated evaluations.
Arguments:
- name: Name of the score (e.g., "relevance", "accuracy")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- session_id: ID of the Langfuse session to associate the score with
- dataset_run_id: ID of the Langfuse dataset run to associate the score with
- trace_id: ID of the Langfuse trace to associate the score with
- observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
- metadata: Optional metadata to be attached to the score
Example:
# Create a numeric score for accuracy langfuse.create_score( name="accuracy", value=0.92, trace_id="abcdef1234567890abcdef1234567890", data_type="NUMERIC", comment="High accuracy with minor irrelevant details" ) # Create a categorical score for sentiment langfuse.create_score( name="sentiment", value="positive", trace_id="abcdef1234567890abcdef1234567890", observation_id="abcdef1234567890", data_type="CATEGORICAL" )
2116 def score_current_span( 2117 self, 2118 *, 2119 name: str, 2120 value: Union[float, str], 2121 score_id: Optional[str] = None, 2122 data_type: Optional[ScoreDataType] = None, 2123 comment: Optional[str] = None, 2124 config_id: Optional[str] = None, 2125 ) -> None: 2126 """Create a score for the current active span. 2127 2128 This method scores the currently active span in the context. It's a convenient 2129 way to score the current operation without needing to know its trace and span IDs. 2130 2131 Args: 2132 name: Name of the score (e.g., "relevance", "accuracy") 2133 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2134 score_id: Optional custom ID for the score (auto-generated if not provided) 2135 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2136 comment: Optional comment or explanation for the score 2137 config_id: Optional ID of a score config defined in Langfuse 2138 2139 Example: 2140 ```python 2141 with langfuse.start_as_current_generation(name="answer-query") as generation: 2142 # Generate answer 2143 response = generate_answer(...) 2144 generation.update(output=response) 2145 2146 # Score the generation 2147 langfuse.score_current_span( 2148 name="relevance", 2149 value=0.85, 2150 data_type="NUMERIC", 2151 comment="Mostly relevant but contains some tangential information" 2152 ) 2153 ``` 2154 """ 2155 current_span = self._get_current_otel_span() 2156 2157 if current_span is not None: 2158 trace_id = self._get_otel_trace_id(current_span) 2159 observation_id = self._get_otel_span_id(current_span) 2160 2161 langfuse_logger.info( 2162 f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}" 2163 ) 2164 2165 self.create_score( 2166 trace_id=trace_id, 2167 observation_id=observation_id, 2168 name=name, 2169 value=cast(str, value), 2170 score_id=score_id, 2171 data_type=cast(Literal["CATEGORICAL"], data_type), 2172 comment=comment, 2173 config_id=config_id, 2174 )
Create a score for the current active span.
This method scores the currently active span in the context. It's a convenient way to score the current operation without needing to know its trace and span IDs.
Arguments:
- name: Name of the score (e.g., "relevance", "accuracy")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation: # Generate answer response = generate_answer(...) generation.update(output=response) # Score the generation langfuse.score_current_span( name="relevance", value=0.85, data_type="NUMERIC", comment="Mostly relevant but contains some tangential information" )
2200 def score_current_trace( 2201 self, 2202 *, 2203 name: str, 2204 value: Union[float, str], 2205 score_id: Optional[str] = None, 2206 data_type: Optional[ScoreDataType] = None, 2207 comment: Optional[str] = None, 2208 config_id: Optional[str] = None, 2209 ) -> None: 2210 """Create a score for the current trace. 2211 2212 This method scores the trace of the currently active span. Unlike score_current_span, 2213 this method associates the score with the entire trace rather than a specific span. 2214 It's useful for scoring overall performance or quality of the entire operation. 2215 2216 Args: 2217 name: Name of the score (e.g., "user_satisfaction", "overall_quality") 2218 value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL) 2219 score_id: Optional custom ID for the score (auto-generated if not provided) 2220 data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL) 2221 comment: Optional comment or explanation for the score 2222 config_id: Optional ID of a score config defined in Langfuse 2223 2224 Example: 2225 ```python 2226 with langfuse.start_as_current_span(name="process-user-request") as span: 2227 # Process request 2228 result = process_complete_request() 2229 span.update(output=result) 2230 2231 # Score the overall trace 2232 langfuse.score_current_trace( 2233 name="overall_quality", 2234 value=0.95, 2235 data_type="NUMERIC", 2236 comment="High quality end-to-end response" 2237 ) 2238 ``` 2239 """ 2240 current_span = self._get_current_otel_span() 2241 2242 if current_span is not None: 2243 trace_id = self._get_otel_trace_id(current_span) 2244 2245 langfuse_logger.info( 2246 f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}" 2247 ) 2248 2249 self.create_score( 2250 trace_id=trace_id, 2251 name=name, 2252 value=cast(str, value), 2253 score_id=score_id, 2254 data_type=cast(Literal["CATEGORICAL"], data_type), 2255 comment=comment, 2256 config_id=config_id, 2257 )
Create a score for the current trace.
This method scores the trace of the currently active span. Unlike score_current_span, this method associates the score with the entire trace rather than a specific span. It's useful for scoring overall performance or quality of the entire operation.
Arguments:
- name: Name of the score (e.g., "user_satisfaction", "overall_quality")
- value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
- score_id: Optional custom ID for the score (auto-generated if not provided)
- data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
- comment: Optional comment or explanation for the score
- config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_span(name="process-user-request") as span: # Process request result = process_complete_request() span.update(output=result) # Score the overall trace langfuse.score_current_trace( name="overall_quality", value=0.95, data_type="NUMERIC", comment="High quality end-to-end response" )
2259 def flush(self) -> None: 2260 """Force flush all pending spans and events to the Langfuse API. 2261 2262 This method manually flushes any pending spans, scores, and other events to the 2263 Langfuse API. It's useful in scenarios where you want to ensure all data is sent 2264 before proceeding, without waiting for the automatic flush interval. 2265 2266 Example: 2267 ```python 2268 # Record some spans and scores 2269 with langfuse.start_as_current_span(name="operation") as span: 2270 # Do work... 2271 pass 2272 2273 # Ensure all data is sent to Langfuse before proceeding 2274 langfuse.flush() 2275 2276 # Continue with other work 2277 ``` 2278 """ 2279 if self._resources is not None: 2280 self._resources.flush()
Force flush all pending spans and events to the Langfuse API.
This method manually flushes any pending spans, scores, and other events to the Langfuse API. It's useful in scenarios where you want to ensure all data is sent before proceeding, without waiting for the automatic flush interval.
Example:
# Record some spans and scores with langfuse.start_as_current_span(name="operation") as span: # Do work... pass # Ensure all data is sent to Langfuse before proceeding langfuse.flush() # Continue with other work
2282 def shutdown(self) -> None: 2283 """Shut down the Langfuse client and flush all pending data. 2284 2285 This method cleanly shuts down the Langfuse client, ensuring all pending data 2286 is flushed to the API and all background threads are properly terminated. 2287 2288 It's important to call this method when your application is shutting down to 2289 prevent data loss and resource leaks. For most applications, using the client 2290 as a context manager or relying on the automatic shutdown via atexit is sufficient. 2291 2292 Example: 2293 ```python 2294 # Initialize Langfuse 2295 langfuse = Langfuse(public_key="...", secret_key="...") 2296 2297 # Use Langfuse throughout your application 2298 # ... 2299 2300 # When application is shutting down 2301 langfuse.shutdown() 2302 ``` 2303 """ 2304 if self._resources is not None: 2305 self._resources.shutdown()
Shut down the Langfuse client and flush all pending data.
This method cleanly shuts down the Langfuse client, ensuring all pending data is flushed to the API and all background threads are properly terminated.
It's important to call this method when your application is shutting down to prevent data loss and resource leaks. For most applications, using the client as a context manager or relying on the automatic shutdown via atexit is sufficient.
Example:
# Initialize Langfuse langfuse = Langfuse(public_key="...", secret_key="...") # Use Langfuse throughout your application # ... # When application is shutting down langfuse.shutdown()
2307 def get_current_trace_id(self) -> Optional[str]: 2308 """Get the trace ID of the current active span. 2309 2310 This method retrieves the trace ID from the currently active span in the context. 2311 It can be used to get the trace ID for referencing in logs, external systems, 2312 or for creating related operations. 2313 2314 Returns: 2315 The current trace ID as a 32-character lowercase hexadecimal string, 2316 or None if there is no active span. 2317 2318 Example: 2319 ```python 2320 with langfuse.start_as_current_span(name="process-request") as span: 2321 # Get the current trace ID for reference 2322 trace_id = langfuse.get_current_trace_id() 2323 2324 # Use it for external correlation 2325 log.info(f"Processing request with trace_id: {trace_id}") 2326 2327 # Or pass to another system 2328 external_system.process(data, trace_id=trace_id) 2329 ``` 2330 """ 2331 if not self._tracing_enabled: 2332 langfuse_logger.debug( 2333 "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode." 2334 ) 2335 return None 2336 2337 current_otel_span = self._get_current_otel_span() 2338 2339 return self._get_otel_trace_id(current_otel_span) if current_otel_span else None
Get the trace ID of the current active span.
This method retrieves the trace ID from the currently active span in the context. It can be used to get the trace ID for referencing in logs, external systems, or for creating related operations.
Returns:
The current trace ID as a 32-character lowercase hexadecimal string, or None if there is no active span.
Example:
with langfuse.start_as_current_span(name="process-request") as span: # Get the current trace ID for reference trace_id = langfuse.get_current_trace_id() # Use it for external correlation log.info(f"Processing request with trace_id: {trace_id}") # Or pass to another system external_system.process(data, trace_id=trace_id)
2341 def get_current_observation_id(self) -> Optional[str]: 2342 """Get the observation ID (span ID) of the current active span. 2343 2344 This method retrieves the observation ID from the currently active span in the context. 2345 It can be used to get the observation ID for referencing in logs, external systems, 2346 or for creating scores or other related operations. 2347 2348 Returns: 2349 The current observation ID as a 16-character lowercase hexadecimal string, 2350 or None if there is no active span. 2351 2352 Example: 2353 ```python 2354 with langfuse.start_as_current_span(name="process-user-query") as span: 2355 # Get the current observation ID 2356 observation_id = langfuse.get_current_observation_id() 2357 2358 # Store it for later reference 2359 cache.set(f"query_{query_id}_observation", observation_id) 2360 2361 # Process the query... 2362 ``` 2363 """ 2364 if not self._tracing_enabled: 2365 langfuse_logger.debug( 2366 "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode." 2367 ) 2368 return None 2369 2370 current_otel_span = self._get_current_otel_span() 2371 2372 return self._get_otel_span_id(current_otel_span) if current_otel_span else None
Get the observation ID (span ID) of the current active span.
This method retrieves the observation ID from the currently active span in the context. It can be used to get the observation ID for referencing in logs, external systems, or for creating scores or other related operations.
Returns:
The current observation ID as a 16-character lowercase hexadecimal string, or None if there is no active span.
Example:
with langfuse.start_as_current_span(name="process-user-query") as span: # Get the current observation ID observation_id = langfuse.get_current_observation_id() # Store it for later reference cache.set(f"query_{query_id}_observation", observation_id) # Process the query...
2385 def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]: 2386 """Get the URL to view a trace in the Langfuse UI. 2387 2388 This method generates a URL that links directly to a trace in the Langfuse UI. 2389 It's useful for providing links in logs, notifications, or debugging tools. 2390 2391 Args: 2392 trace_id: Optional trace ID to generate a URL for. If not provided, 2393 the trace ID of the current active span will be used. 2394 2395 Returns: 2396 A URL string pointing to the trace in the Langfuse UI, 2397 or None if the project ID couldn't be retrieved or no trace ID is available. 2398 2399 Example: 2400 ```python 2401 # Get URL for the current trace 2402 with langfuse.start_as_current_span(name="process-request") as span: 2403 trace_url = langfuse.get_trace_url() 2404 log.info(f"Processing trace: {trace_url}") 2405 2406 # Get URL for a specific trace 2407 specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") 2408 send_notification(f"Review needed for trace: {specific_trace_url}") 2409 ``` 2410 """ 2411 project_id = self._get_project_id() 2412 final_trace_id = trace_id or self.get_current_trace_id() 2413 2414 return ( 2415 f"{self._base_url}/project/{project_id}/traces/{final_trace_id}" 2416 if project_id and final_trace_id 2417 else None 2418 )
Get the URL to view a trace in the Langfuse UI.
This method generates a URL that links directly to a trace in the Langfuse UI. It's useful for providing links in logs, notifications, or debugging tools.
Arguments:
- trace_id: Optional trace ID to generate a URL for. If not provided, the trace ID of the current active span will be used.
Returns:
A URL string pointing to the trace in the Langfuse UI, or None if the project ID couldn't be retrieved or no trace ID is available.
Example:
# Get URL for the current trace with langfuse.start_as_current_span(name="process-request") as span: trace_url = langfuse.get_trace_url() log.info(f"Processing trace: {trace_url}") # Get URL for a specific trace specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef") send_notification(f"Review needed for trace: {specific_trace_url}")
2420 def get_dataset( 2421 self, name: str, *, fetch_items_page_size: Optional[int] = 50 2422 ) -> "DatasetClient": 2423 """Fetch a dataset by its name. 2424 2425 Args: 2426 name (str): The name of the dataset to fetch. 2427 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 2428 2429 Returns: 2430 DatasetClient: The dataset with the given name. 2431 """ 2432 try: 2433 langfuse_logger.debug(f"Getting datasets {name}") 2434 dataset = self.api.datasets.get(dataset_name=name) 2435 2436 dataset_items = [] 2437 page = 1 2438 2439 while True: 2440 new_items = self.api.dataset_items.list( 2441 dataset_name=self._url_encode(name, is_url_param=True), 2442 page=page, 2443 limit=fetch_items_page_size, 2444 ) 2445 dataset_items.extend(new_items.data) 2446 2447 if new_items.meta.total_pages <= page: 2448 break 2449 2450 page += 1 2451 2452 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 2453 2454 return DatasetClient(dataset, items=items) 2455 2456 except Error as e: 2457 handle_fern_exception(e) 2458 raise e
Fetch a dataset by its name.
Arguments:
- name (str): The name of the dataset to fetch.
- fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:
DatasetClient: The dataset with the given name.
2460 def run_experiment( 2461 self, 2462 *, 2463 name: str, 2464 run_name: Optional[str] = None, 2465 description: Optional[str] = None, 2466 data: ExperimentData, 2467 task: TaskFunction, 2468 evaluators: List[EvaluatorFunction] = [], 2469 composite_evaluator: Optional[CompositeEvaluatorFunction] = None, 2470 run_evaluators: List[RunEvaluatorFunction] = [], 2471 max_concurrency: int = 50, 2472 metadata: Optional[Dict[str, str]] = None, 2473 ) -> ExperimentResult: 2474 """Run an experiment on a dataset with automatic tracing and evaluation. 2475 2476 This method executes a task function on each item in the provided dataset, 2477 automatically traces all executions with Langfuse for observability, runs 2478 item-level and run-level evaluators on the outputs, and returns comprehensive 2479 results with evaluation metrics. 2480 2481 The experiment system provides: 2482 - Automatic tracing of all task executions 2483 - Concurrent processing with configurable limits 2484 - Comprehensive error handling that isolates failures 2485 - Integration with Langfuse datasets for experiment tracking 2486 - Flexible evaluation framework supporting both sync and async evaluators 2487 2488 Args: 2489 name: Human-readable name for the experiment. Used for identification 2490 in the Langfuse UI. 2491 run_name: Optional exact name for the experiment run. If provided, this will be 2492 used as the exact dataset run name if the `data` contains Langfuse dataset items. 2493 If not provided, this will default to the experiment name appended with an ISO timestamp. 2494 description: Optional description explaining the experiment's purpose, 2495 methodology, or expected outcomes. 2496 data: Array of data items to process. Can be either: 2497 - List of dict-like items with 'input', 'expected_output', 'metadata' keys 2498 - List of Langfuse DatasetItem objects from dataset.items 2499 task: Function that processes each data item and returns output. 2500 Must accept 'item' as keyword argument and can return sync or async results. 2501 The task function signature should be: task(*, item, **kwargs) -> Any 2502 evaluators: List of functions to evaluate each item's output individually. 2503 Each evaluator receives input, output, expected_output, and metadata. 2504 Can return single Evaluation dict or list of Evaluation dicts. 2505 composite_evaluator: Optional function that creates composite scores from item-level evaluations. 2506 Receives the same inputs as item-level evaluators (input, output, expected_output, metadata) 2507 plus the list of evaluations from item-level evaluators. Useful for weighted averages, 2508 pass/fail decisions based on multiple criteria, or custom scoring logic combining multiple metrics. 2509 run_evaluators: List of functions to evaluate the entire experiment run. 2510 Each run evaluator receives all item_results and can compute aggregate metrics. 2511 Useful for calculating averages, distributions, or cross-item comparisons. 2512 max_concurrency: Maximum number of concurrent task executions (default: 50). 2513 Controls the number of items processed simultaneously. Adjust based on 2514 API rate limits and system resources. 2515 metadata: Optional metadata dictionary to attach to all experiment traces. 2516 This metadata will be included in every trace created during the experiment. 2517 If `data` are Langfuse dataset items, the metadata will be attached to the dataset run, too. 2518 2519 Returns: 2520 ExperimentResult containing: 2521 - run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset. 2522 - item_results: List of results for each processed item with outputs and evaluations 2523 - run_evaluations: List of aggregate evaluation results for the entire run 2524 - dataset_run_id: ID of the dataset run (if using Langfuse datasets) 2525 - dataset_run_url: Direct URL to view results in Langfuse UI (if applicable) 2526 2527 Raises: 2528 ValueError: If required parameters are missing or invalid 2529 Exception: If experiment setup fails (individual item failures are handled gracefully) 2530 2531 Examples: 2532 Basic experiment with local data: 2533 ```python 2534 def summarize_text(*, item, **kwargs): 2535 return f"Summary: {item['input'][:50]}..." 2536 2537 def length_evaluator(*, input, output, expected_output=None, **kwargs): 2538 return { 2539 "name": "output_length", 2540 "value": len(output), 2541 "comment": f"Output contains {len(output)} characters" 2542 } 2543 2544 result = langfuse.run_experiment( 2545 name="Text Summarization Test", 2546 description="Evaluate summarization quality and length", 2547 data=[ 2548 {"input": "Long article text...", "expected_output": "Expected summary"}, 2549 {"input": "Another article...", "expected_output": "Another summary"} 2550 ], 2551 task=summarize_text, 2552 evaluators=[length_evaluator] 2553 ) 2554 2555 print(f"Processed {len(result.item_results)} items") 2556 for item_result in result.item_results: 2557 print(f"Input: {item_result.item['input']}") 2558 print(f"Output: {item_result.output}") 2559 print(f"Evaluations: {item_result.evaluations}") 2560 ``` 2561 2562 Advanced experiment with async task and multiple evaluators: 2563 ```python 2564 async def llm_task(*, item, **kwargs): 2565 # Simulate async LLM call 2566 response = await openai_client.chat.completions.create( 2567 model="gpt-4", 2568 messages=[{"role": "user", "content": item["input"]}] 2569 ) 2570 return response.choices[0].message.content 2571 2572 def accuracy_evaluator(*, input, output, expected_output=None, **kwargs): 2573 if expected_output and expected_output.lower() in output.lower(): 2574 return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"} 2575 return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"} 2576 2577 def toxicity_evaluator(*, input, output, expected_output=None, **kwargs): 2578 # Simulate toxicity check 2579 toxicity_score = check_toxicity(output) # Your toxicity checker 2580 return { 2581 "name": "toxicity", 2582 "value": toxicity_score, 2583 "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}" 2584 } 2585 2586 def average_accuracy(*, item_results, **kwargs): 2587 accuracies = [ 2588 eval.value for result in item_results 2589 for eval in result.evaluations 2590 if eval.name == "accuracy" 2591 ] 2592 return { 2593 "name": "average_accuracy", 2594 "value": sum(accuracies) / len(accuracies) if accuracies else 0, 2595 "comment": f"Average accuracy across {len(accuracies)} items" 2596 } 2597 2598 result = langfuse.run_experiment( 2599 name="LLM Safety and Accuracy Test", 2600 description="Evaluate model accuracy and safety across diverse prompts", 2601 data=test_dataset, # Your dataset items 2602 task=llm_task, 2603 evaluators=[accuracy_evaluator, toxicity_evaluator], 2604 run_evaluators=[average_accuracy], 2605 max_concurrency=5, # Limit concurrent API calls 2606 metadata={"model": "gpt-4", "temperature": 0.7} 2607 ) 2608 ``` 2609 2610 Using with Langfuse datasets: 2611 ```python 2612 # Get dataset from Langfuse 2613 dataset = langfuse.get_dataset("my-eval-dataset") 2614 2615 result = dataset.run_experiment( 2616 name="Production Model Evaluation", 2617 description="Monthly evaluation of production model performance", 2618 task=my_production_task, 2619 evaluators=[accuracy_evaluator, latency_evaluator] 2620 ) 2621 2622 # Results automatically linked to dataset in Langfuse UI 2623 print(f"View results: {result['dataset_run_url']}") 2624 ``` 2625 2626 Note: 2627 - Task and evaluator functions can be either synchronous or asynchronous 2628 - Individual item failures are logged but don't stop the experiment 2629 - All executions are automatically traced and visible in Langfuse UI 2630 - When using Langfuse datasets, results are automatically linked for easy comparison 2631 - This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.) 2632 - Async execution is handled automatically with smart event loop detection 2633 """ 2634 return cast( 2635 ExperimentResult, 2636 run_async_safely( 2637 self._run_experiment_async( 2638 name=name, 2639 run_name=self._create_experiment_run_name( 2640 name=name, run_name=run_name 2641 ), 2642 description=description, 2643 data=data, 2644 task=task, 2645 evaluators=evaluators or [], 2646 composite_evaluator=composite_evaluator, 2647 run_evaluators=run_evaluators or [], 2648 max_concurrency=max_concurrency, 2649 metadata=metadata, 2650 ), 2651 ), 2652 )
Run an experiment on a dataset with automatic tracing and evaluation.
This method executes a task function on each item in the provided dataset, automatically traces all executions with Langfuse for observability, runs item-level and run-level evaluators on the outputs, and returns comprehensive results with evaluation metrics.
The experiment system provides:
- Automatic tracing of all task executions
- Concurrent processing with configurable limits
- Comprehensive error handling that isolates failures
- Integration with Langfuse datasets for experiment tracking
- Flexible evaluation framework supporting both sync and async evaluators
Arguments:
- name: Human-readable name for the experiment. Used for identification in the Langfuse UI.
- run_name: Optional exact name for the experiment run. If provided, this will be
used as the exact dataset run name if the
datacontains Langfuse dataset items. If not provided, this will default to the experiment name appended with an ISO timestamp. - description: Optional description explaining the experiment's purpose, methodology, or expected outcomes.
- data: Array of data items to process. Can be either:
- List of dict-like items with 'input', 'expected_output', 'metadata' keys
- List of Langfuse DatasetItem objects from dataset.items
- task: Function that processes each data item and returns output. Must accept 'item' as keyword argument and can return sync or async results. The task function signature should be: task(, item, *kwargs) -> Any
- evaluators: List of functions to evaluate each item's output individually. Each evaluator receives input, output, expected_output, and metadata. Can return single Evaluation dict or list of Evaluation dicts.
- composite_evaluator: Optional function that creates composite scores from item-level evaluations. Receives the same inputs as item-level evaluators (input, output, expected_output, metadata) plus the list of evaluations from item-level evaluators. Useful for weighted averages, pass/fail decisions based on multiple criteria, or custom scoring logic combining multiple metrics.
- run_evaluators: List of functions to evaluate the entire experiment run. Each run evaluator receives all item_results and can compute aggregate metrics. Useful for calculating averages, distributions, or cross-item comparisons.
- max_concurrency: Maximum number of concurrent task executions (default: 50). Controls the number of items processed simultaneously. Adjust based on API rate limits and system resources.
- metadata: Optional metadata dictionary to attach to all experiment traces.
This metadata will be included in every trace created during the experiment.
If
dataare Langfuse dataset items, the metadata will be attached to the dataset run, too.
Returns:
ExperimentResult containing:
- run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset.
- item_results: List of results for each processed item with outputs and evaluations
- run_evaluations: List of aggregate evaluation results for the entire run
- dataset_run_id: ID of the dataset run (if using Langfuse datasets)
- dataset_run_url: Direct URL to view results in Langfuse UI (if applicable)
Raises:
- ValueError: If required parameters are missing or invalid
- Exception: If experiment setup fails (individual item failures are handled gracefully)
Examples:
Basic experiment with local data:
def summarize_text(*, item, **kwargs): return f"Summary: {item['input'][:50]}..." def length_evaluator(*, input, output, expected_output=None, **kwargs): return { "name": "output_length", "value": len(output), "comment": f"Output contains {len(output)} characters" } result = langfuse.run_experiment( name="Text Summarization Test", description="Evaluate summarization quality and length", data=[ {"input": "Long article text...", "expected_output": "Expected summary"}, {"input": "Another article...", "expected_output": "Another summary"} ], task=summarize_text, evaluators=[length_evaluator] ) print(f"Processed {len(result.item_results)} items") for item_result in result.item_results: print(f"Input: {item_result.item['input']}") print(f"Output: {item_result.output}") print(f"Evaluations: {item_result.evaluations}")Advanced experiment with async task and multiple evaluators:
async def llm_task(*, item, **kwargs): # Simulate async LLM call response = await openai_client.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": item["input"]}] ) return response.choices[0].message.content def accuracy_evaluator(*, input, output, expected_output=None, **kwargs): if expected_output and expected_output.lower() in output.lower(): return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"} return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"} def toxicity_evaluator(*, input, output, expected_output=None, **kwargs): # Simulate toxicity check toxicity_score = check_toxicity(output) # Your toxicity checker return { "name": "toxicity", "value": toxicity_score, "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}" } def average_accuracy(*, item_results, **kwargs): accuracies = [ eval.value for result in item_results for eval in result.evaluations if eval.name == "accuracy" ] return { "name": "average_accuracy", "value": sum(accuracies) / len(accuracies) if accuracies else 0, "comment": f"Average accuracy across {len(accuracies)} items" } result = langfuse.run_experiment( name="LLM Safety and Accuracy Test", description="Evaluate model accuracy and safety across diverse prompts", data=test_dataset, # Your dataset items task=llm_task, evaluators=[accuracy_evaluator, toxicity_evaluator], run_evaluators=[average_accuracy], max_concurrency=5, # Limit concurrent API calls metadata={"model": "gpt-4", "temperature": 0.7} )Using with Langfuse datasets:
# Get dataset from Langfuse dataset = langfuse.get_dataset("my-eval-dataset") result = dataset.run_experiment( name="Production Model Evaluation", description="Monthly evaluation of production model performance", task=my_production_task, evaluators=[accuracy_evaluator, latency_evaluator] ) # Results automatically linked to dataset in Langfuse UI print(f"View results: {result['dataset_run_url']}")
Note:
- Task and evaluator functions can be either synchronous or asynchronous
- Individual item failures are logged but don't stop the experiment
- All executions are automatically traced and visible in Langfuse UI
- When using Langfuse datasets, results are automatically linked for easy comparison
- This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.)
- Async execution is handled automatically with smart event loop detection
2990 def run_batched_evaluation( 2991 self, 2992 *, 2993 scope: Literal["traces", "observations"], 2994 mapper: MapperFunction, 2995 filter: Optional[str] = None, 2996 fetch_batch_size: int = 50, 2997 max_items: Optional[int] = None, 2998 max_retries: int = 3, 2999 evaluators: List[EvaluatorFunction], 3000 composite_evaluator: Optional[CompositeEvaluatorFunction] = None, 3001 max_concurrency: int = 50, 3002 metadata: Optional[Dict[str, Any]] = None, 3003 resume_from: Optional[BatchEvaluationResumeToken] = None, 3004 verbose: bool = False, 3005 ) -> BatchEvaluationResult: 3006 """Fetch traces or observations and run evaluations on each item. 3007 3008 This method provides a powerful way to evaluate existing data in Langfuse at scale. 3009 It fetches items based on filters, transforms them using a mapper function, runs 3010 evaluators on each item, and creates scores that are linked back to the original 3011 entities. This is ideal for: 3012 3013 - Running evaluations on production traces after deployment 3014 - Backtesting new evaluation metrics on historical data 3015 - Batch scoring of observations for quality monitoring 3016 - Periodic evaluation runs on recent data 3017 3018 The method uses a streaming/pipeline approach to process items in batches, making 3019 it memory-efficient for large datasets. It includes comprehensive error handling, 3020 retry logic, and resume capability for long-running evaluations. 3021 3022 Args: 3023 scope: The type of items to evaluate. Must be one of: 3024 - "traces": Evaluate complete traces with all their observations 3025 - "observations": Evaluate individual observations (spans, generations, events) 3026 mapper: Function that transforms API response objects into evaluator inputs. 3027 Receives a trace/observation object and returns an EvaluatorInputs 3028 instance with input, output, expected_output, and metadata fields. 3029 Can be sync or async. 3030 evaluators: List of evaluation functions to run on each item. Each evaluator 3031 receives the mapped inputs and returns Evaluation object(s). Evaluator 3032 failures are logged but don't stop the batch evaluation. 3033 filter: Optional JSON filter string for querying items (same format as Langfuse API). Examples: 3034 - '{"tags": ["production"]}' 3035 - '{"user_id": "user123", "timestamp": {"operator": ">", "value": "2024-01-01"}}' 3036 Default: None (fetches all items). 3037 fetch_batch_size: Number of items to fetch per API call and hold in memory. 3038 Larger values may be faster but use more memory. Default: 50. 3039 max_items: Maximum total number of items to process. If None, processes all 3040 items matching the filter. Useful for testing or limiting evaluation runs. 3041 Default: None (process all). 3042 max_concurrency: Maximum number of items to evaluate concurrently. Controls 3043 parallelism and resource usage. Default: 50. 3044 composite_evaluator: Optional function that creates a composite score from 3045 item-level evaluations. Receives the original item and its evaluations, 3046 returns a single Evaluation. Useful for weighted averages or combined metrics. 3047 Default: None. 3048 metadata: Optional metadata dict to add to all created scores. Useful for 3049 tracking evaluation runs, versions, or other context. Default: None. 3050 max_retries: Maximum number of retry attempts for failed batch fetches. 3051 Uses exponential backoff (1s, 2s, 4s). Default: 3. 3052 verbose: If True, logs progress information to console. Useful for monitoring 3053 long-running evaluations. Default: False. 3054 resume_from: Optional resume token from a previous incomplete run. Allows 3055 continuing evaluation after interruption or failure. Default: None. 3056 3057 3058 Returns: 3059 BatchEvaluationResult containing: 3060 - total_items_fetched: Number of items fetched from API 3061 - total_items_processed: Number of items successfully evaluated 3062 - total_items_failed: Number of items that failed evaluation 3063 - total_scores_created: Scores created by item-level evaluators 3064 - total_composite_scores_created: Scores created by composite evaluator 3065 - total_evaluations_failed: Individual evaluator failures 3066 - evaluator_stats: Per-evaluator statistics (success rate, scores created) 3067 - resume_token: Token for resuming if incomplete (None if completed) 3068 - completed: True if all items processed 3069 - duration_seconds: Total execution time 3070 - failed_item_ids: IDs of items that failed 3071 - error_summary: Error types and counts 3072 - has_more_items: True if max_items reached but more exist 3073 3074 Raises: 3075 ValueError: If invalid scope is provided. 3076 3077 Examples: 3078 Basic trace evaluation: 3079 ```python 3080 from langfuse import Langfuse, EvaluatorInputs, Evaluation 3081 3082 client = Langfuse() 3083 3084 # Define mapper to extract fields from traces 3085 def trace_mapper(trace): 3086 return EvaluatorInputs( 3087 input=trace.input, 3088 output=trace.output, 3089 expected_output=None, 3090 metadata={"trace_id": trace.id} 3091 ) 3092 3093 # Define evaluator 3094 def length_evaluator(*, input, output, expected_output, metadata): 3095 return Evaluation( 3096 name="output_length", 3097 value=len(output) if output else 0 3098 ) 3099 3100 # Run batch evaluation 3101 result = client.run_batched_evaluation( 3102 scope="traces", 3103 mapper=trace_mapper, 3104 evaluators=[length_evaluator], 3105 filter='{"tags": ["production"]}', 3106 max_items=1000, 3107 verbose=True 3108 ) 3109 3110 print(f"Processed {result.total_items_processed} traces") 3111 print(f"Created {result.total_scores_created} scores") 3112 ``` 3113 3114 Evaluation with composite scorer: 3115 ```python 3116 def accuracy_evaluator(*, input, output, expected_output, metadata): 3117 # ... evaluation logic 3118 return Evaluation(name="accuracy", value=0.85) 3119 3120 def relevance_evaluator(*, input, output, expected_output, metadata): 3121 # ... evaluation logic 3122 return Evaluation(name="relevance", value=0.92) 3123 3124 def composite_evaluator(*, item, evaluations): 3125 # Weighted average of evaluations 3126 weights = {"accuracy": 0.6, "relevance": 0.4} 3127 total = sum( 3128 e.value * weights.get(e.name, 0) 3129 for e in evaluations 3130 if isinstance(e.value, (int, float)) 3131 ) 3132 return Evaluation( 3133 name="composite_score", 3134 value=total, 3135 comment=f"Weighted average of {len(evaluations)} metrics" 3136 ) 3137 3138 result = client.run_batched_evaluation( 3139 scope="traces", 3140 mapper=trace_mapper, 3141 evaluators=[accuracy_evaluator, relevance_evaluator], 3142 composite_evaluator=composite_evaluator, 3143 filter='{"user_id": "important_user"}', 3144 verbose=True 3145 ) 3146 ``` 3147 3148 Handling incomplete runs with resume: 3149 ```python 3150 # Initial run that may fail or timeout 3151 result = client.run_batched_evaluation( 3152 scope="observations", 3153 mapper=obs_mapper, 3154 evaluators=[my_evaluator], 3155 max_items=10000, 3156 verbose=True 3157 ) 3158 3159 # Check if incomplete 3160 if not result.completed and result.resume_token: 3161 print(f"Processed {result.resume_token.items_processed} items before interruption") 3162 3163 # Resume from where it left off 3164 result = client.run_batched_evaluation( 3165 scope="observations", 3166 mapper=obs_mapper, 3167 evaluators=[my_evaluator], 3168 resume_from=result.resume_token, 3169 verbose=True 3170 ) 3171 3172 print(f"Total items processed: {result.total_items_processed}") 3173 ``` 3174 3175 Monitoring evaluator performance: 3176 ```python 3177 result = client.run_batched_evaluation(...) 3178 3179 for stats in result.evaluator_stats: 3180 success_rate = stats.successful_runs / stats.total_runs 3181 print(f"{stats.name}:") 3182 print(f" Success rate: {success_rate:.1%}") 3183 print(f" Scores created: {stats.total_scores_created}") 3184 3185 if stats.failed_runs > 0: 3186 print(f" â ī¸ Failed {stats.failed_runs} times") 3187 ``` 3188 3189 Note: 3190 - Evaluator failures are logged but don't stop the batch evaluation 3191 - Individual item failures are tracked but don't stop processing 3192 - Fetch failures are retried with exponential backoff 3193 - All scores are automatically flushed to Langfuse at the end 3194 - The resume mechanism uses timestamp-based filtering to avoid duplicates 3195 """ 3196 runner = BatchEvaluationRunner(self) 3197 3198 return cast( 3199 BatchEvaluationResult, 3200 run_async_safely( 3201 runner.run_async( 3202 scope=scope, 3203 mapper=mapper, 3204 evaluators=evaluators, 3205 filter=filter, 3206 fetch_batch_size=fetch_batch_size, 3207 max_items=max_items, 3208 max_concurrency=max_concurrency, 3209 composite_evaluator=composite_evaluator, 3210 metadata=metadata, 3211 max_retries=max_retries, 3212 verbose=verbose, 3213 resume_from=resume_from, 3214 ) 3215 ), 3216 )
Fetch traces or observations and run evaluations on each item.
This method provides a powerful way to evaluate existing data in Langfuse at scale. It fetches items based on filters, transforms them using a mapper function, runs evaluators on each item, and creates scores that are linked back to the original entities. This is ideal for:
- Running evaluations on production traces after deployment
- Backtesting new evaluation metrics on historical data
- Batch scoring of observations for quality monitoring
- Periodic evaluation runs on recent data
The method uses a streaming/pipeline approach to process items in batches, making it memory-efficient for large datasets. It includes comprehensive error handling, retry logic, and resume capability for long-running evaluations.
Arguments:
- scope: The type of items to evaluate. Must be one of:
- "traces": Evaluate complete traces with all their observations
- "observations": Evaluate individual observations (spans, generations, events)
- mapper: Function that transforms API response objects into evaluator inputs. Receives a trace/observation object and returns an EvaluatorInputs instance with input, output, expected_output, and metadata fields. Can be sync or async.
- evaluators: List of evaluation functions to run on each item. Each evaluator receives the mapped inputs and returns Evaluation object(s). Evaluator failures are logged but don't stop the batch evaluation.
- filter: Optional JSON filter string for querying items (same format as Langfuse API). Examples:
- '{"tags": ["production"]}'
- '{"user_id": "user123", "timestamp": {"operator": ">", "value": "2024-01-01"}}' Default: None (fetches all items).
- fetch_batch_size: Number of items to fetch per API call and hold in memory. Larger values may be faster but use more memory. Default: 50.
- max_items: Maximum total number of items to process. If None, processes all items matching the filter. Useful for testing or limiting evaluation runs. Default: None (process all).
- max_concurrency: Maximum number of items to evaluate concurrently. Controls parallelism and resource usage. Default: 50.
- composite_evaluator: Optional function that creates a composite score from item-level evaluations. Receives the original item and its evaluations, returns a single Evaluation. Useful for weighted averages or combined metrics. Default: None.
- metadata: Optional metadata dict to add to all created scores. Useful for tracking evaluation runs, versions, or other context. Default: None.
- max_retries: Maximum number of retry attempts for failed batch fetches. Uses exponential backoff (1s, 2s, 4s). Default: 3.
- verbose: If True, logs progress information to console. Useful for monitoring long-running evaluations. Default: False.
- resume_from: Optional resume token from a previous incomplete run. Allows continuing evaluation after interruption or failure. Default: None.
Returns:
BatchEvaluationResult containing: - total_items_fetched: Number of items fetched from API - total_items_processed: Number of items successfully evaluated - total_items_failed: Number of items that failed evaluation - total_scores_created: Scores created by item-level evaluators - total_composite_scores_created: Scores created by composite evaluator - total_evaluations_failed: Individual evaluator failures - evaluator_stats: Per-evaluator statistics (success rate, scores created) - resume_token: Token for resuming if incomplete (None if completed) - completed: True if all items processed - duration_seconds: Total execution time - failed_item_ids: IDs of items that failed - error_summary: Error types and counts - has_more_items: True if max_items reached but more exist
Raises:
- ValueError: If invalid scope is provided.
Examples:
Basic trace evaluation:
from langfuse import Langfuse, EvaluatorInputs, Evaluation client = Langfuse() # Define mapper to extract fields from traces def trace_mapper(trace): return EvaluatorInputs( input=trace.input, output=trace.output, expected_output=None, metadata={"trace_id": trace.id} ) # Define evaluator def length_evaluator(*, input, output, expected_output, metadata): return Evaluation( name="output_length", value=len(output) if output else 0 ) # Run batch evaluation result = client.run_batched_evaluation( scope="traces", mapper=trace_mapper, evaluators=[length_evaluator], filter='{"tags": ["production"]}', max_items=1000, verbose=True ) print(f"Processed {result.total_items_processed} traces") print(f"Created {result.total_scores_created} scores")Evaluation with composite scorer:
def accuracy_evaluator(*, input, output, expected_output, metadata): # ... evaluation logic return Evaluation(name="accuracy", value=0.85) def relevance_evaluator(*, input, output, expected_output, metadata): # ... evaluation logic return Evaluation(name="relevance", value=0.92) def composite_evaluator(*, item, evaluations): # Weighted average of evaluations weights = {"accuracy": 0.6, "relevance": 0.4} total = sum( e.value * weights.get(e.name, 0) for e in evaluations if isinstance(e.value, (int, float)) ) return Evaluation( name="composite_score", value=total, comment=f"Weighted average of {len(evaluations)} metrics" ) result = client.run_batched_evaluation( scope="traces", mapper=trace_mapper, evaluators=[accuracy_evaluator, relevance_evaluator], composite_evaluator=composite_evaluator, filter='{"user_id": "important_user"}', verbose=True )Handling incomplete runs with resume:
# Initial run that may fail or timeout result = client.run_batched_evaluation( scope="observations", mapper=obs_mapper, evaluators=[my_evaluator], max_items=10000, verbose=True ) # Check if incomplete if not result.completed and result.resume_token: print(f"Processed {result.resume_token.items_processed} items before interruption") # Resume from where it left off result = client.run_batched_evaluation( scope="observations", mapper=obs_mapper, evaluators=[my_evaluator], resume_from=result.resume_token, verbose=True ) print(f"Total items processed: {result.total_items_processed}")Monitoring evaluator performance:
result = client.run_batched_evaluation(...) for stats in result.evaluator_stats: success_rate = stats.successful_runs / stats.total_runs print(f"{stats.name}:") print(f" Success rate: {success_rate:.1%}") print(f" Scores created: {stats.total_scores_created}") if stats.failed_runs > 0: print(f" â ī¸ Failed {stats.failed_runs} times")
Note:
- Evaluator failures are logged but don't stop the batch evaluation
- Individual item failures are tracked but don't stop processing
- Fetch failures are retried with exponential backoff
- All scores are automatically flushed to Langfuse at the end
- The resume mechanism uses timestamp-based filtering to avoid duplicates
3218 def auth_check(self) -> bool: 3219 """Check if the provided credentials (public and secret key) are valid. 3220 3221 Raises: 3222 Exception: If no projects were found for the provided credentials. 3223 3224 Note: 3225 This method is blocking. It is discouraged to use it in production code. 3226 """ 3227 try: 3228 projects = self.api.projects.get() 3229 langfuse_logger.debug( 3230 f"Auth check successful, found {len(projects.data)} projects" 3231 ) 3232 if len(projects.data) == 0: 3233 raise Exception( 3234 "Auth check failed, no project found for the keys provided." 3235 ) 3236 return True 3237 3238 except AttributeError as e: 3239 langfuse_logger.warning( 3240 f"Auth check failed: Client not properly initialized. Error: {e}" 3241 ) 3242 return False 3243 3244 except Error as e: 3245 handle_fern_exception(e) 3246 raise e
Check if the provided credentials (public and secret key) are valid.
Raises:
- Exception: If no projects were found for the provided credentials.
Note:
This method is blocking. It is discouraged to use it in production code.
3248 def create_dataset( 3249 self, 3250 *, 3251 name: str, 3252 description: Optional[str] = None, 3253 metadata: Optional[Any] = None, 3254 ) -> Dataset: 3255 """Create a dataset with the given name on Langfuse. 3256 3257 Args: 3258 name: Name of the dataset to create. 3259 description: Description of the dataset. Defaults to None. 3260 metadata: Additional metadata. Defaults to None. 3261 3262 Returns: 3263 Dataset: The created dataset as returned by the Langfuse API. 3264 """ 3265 try: 3266 body = CreateDatasetRequest( 3267 name=name, description=description, metadata=metadata 3268 ) 3269 langfuse_logger.debug(f"Creating datasets {body}") 3270 3271 return self.api.datasets.create(request=body) 3272 3273 except Error as e: 3274 handle_fern_exception(e) 3275 raise e
Create a dataset with the given name on Langfuse.
Arguments:
- name: Name of the dataset to create.
- description: Description of the dataset. Defaults to None.
- metadata: Additional metadata. Defaults to None.
Returns:
Dataset: The created dataset as returned by the Langfuse API.
3277 def create_dataset_item( 3278 self, 3279 *, 3280 dataset_name: str, 3281 input: Optional[Any] = None, 3282 expected_output: Optional[Any] = None, 3283 metadata: Optional[Any] = None, 3284 source_trace_id: Optional[str] = None, 3285 source_observation_id: Optional[str] = None, 3286 status: Optional[DatasetStatus] = None, 3287 id: Optional[str] = None, 3288 ) -> DatasetItem: 3289 """Create a dataset item. 3290 3291 Upserts if an item with id already exists. 3292 3293 Args: 3294 dataset_name: Name of the dataset in which the dataset item should be created. 3295 input: Input data. Defaults to None. Can contain any dict, list or scalar. 3296 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 3297 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 3298 source_trace_id: Id of the source trace. Defaults to None. 3299 source_observation_id: Id of the source observation. Defaults to None. 3300 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 3301 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 3302 3303 Returns: 3304 DatasetItem: The created dataset item as returned by the Langfuse API. 3305 3306 Example: 3307 ```python 3308 from langfuse import Langfuse 3309 3310 langfuse = Langfuse() 3311 3312 # Uploading items to the Langfuse dataset named "capital_cities" 3313 langfuse.create_dataset_item( 3314 dataset_name="capital_cities", 3315 input={"input": {"country": "Italy"}}, 3316 expected_output={"expected_output": "Rome"}, 3317 metadata={"foo": "bar"} 3318 ) 3319 ``` 3320 """ 3321 try: 3322 body = CreateDatasetItemRequest( 3323 datasetName=dataset_name, 3324 input=input, 3325 expectedOutput=expected_output, 3326 metadata=metadata, 3327 sourceTraceId=source_trace_id, 3328 sourceObservationId=source_observation_id, 3329 status=status, 3330 id=id, 3331 ) 3332 langfuse_logger.debug(f"Creating dataset item {body}") 3333 return self.api.dataset_items.create(request=body) 3334 except Error as e: 3335 handle_fern_exception(e) 3336 raise e
Create a dataset item.
Upserts if an item with id already exists.
Arguments:
- dataset_name: Name of the dataset in which the dataset item should be created.
- input: Input data. Defaults to None. Can contain any dict, list or scalar.
- expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
- metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
- source_trace_id: Id of the source trace. Defaults to None.
- source_observation_id: Id of the source observation. Defaults to None.
- status: Status of the dataset item. Defaults to ACTIVE for newly created items.
- id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:
DatasetItem: The created dataset item as returned by the Langfuse API.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Uploading items to the Langfuse dataset named "capital_cities" langfuse.create_dataset_item( dataset_name="capital_cities", input={"input": {"country": "Italy"}}, expected_output={"expected_output": "Rome"}, metadata={"foo": "bar"} )
3338 def resolve_media_references( 3339 self, 3340 *, 3341 obj: Any, 3342 resolve_with: Literal["base64_data_uri"], 3343 max_depth: int = 10, 3344 content_fetch_timeout_seconds: int = 5, 3345 ) -> Any: 3346 """Replace media reference strings in an object with base64 data URIs. 3347 3348 This method recursively traverses an object (up to max_depth) looking for media reference strings 3349 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 3350 the provided Langfuse client and replaces the reference string with a base64 data URI. 3351 3352 If fetching media content fails for a reference string, a warning is logged and the reference 3353 string is left unchanged. 3354 3355 Args: 3356 obj: The object to process. Can be a primitive value, array, or nested object. 3357 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 3358 resolve_with: The representation of the media content to replace the media reference string with. 3359 Currently only "base64_data_uri" is supported. 3360 max_depth: int: The maximum depth to traverse the object. Default is 10. 3361 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5. 3362 3363 Returns: 3364 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 3365 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 3366 3367 Example: 3368 obj = { 3369 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 3370 "nested": { 3371 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 3372 } 3373 } 3374 3375 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 3376 3377 # Result: 3378 # { 3379 # "image": "...", 3380 # "nested": { 3381 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 3382 # } 3383 # } 3384 """ 3385 return LangfuseMedia.resolve_media_references( 3386 langfuse_client=self, 3387 obj=obj, 3388 resolve_with=resolve_with, 3389 max_depth=max_depth, 3390 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 3391 )
Replace media reference strings in an object with base64 data URIs.
This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.
If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.
Arguments:
- obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
- resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
- max_depth: int: The maximum depth to traverse the object. Default is 10.
- content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
Returns:
A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
Example:
obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }
result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
Result:
{
"image": "...",
"nested": {
"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
}
}
3421 def get_prompt( 3422 self, 3423 name: str, 3424 *, 3425 version: Optional[int] = None, 3426 label: Optional[str] = None, 3427 type: Literal["chat", "text"] = "text", 3428 cache_ttl_seconds: Optional[int] = None, 3429 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 3430 max_retries: Optional[int] = None, 3431 fetch_timeout_seconds: Optional[int] = None, 3432 ) -> PromptClient: 3433 """Get a prompt. 3434 3435 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 3436 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 3437 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 3438 return the expired prompt as a fallback. 3439 3440 Args: 3441 name (str): The name of the prompt to retrieve. 3442 3443 Keyword Args: 3444 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 3445 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 3446 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 3447 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 3448 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 3449 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 3450 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 3451 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default. 3452 3453 Returns: 3454 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 3455 - TextPromptClient, if type argument is 'text'. 3456 - ChatPromptClient, if type argument is 'chat'. 3457 3458 Raises: 3459 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 3460 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 3461 """ 3462 if self._resources is None: 3463 raise Error( 3464 "SDK is not correctly initialized. Check the init logs for more details." 3465 ) 3466 if version is not None and label is not None: 3467 raise ValueError("Cannot specify both version and label at the same time.") 3468 3469 if not name: 3470 raise ValueError("Prompt name cannot be empty.") 3471 3472 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 3473 bounded_max_retries = self._get_bounded_max_retries( 3474 max_retries, default_max_retries=2, max_retries_upper_bound=4 3475 ) 3476 3477 langfuse_logger.debug(f"Getting prompt '{cache_key}'") 3478 cached_prompt = self._resources.prompt_cache.get(cache_key) 3479 3480 if cached_prompt is None or cache_ttl_seconds == 0: 3481 langfuse_logger.debug( 3482 f"Prompt '{cache_key}' not found in cache or caching disabled." 3483 ) 3484 try: 3485 return self._fetch_prompt_and_update_cache( 3486 name, 3487 version=version, 3488 label=label, 3489 ttl_seconds=cache_ttl_seconds, 3490 max_retries=bounded_max_retries, 3491 fetch_timeout_seconds=fetch_timeout_seconds, 3492 ) 3493 except Exception as e: 3494 if fallback: 3495 langfuse_logger.warning( 3496 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 3497 ) 3498 3499 fallback_client_args: Dict[str, Any] = { 3500 "name": name, 3501 "prompt": fallback, 3502 "type": type, 3503 "version": version or 0, 3504 "config": {}, 3505 "labels": [label] if label else [], 3506 "tags": [], 3507 } 3508 3509 if type == "text": 3510 return TextPromptClient( 3511 prompt=Prompt_Text(**fallback_client_args), 3512 is_fallback=True, 3513 ) 3514 3515 if type == "chat": 3516 return ChatPromptClient( 3517 prompt=Prompt_Chat(**fallback_client_args), 3518 is_fallback=True, 3519 ) 3520 3521 raise e 3522 3523 if cached_prompt.is_expired(): 3524 langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.") 3525 try: 3526 # refresh prompt in background thread, refresh_prompt deduplicates tasks 3527 langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.") 3528 3529 def refresh_task() -> None: 3530 self._fetch_prompt_and_update_cache( 3531 name, 3532 version=version, 3533 label=label, 3534 ttl_seconds=cache_ttl_seconds, 3535 max_retries=bounded_max_retries, 3536 fetch_timeout_seconds=fetch_timeout_seconds, 3537 ) 3538 3539 self._resources.prompt_cache.add_refresh_prompt_task( 3540 cache_key, 3541 refresh_task, 3542 ) 3543 langfuse_logger.debug( 3544 f"Returning stale prompt '{cache_key}' from cache." 3545 ) 3546 # return stale prompt 3547 return cached_prompt.value 3548 3549 except Exception as e: 3550 langfuse_logger.warning( 3551 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 3552 ) 3553 # creation of refresh prompt task failed, return stale prompt 3554 return cached_prompt.value 3555 3556 return cached_prompt.value
Get a prompt.
This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.
Arguments:
- name (str): The name of the prompt to retrieve.
Keyword Args:
version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the
productionlabel is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, theproductionlabel is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
Returns:
The prompt object retrieved from the cache or directly fetched if not cached or expired of type
- TextPromptClient, if type argument is 'text'.
- ChatPromptClient, if type argument is 'chat'.
Raises:
- Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
- expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
3650 def create_prompt( 3651 self, 3652 *, 3653 name: str, 3654 prompt: Union[ 3655 str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]] 3656 ], 3657 labels: List[str] = [], 3658 tags: Optional[List[str]] = None, 3659 type: Optional[Literal["chat", "text"]] = "text", 3660 config: Optional[Any] = None, 3661 commit_message: Optional[str] = None, 3662 ) -> PromptClient: 3663 """Create a new prompt in Langfuse. 3664 3665 Keyword Args: 3666 name : The name of the prompt to be created. 3667 prompt : The content of the prompt to be created. 3668 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 3669 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 3670 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 3671 config: Additional structured data to be saved with the prompt. Defaults to None. 3672 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 3673 commit_message: Optional string describing the change. 3674 3675 Returns: 3676 TextPromptClient: The prompt if type argument is 'text'. 3677 ChatPromptClient: The prompt if type argument is 'chat'. 3678 """ 3679 try: 3680 langfuse_logger.debug(f"Creating prompt {name=}, {labels=}") 3681 3682 if type == "chat": 3683 if not isinstance(prompt, list): 3684 raise ValueError( 3685 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 3686 ) 3687 request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = ( 3688 CreatePromptRequest_Chat( 3689 name=name, 3690 prompt=cast(Any, prompt), 3691 labels=labels, 3692 tags=tags, 3693 config=config or {}, 3694 commitMessage=commit_message, 3695 type="chat", 3696 ) 3697 ) 3698 server_prompt = self.api.prompts.create(request=request) 3699 3700 if self._resources is not None: 3701 self._resources.prompt_cache.invalidate(name) 3702 3703 return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt)) 3704 3705 if not isinstance(prompt, str): 3706 raise ValueError("For 'text' type, 'prompt' must be a string.") 3707 3708 request = CreatePromptRequest_Text( 3709 name=name, 3710 prompt=prompt, 3711 labels=labels, 3712 tags=tags, 3713 config=config or {}, 3714 commitMessage=commit_message, 3715 type="text", 3716 ) 3717 3718 server_prompt = self.api.prompts.create(request=request) 3719 3720 if self._resources is not None: 3721 self._resources.prompt_cache.invalidate(name) 3722 3723 return TextPromptClient(prompt=cast(Prompt_Text, server_prompt)) 3724 3725 except Error as e: 3726 handle_fern_exception(e) 3727 raise e
Create a new prompt in Langfuse.
Keyword Args:
name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.
Returns:
TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.
3729 def update_prompt( 3730 self, 3731 *, 3732 name: str, 3733 version: int, 3734 new_labels: List[str] = [], 3735 ) -> Any: 3736 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 3737 3738 Args: 3739 name (str): The name of the prompt to update. 3740 version (int): The version number of the prompt to update. 3741 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 3742 3743 Returns: 3744 Prompt: The updated prompt from the Langfuse API. 3745 3746 """ 3747 updated_prompt = self.api.prompt_version.update( 3748 name=self._url_encode(name), 3749 version=version, 3750 new_labels=new_labels, 3751 ) 3752 3753 if self._resources is not None: 3754 self._resources.prompt_cache.invalidate(name) 3755 3756 return updated_prompt
Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
Arguments:
- name (str): The name of the prompt to update.
- version (int): The version number of the prompt to update.
- new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:
Prompt: The updated prompt from the Langfuse API.
3771 def clear_prompt_cache(self) -> None: 3772 """Clear the entire prompt cache, removing all cached prompts. 3773 3774 This method is useful when you want to force a complete refresh of all 3775 cached prompts, for example after major updates or when you need to 3776 ensure the latest versions are fetched from the server. 3777 """ 3778 if self._resources is not None: 3779 self._resources.prompt_cache.clear()
Clear the entire prompt cache, removing all cached prompts.
This method is useful when you want to force a complete refresh of all cached prompts, for example after major updates or when you need to ensure the latest versions are fetched from the server.
59def get_client(*, public_key: Optional[str] = None) -> Langfuse: 60 """Get or create a Langfuse client instance. 61 62 Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, 63 providing a public_key is required. Multi-project support is experimental - see Langfuse docs. 64 65 Behavior: 66 - Single project: Returns existing client or creates new one 67 - Multi-project: Requires public_key to return specific client 68 - No public_key in multi-project: Returns disabled client to prevent data leakage 69 70 The function uses a singleton pattern per public_key to conserve resources and maintain state. 71 72 Args: 73 public_key (Optional[str]): Project identifier 74 - With key: Returns client for that project 75 - Without key: Returns single client or disabled client if multiple exist 76 77 Returns: 78 Langfuse: Client instance in one of three states: 79 1. Client for specified public_key 80 2. Default client for single-project setup 81 3. Disabled client when multiple projects exist without key 82 83 Security: 84 Disables tracing when multiple projects exist without explicit key to prevent 85 cross-project data leakage. Multi-project setups are experimental. 86 87 Example: 88 ```python 89 # Single project 90 client = get_client() # Default client 91 92 # In multi-project usage: 93 client_a = get_client(public_key="project_a_key") # Returns project A's client 94 client_b = get_client(public_key="project_b_key") # Returns project B's client 95 96 # Without specific key in multi-project setup: 97 client = get_client() # Returns disabled client for safety 98 ``` 99 """ 100 with LangfuseResourceManager._lock: 101 active_instances = LangfuseResourceManager._instances 102 103 # If no explicit public_key provided, check execution context 104 if not public_key: 105 public_key = _current_public_key.get(None) 106 107 if not public_key: 108 if len(active_instances) == 0: 109 # No clients initialized yet, create default instance 110 return Langfuse() 111 112 if len(active_instances) == 1: 113 # Only one client exists, safe to use without specifying key 114 instance = list(active_instances.values())[0] 115 116 # Initialize with the credentials bound to the instance 117 # This is important if the original instance was instantiated 118 # via constructor arguments 119 return _create_client_from_instance(instance) 120 121 else: 122 # Multiple clients exist but no key specified - disable tracing 123 # to prevent cross-project data leakage 124 langfuse_logger.warning( 125 "No 'langfuse_public_key' passed to decorated function, but multiple langfuse clients are instantiated in current process. Skipping tracing for this function to avoid cross-project leakage." 126 ) 127 return Langfuse( 128 tracing_enabled=False, public_key="fake", secret_key="fake" 129 ) 130 131 else: 132 # Specific key provided, look up existing instance 133 target_instance: Optional[LangfuseResourceManager] = active_instances.get( 134 public_key, None 135 ) 136 137 if target_instance is None: 138 # No instance found with this key - client not initialized properly 139 langfuse_logger.warning( 140 f"No Langfuse client with public key {public_key} has been initialized. Skipping tracing for decorated function." 141 ) 142 return Langfuse( 143 tracing_enabled=False, public_key="fake", secret_key="fake" 144 ) 145 146 # target_instance is guaranteed to be not None at this point 147 return _create_client_from_instance(target_instance, public_key)
Get or create a Langfuse client instance.
Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, providing a public_key is required. Multi-project support is experimental - see Langfuse docs.
Behavior:
- Single project: Returns existing client or creates new one
- Multi-project: Requires public_key to return specific client
- No public_key in multi-project: Returns disabled client to prevent data leakage
The function uses a singleton pattern per public_key to conserve resources and maintain state.
Arguments:
- public_key (Optional[str]): Project identifier
- With key: Returns client for that project
- Without key: Returns single client or disabled client if multiple exist
Returns:
Langfuse: Client instance in one of three states: 1. Client for specified public_key 2. Default client for single-project setup 3. Disabled client when multiple projects exist without key
Security:
Disables tracing when multiple projects exist without explicit key to prevent cross-project data leakage. Multi-project setups are experimental.
Example:
# Single project client = get_client() # Default client # In multi-project usage: client_a = get_client(public_key="project_a_key") # Returns project A's client client_b = get_client(public_key="project_b_key") # Returns project B's client # Without specific key in multi-project setup: client = get_client() # Returns disabled client for safety
90 def observe( 91 self, 92 func: Optional[F] = None, 93 *, 94 name: Optional[str] = None, 95 as_type: Optional[ObservationTypeLiteralNoEvent] = None, 96 capture_input: Optional[bool] = None, 97 capture_output: Optional[bool] = None, 98 transform_to_string: Optional[Callable[[Iterable], str]] = None, 99 ) -> Union[F, Callable[[F], F]]: 100 """Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions. 101 102 This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates 103 spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator 104 intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints. 105 106 Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, 107 enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details. 108 109 Args: 110 func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None. 111 name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used. 112 as_type (Optional[Literal]): Set the observation type. Supported values: 113 "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail". 114 Observation types are highlighted in the Langfuse UI for filtering and visualization. 115 The types "generation" and "embedding" create a span on which additional attributes such as model metrics 116 can be set. 117 118 Returns: 119 Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans. 120 121 Example: 122 For general function tracing with automatic naming: 123 ```python 124 @observe() 125 def process_user_request(user_id, query): 126 # Function is automatically traced with name "process_user_request" 127 return get_response(query) 128 ``` 129 130 For language model generation tracking: 131 ```python 132 @observe(name="answer-generation", as_type="generation") 133 async def generate_answer(query): 134 # Creates a generation-type span with extended LLM metrics 135 response = await openai.chat.completions.create( 136 model="gpt-4", 137 messages=[{"role": "user", "content": query}] 138 ) 139 return response.choices[0].message.content 140 ``` 141 142 For trace context propagation between functions: 143 ```python 144 @observe() 145 def main_process(): 146 # Parent span is created 147 return sub_process() # Child span automatically connected to parent 148 149 @observe() 150 def sub_process(): 151 # Automatically becomes a child span of main_process 152 return "result" 153 ``` 154 155 Raises: 156 Exception: Propagates any exceptions from the wrapped function after logging them in the trace. 157 158 Notes: 159 - The decorator preserves the original function's signature, docstring, and return type. 160 - Proper parent-child relationships between spans are automatically maintained. 161 - Special keyword arguments can be passed to control tracing: 162 - langfuse_trace_id: Explicitly set the trace ID for this function call 163 - langfuse_parent_observation_id: Explicitly set the parent span ID 164 - langfuse_public_key: Use a specific Langfuse project (when multiple clients exist) 165 - For async functions, the decorator returns an async function wrapper. 166 - For sync functions, the decorator returns a synchronous wrapper. 167 """ 168 valid_types = set(get_observation_types_list(ObservationTypeLiteralNoEvent)) 169 if as_type is not None and as_type not in valid_types: 170 self._log.warning( 171 f"Invalid as_type '{as_type}'. Valid types are: {', '.join(sorted(valid_types))}. Defaulting to 'span'." 172 ) 173 as_type = "span" 174 175 function_io_capture_enabled = os.environ.get( 176 LANGFUSE_OBSERVE_DECORATOR_IO_CAPTURE_ENABLED, "True" 177 ).lower() not in ("false", "0") 178 179 should_capture_input = ( 180 capture_input if capture_input is not None else function_io_capture_enabled 181 ) 182 183 should_capture_output = ( 184 capture_output 185 if capture_output is not None 186 else function_io_capture_enabled 187 ) 188 189 def decorator(func: F) -> F: 190 return ( 191 self._async_observe( 192 func, 193 name=name, 194 as_type=as_type, 195 capture_input=should_capture_input, 196 capture_output=should_capture_output, 197 transform_to_string=transform_to_string, 198 ) 199 if asyncio.iscoroutinefunction(func) 200 else self._sync_observe( 201 func, 202 name=name, 203 as_type=as_type, 204 capture_input=should_capture_input, 205 capture_output=should_capture_output, 206 transform_to_string=transform_to_string, 207 ) 208 ) 209 210 """Handle decorator with or without parentheses. 211 212 This logic enables the decorator to work both with and without parentheses: 213 - @observe - Python passes the function directly to the decorator 214 - @observe() - Python calls the decorator first, which must return a function decorator 215 216 When called without arguments (@observe), the func parameter contains the function to decorate, 217 so we directly apply the decorator to it. When called with parentheses (@observe()), 218 func is None, so we return the decorator function itself for Python to apply in the next step. 219 """ 220 if func is None: 221 return decorator 222 else: 223 return decorator(func)
Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.
This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.
Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.
Arguments:
- func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
- name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
- as_type (Optional[Literal]): Set the observation type. Supported values: "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail". Observation types are highlighted in the Langfuse UI for filtering and visualization. The types "generation" and "embedding" create a span on which additional attributes such as model metrics can be set.
Returns:
Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.
Example:
For general function tracing with automatic naming:
@observe() def process_user_request(user_id, query): # Function is automatically traced with name "process_user_request" return get_response(query)For language model generation tracking:
@observe(name="answer-generation", as_type="generation") async def generate_answer(query): # Creates a generation-type span with extended LLM metrics response = await openai.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": query}] ) return response.choices[0].message.contentFor trace context propagation between functions:
@observe() def main_process(): # Parent span is created return sub_process() # Child span automatically connected to parent @observe() def sub_process(): # Automatically becomes a child span of main_process return "result"
Raises:
- Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
Notes:
- The decorator preserves the original function's signature, docstring, and return type.
- Proper parent-child relationships between spans are automatically maintained.
- Special keyword arguments can be passed to control tracing:
- langfuse_trace_id: Explicitly set the trace ID for this function call
- langfuse_parent_observation_id: Explicitly set the parent span ID
- langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
- For async functions, the decorator returns an async function wrapper.
- For sync functions, the decorator returns a synchronous wrapper.
74def propagate_attributes( 75 *, 76 user_id: Optional[str] = None, 77 session_id: Optional[str] = None, 78 metadata: Optional[Dict[str, str]] = None, 79 version: Optional[str] = None, 80 tags: Optional[List[str]] = None, 81 as_baggage: bool = False, 82) -> _AgnosticContextManager[Any]: 83 """Propagate trace-level attributes to all spans created within this context. 84 85 This context manager sets attributes on the currently active span AND automatically 86 propagates them to all new child spans created within the context. This is the 87 recommended way to set trace-level attributes like user_id, session_id, and metadata 88 dimensions that should be consistently applied across all observations in a trace. 89 90 **IMPORTANT**: Call this as early as possible within your trace/workflow. Only the 91 currently active span and spans created after entering this context will have these 92 attributes. Pre-existing spans will NOT be retroactively updated. 93 94 **Why this matters**: Langfuse aggregation queries (e.g., total cost by user_id, 95 filtering by session_id) only include observations that have the attribute set. 96 If you call `propagate_attributes` late in your workflow, earlier spans won't be 97 included in aggregations for that attribute. 98 99 Args: 100 user_id: User identifier to associate with all spans in this context. 101 Must be US-ASCII string, â¤200 characters. Use this to track which user 102 generated each trace and enable e.g. per-user cost/performance analysis. 103 session_id: Session identifier to associate with all spans in this context. 104 Must be US-ASCII string, â¤200 characters. Use this to group related traces 105 within a user session (e.g., a conversation thread, multi-turn interaction). 106 metadata: Additional key-value metadata to propagate to all spans. 107 - Keys and values must be US-ASCII strings 108 - All values must be â¤200 characters 109 - Use for dimensions like internal correlating identifiers 110 - AVOID: large payloads, sensitive data, non-string values (will be dropped with warning) 111 version: Version identfier for parts of your application that are independently versioned, e.g. agents 112 tags: List of tags to categorize the group of observations 113 as_baggage: If True, propagates attributes using OpenTelemetry baggage for 114 cross-process/service propagation. **Security warning**: When enabled, 115 attribute values are added to HTTP headers on ALL outbound requests. 116 Only enable if values are safe to transmit via HTTP headers and you need 117 cross-service tracing. Default: False. 118 119 Returns: 120 Context manager that propagates attributes to all child spans. 121 122 Example: 123 Basic usage with user and session tracking: 124 125 ```python 126 from langfuse import Langfuse 127 128 langfuse = Langfuse() 129 130 # Set attributes early in the trace 131 with langfuse.start_as_current_span(name="user_workflow") as span: 132 with langfuse.propagate_attributes( 133 user_id="user_123", 134 session_id="session_abc", 135 metadata={"experiment": "variant_a", "environment": "production"} 136 ): 137 # All spans created here will have user_id, session_id, and metadata 138 with langfuse.start_span(name="llm_call") as llm_span: 139 # This span inherits: user_id, session_id, experiment, environment 140 ... 141 142 with langfuse.start_generation(name="completion") as gen: 143 # This span also inherits all attributes 144 ... 145 ``` 146 147 Late propagation (anti-pattern): 148 149 ```python 150 with langfuse.start_as_current_span(name="workflow") as span: 151 # These spans WON'T have user_id 152 early_span = langfuse.start_span(name="early_work") 153 early_span.end() 154 155 # Set attributes in the middle 156 with langfuse.propagate_attributes(user_id="user_123"): 157 # Only spans created AFTER this point will have user_id 158 late_span = langfuse.start_span(name="late_work") 159 late_span.end() 160 161 # Result: Aggregations by user_id will miss "early_work" span 162 ``` 163 164 Cross-service propagation with baggage (advanced): 165 166 ```python 167 # Service A - originating service 168 with langfuse.start_as_current_span(name="api_request"): 169 with langfuse.propagate_attributes( 170 user_id="user_123", 171 session_id="session_abc", 172 as_baggage=True # Propagate via HTTP headers 173 ): 174 # Make HTTP request to Service B 175 response = requests.get("https://service-b.example.com/api") 176 # user_id and session_id are now in HTTP headers 177 178 # Service B - downstream service 179 # OpenTelemetry will automatically extract baggage from HTTP headers 180 # and propagate to spans in Service B 181 ``` 182 183 Note: 184 - **Validation**: All attribute values (user_id, session_id, metadata values) 185 must be strings â¤200 characters. Invalid values will be dropped with a 186 warning logged. Ensure values meet constraints before calling. 187 - **OpenTelemetry**: This uses OpenTelemetry context propagation under the hood, 188 making it compatible with other OTel-instrumented libraries. 189 190 Raises: 191 No exceptions are raised. Invalid values are logged as warnings and dropped. 192 """ 193 return _propagate_attributes( 194 user_id=user_id, 195 session_id=session_id, 196 metadata=metadata, 197 version=version, 198 tags=tags, 199 as_baggage=as_baggage, 200 )
Propagate trace-level attributes to all spans created within this context.
This context manager sets attributes on the currently active span AND automatically propagates them to all new child spans created within the context. This is the recommended way to set trace-level attributes like user_id, session_id, and metadata dimensions that should be consistently applied across all observations in a trace.
IMPORTANT: Call this as early as possible within your trace/workflow. Only the currently active span and spans created after entering this context will have these attributes. Pre-existing spans will NOT be retroactively updated.
Why this matters: Langfuse aggregation queries (e.g., total cost by user_id,
filtering by session_id) only include observations that have the attribute set.
If you call propagate_attributes late in your workflow, earlier spans won't be
included in aggregations for that attribute.
Arguments:
- user_id: User identifier to associate with all spans in this context. Must be US-ASCII string, â¤200 characters. Use this to track which user generated each trace and enable e.g. per-user cost/performance analysis.
- session_id: Session identifier to associate with all spans in this context. Must be US-ASCII string, â¤200 characters. Use this to group related traces within a user session (e.g., a conversation thread, multi-turn interaction).
- metadata: Additional key-value metadata to propagate to all spans.
- Keys and values must be US-ASCII strings
- All values must be â¤200 characters
- Use for dimensions like internal correlating identifiers
- AVOID: large payloads, sensitive data, non-string values (will be dropped with warning)
- version: Version identfier for parts of your application that are independently versioned, e.g. agents
- tags: List of tags to categorize the group of observations
- as_baggage: If True, propagates attributes using OpenTelemetry baggage for cross-process/service propagation. Security warning: When enabled, attribute values are added to HTTP headers on ALL outbound requests. Only enable if values are safe to transmit via HTTP headers and you need cross-service tracing. Default: False.
Returns:
Context manager that propagates attributes to all child spans.
Example:
Basic usage with user and session tracking:
from langfuse import Langfuse langfuse = Langfuse() # Set attributes early in the trace with langfuse.start_as_current_span(name="user_workflow") as span: with langfuse.propagate_attributes( user_id="user_123", session_id="session_abc", metadata={"experiment": "variant_a", "environment": "production"} ): # All spans created here will have user_id, session_id, and metadata with langfuse.start_span(name="llm_call") as llm_span: # This span inherits: user_id, session_id, experiment, environment ... with langfuse.start_generation(name="completion") as gen: # This span also inherits all attributes ...Late propagation (anti-pattern):
with langfuse.start_as_current_span(name="workflow") as span: # These spans WON'T have user_id early_span = langfuse.start_span(name="early_work") early_span.end() # Set attributes in the middle with langfuse.propagate_attributes(user_id="user_123"): # Only spans created AFTER this point will have user_id late_span = langfuse.start_span(name="late_work") late_span.end() # Result: Aggregations by user_id will miss "early_work" spanCross-service propagation with baggage (advanced):
# Service A - originating service with langfuse.start_as_current_span(name="api_request"): with langfuse.propagate_attributes( user_id="user_123", session_id="session_abc", as_baggage=True # Propagate via HTTP headers ): # Make HTTP request to Service B response = requests.get("https://service-b.example.com/api") # user_id and session_id are now in HTTP headers # Service B - downstream service # OpenTelemetry will automatically extract baggage from HTTP headers # and propagate to spans in Service B
Note:
- Validation: All attribute values (user_id, session_id, metadata values) must be strings â¤200 characters. Invalid values will be dropped with a warning logged. Ensure values meet constraints before calling.
- OpenTelemetry: This uses OpenTelemetry context propagation under the hood, making it compatible with other OTel-instrumented libraries.
Raises:
- No exceptions are raised. Invalid values are logged as warnings and dropped.
1146class LangfuseSpan(LangfuseObservationWrapper): 1147 """Standard span implementation for general operations in Langfuse. 1148 1149 This class represents a general-purpose span that can be used to trace 1150 any operation in your application. It extends the base LangfuseObservationWrapper 1151 with specific methods for creating child spans, generations, and updating 1152 span-specific attributes. If possible, use a more specific type for 1153 better observability and insights. 1154 """ 1155 1156 def __init__( 1157 self, 1158 *, 1159 otel_span: otel_trace_api.Span, 1160 langfuse_client: "Langfuse", 1161 input: Optional[Any] = None, 1162 output: Optional[Any] = None, 1163 metadata: Optional[Any] = None, 1164 environment: Optional[str] = None, 1165 version: Optional[str] = None, 1166 level: Optional[SpanLevel] = None, 1167 status_message: Optional[str] = None, 1168 ): 1169 """Initialize a new LangfuseSpan. 1170 1171 Args: 1172 otel_span: The OpenTelemetry span to wrap 1173 langfuse_client: Reference to the parent Langfuse client 1174 input: Input data for the span (any JSON-serializable object) 1175 output: Output data from the span (any JSON-serializable object) 1176 metadata: Additional metadata to associate with the span 1177 environment: The tracing environment 1178 version: Version identifier for the code or component 1179 level: Importance level of the span (info, warning, error) 1180 status_message: Optional status message for the span 1181 """ 1182 super().__init__( 1183 otel_span=otel_span, 1184 as_type="span", 1185 langfuse_client=langfuse_client, 1186 input=input, 1187 output=output, 1188 metadata=metadata, 1189 environment=environment, 1190 version=version, 1191 level=level, 1192 status_message=status_message, 1193 ) 1194 1195 def start_span( 1196 self, 1197 name: str, 1198 input: Optional[Any] = None, 1199 output: Optional[Any] = None, 1200 metadata: Optional[Any] = None, 1201 version: Optional[str] = None, 1202 level: Optional[SpanLevel] = None, 1203 status_message: Optional[str] = None, 1204 ) -> "LangfuseSpan": 1205 """Create a new child span. 1206 1207 This method creates a new child span with this span as the parent. 1208 Unlike start_as_current_span(), this method does not set the new span 1209 as the current span in the context. 1210 1211 Args: 1212 name: Name of the span (e.g., function or operation name) 1213 input: Input data for the operation 1214 output: Output data from the operation 1215 metadata: Additional metadata to associate with the span 1216 version: Version identifier for the code or component 1217 level: Importance level of the span (info, warning, error) 1218 status_message: Optional status message for the span 1219 1220 Returns: 1221 A new LangfuseSpan that must be ended with .end() when complete 1222 1223 Example: 1224 ```python 1225 parent_span = langfuse.start_span(name="process-request") 1226 try: 1227 # Create a child span 1228 child_span = parent_span.start_span(name="validate-input") 1229 try: 1230 # Do validation work 1231 validation_result = validate(request_data) 1232 child_span.update(output=validation_result) 1233 finally: 1234 child_span.end() 1235 1236 # Continue with parent span 1237 result = process_validated_data(validation_result) 1238 parent_span.update(output=result) 1239 finally: 1240 parent_span.end() 1241 ``` 1242 """ 1243 return self.start_observation( 1244 name=name, 1245 as_type="span", 1246 input=input, 1247 output=output, 1248 metadata=metadata, 1249 version=version, 1250 level=level, 1251 status_message=status_message, 1252 ) 1253 1254 def start_as_current_span( 1255 self, 1256 *, 1257 name: str, 1258 input: Optional[Any] = None, 1259 output: Optional[Any] = None, 1260 metadata: Optional[Any] = None, 1261 version: Optional[str] = None, 1262 level: Optional[SpanLevel] = None, 1263 status_message: Optional[str] = None, 1264 ) -> _AgnosticContextManager["LangfuseSpan"]: 1265 """[DEPRECATED] Create a new child span and set it as the current span in a context manager. 1266 1267 DEPRECATED: This method is deprecated and will be removed in a future version. 1268 Use start_as_current_observation(as_type='span') instead. 1269 1270 This method creates a new child span and sets it as the current span within 1271 a context manager. It should be used with a 'with' statement to automatically 1272 manage the span's lifecycle. 1273 1274 Args: 1275 name: Name of the span (e.g., function or operation name) 1276 input: Input data for the operation 1277 output: Output data from the operation 1278 metadata: Additional metadata to associate with the span 1279 version: Version identifier for the code or component 1280 level: Importance level of the span (info, warning, error) 1281 status_message: Optional status message for the span 1282 1283 Returns: 1284 A context manager that yields a new LangfuseSpan 1285 1286 Example: 1287 ```python 1288 with langfuse.start_as_current_span(name="process-request") as parent_span: 1289 # Parent span is active here 1290 1291 # Create a child span with context management 1292 with parent_span.start_as_current_span(name="validate-input") as child_span: 1293 # Child span is active here 1294 validation_result = validate(request_data) 1295 child_span.update(output=validation_result) 1296 1297 # Back to parent span context 1298 result = process_validated_data(validation_result) 1299 parent_span.update(output=result) 1300 ``` 1301 """ 1302 warnings.warn( 1303 "start_as_current_span is deprecated and will be removed in a future version. " 1304 "Use start_as_current_observation(as_type='span') instead.", 1305 DeprecationWarning, 1306 stacklevel=2, 1307 ) 1308 return self.start_as_current_observation( 1309 name=name, 1310 as_type="span", 1311 input=input, 1312 output=output, 1313 metadata=metadata, 1314 version=version, 1315 level=level, 1316 status_message=status_message, 1317 ) 1318 1319 def start_generation( 1320 self, 1321 *, 1322 name: str, 1323 input: Optional[Any] = None, 1324 output: Optional[Any] = None, 1325 metadata: Optional[Any] = None, 1326 version: Optional[str] = None, 1327 level: Optional[SpanLevel] = None, 1328 status_message: Optional[str] = None, 1329 completion_start_time: Optional[datetime] = None, 1330 model: Optional[str] = None, 1331 model_parameters: Optional[Dict[str, MapValue]] = None, 1332 usage_details: Optional[Dict[str, int]] = None, 1333 cost_details: Optional[Dict[str, float]] = None, 1334 prompt: Optional[PromptClient] = None, 1335 ) -> "LangfuseGeneration": 1336 """[DEPRECATED] Create a new child generation span. 1337 1338 DEPRECATED: This method is deprecated and will be removed in a future version. 1339 Use start_observation(as_type='generation') instead. 1340 1341 This method creates a new child generation span with this span as the parent. 1342 Generation spans are specialized for AI/LLM operations and include additional 1343 fields for model information, usage stats, and costs. 1344 1345 Unlike start_as_current_generation(), this method does not set the new span 1346 as the current span in the context. 1347 1348 Args: 1349 name: Name of the generation operation 1350 input: Input data for the model (e.g., prompts) 1351 output: Output from the model (e.g., completions) 1352 metadata: Additional metadata to associate with the generation 1353 version: Version identifier for the model or component 1354 level: Importance level of the generation (info, warning, error) 1355 status_message: Optional status message for the generation 1356 completion_start_time: When the model started generating the response 1357 model: Name/identifier of the AI model used (e.g., "gpt-4") 1358 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1359 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1360 cost_details: Cost information for the model call 1361 prompt: Associated prompt template from Langfuse prompt management 1362 1363 Returns: 1364 A new LangfuseGeneration that must be ended with .end() when complete 1365 1366 Example: 1367 ```python 1368 span = langfuse.start_span(name="process-query") 1369 try: 1370 # Create a generation child span 1371 generation = span.start_generation( 1372 name="generate-answer", 1373 model="gpt-4", 1374 input={"prompt": "Explain quantum computing"} 1375 ) 1376 try: 1377 # Call model API 1378 response = llm.generate(...) 1379 1380 generation.update( 1381 output=response.text, 1382 usage_details={ 1383 "prompt_tokens": response.usage.prompt_tokens, 1384 "completion_tokens": response.usage.completion_tokens 1385 } 1386 ) 1387 finally: 1388 generation.end() 1389 1390 # Continue with parent span 1391 span.update(output={"answer": response.text, "source": "gpt-4"}) 1392 finally: 1393 span.end() 1394 ``` 1395 """ 1396 warnings.warn( 1397 "start_generation is deprecated and will be removed in a future version. " 1398 "Use start_observation(as_type='generation') instead.", 1399 DeprecationWarning, 1400 stacklevel=2, 1401 ) 1402 return self.start_observation( 1403 name=name, 1404 as_type="generation", 1405 input=input, 1406 output=output, 1407 metadata=metadata, 1408 version=version, 1409 level=level, 1410 status_message=status_message, 1411 completion_start_time=completion_start_time, 1412 model=model, 1413 model_parameters=model_parameters, 1414 usage_details=usage_details, 1415 cost_details=cost_details, 1416 prompt=prompt, 1417 ) 1418 1419 def start_as_current_generation( 1420 self, 1421 *, 1422 name: str, 1423 input: Optional[Any] = None, 1424 output: Optional[Any] = None, 1425 metadata: Optional[Any] = None, 1426 version: Optional[str] = None, 1427 level: Optional[SpanLevel] = None, 1428 status_message: Optional[str] = None, 1429 completion_start_time: Optional[datetime] = None, 1430 model: Optional[str] = None, 1431 model_parameters: Optional[Dict[str, MapValue]] = None, 1432 usage_details: Optional[Dict[str, int]] = None, 1433 cost_details: Optional[Dict[str, float]] = None, 1434 prompt: Optional[PromptClient] = None, 1435 ) -> _AgnosticContextManager["LangfuseGeneration"]: 1436 """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager. 1437 1438 DEPRECATED: This method is deprecated and will be removed in a future version. 1439 Use start_as_current_observation(as_type='generation') instead. 1440 1441 This method creates a new child generation span and sets it as the current span 1442 within a context manager. Generation spans are specialized for AI/LLM operations 1443 and include additional fields for model information, usage stats, and costs. 1444 1445 Args: 1446 name: Name of the generation operation 1447 input: Input data for the model (e.g., prompts) 1448 output: Output from the model (e.g., completions) 1449 metadata: Additional metadata to associate with the generation 1450 version: Version identifier for the model or component 1451 level: Importance level of the generation (info, warning, error) 1452 status_message: Optional status message for the generation 1453 completion_start_time: When the model started generating the response 1454 model: Name/identifier of the AI model used (e.g., "gpt-4") 1455 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1456 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1457 cost_details: Cost information for the model call 1458 prompt: Associated prompt template from Langfuse prompt management 1459 1460 Returns: 1461 A context manager that yields a new LangfuseGeneration 1462 1463 Example: 1464 ```python 1465 with langfuse.start_as_current_span(name="process-request") as span: 1466 # Prepare data 1467 query = preprocess_user_query(user_input) 1468 1469 # Create a generation span with context management 1470 with span.start_as_current_generation( 1471 name="generate-answer", 1472 model="gpt-4", 1473 input={"query": query} 1474 ) as generation: 1475 # Generation span is active here 1476 response = llm.generate(query) 1477 1478 # Update with results 1479 generation.update( 1480 output=response.text, 1481 usage_details={ 1482 "prompt_tokens": response.usage.prompt_tokens, 1483 "completion_tokens": response.usage.completion_tokens 1484 } 1485 ) 1486 1487 # Back to parent span context 1488 span.update(output={"answer": response.text, "source": "gpt-4"}) 1489 ``` 1490 """ 1491 warnings.warn( 1492 "start_as_current_generation is deprecated and will be removed in a future version. " 1493 "Use start_as_current_observation(as_type='generation') instead.", 1494 DeprecationWarning, 1495 stacklevel=2, 1496 ) 1497 return self.start_as_current_observation( 1498 name=name, 1499 as_type="generation", 1500 input=input, 1501 output=output, 1502 metadata=metadata, 1503 version=version, 1504 level=level, 1505 status_message=status_message, 1506 completion_start_time=completion_start_time, 1507 model=model, 1508 model_parameters=model_parameters, 1509 usage_details=usage_details, 1510 cost_details=cost_details, 1511 prompt=prompt, 1512 ) 1513 1514 def create_event( 1515 self, 1516 *, 1517 name: str, 1518 input: Optional[Any] = None, 1519 output: Optional[Any] = None, 1520 metadata: Optional[Any] = None, 1521 version: Optional[str] = None, 1522 level: Optional[SpanLevel] = None, 1523 status_message: Optional[str] = None, 1524 ) -> "LangfuseEvent": 1525 """Create a new Langfuse observation of type 'EVENT'. 1526 1527 Args: 1528 name: Name of the span (e.g., function or operation name) 1529 input: Input data for the operation (can be any JSON-serializable object) 1530 output: Output data from the operation (can be any JSON-serializable object) 1531 metadata: Additional metadata to associate with the span 1532 version: Version identifier for the code or component 1533 level: Importance level of the span (info, warning, error) 1534 status_message: Optional status message for the span 1535 1536 Returns: 1537 The LangfuseEvent object 1538 1539 Example: 1540 ```python 1541 event = langfuse.create_event(name="process-event") 1542 ``` 1543 """ 1544 timestamp = time_ns() 1545 1546 with otel_trace_api.use_span(self._otel_span): 1547 new_otel_span = self._langfuse_client._otel_tracer.start_span( 1548 name=name, start_time=timestamp 1549 ) 1550 1551 return cast( 1552 "LangfuseEvent", 1553 LangfuseEvent( 1554 otel_span=new_otel_span, 1555 langfuse_client=self._langfuse_client, 1556 input=input, 1557 output=output, 1558 metadata=metadata, 1559 environment=self._environment, 1560 version=version, 1561 level=level, 1562 status_message=status_message, 1563 ).end(end_time=timestamp), 1564 )
Standard span implementation for general operations in Langfuse.
This class represents a general-purpose span that can be used to trace any operation in your application. It extends the base LangfuseObservationWrapper with specific methods for creating child spans, generations, and updating span-specific attributes. If possible, use a more specific type for better observability and insights.
1156 def __init__( 1157 self, 1158 *, 1159 otel_span: otel_trace_api.Span, 1160 langfuse_client: "Langfuse", 1161 input: Optional[Any] = None, 1162 output: Optional[Any] = None, 1163 metadata: Optional[Any] = None, 1164 environment: Optional[str] = None, 1165 version: Optional[str] = None, 1166 level: Optional[SpanLevel] = None, 1167 status_message: Optional[str] = None, 1168 ): 1169 """Initialize a new LangfuseSpan. 1170 1171 Args: 1172 otel_span: The OpenTelemetry span to wrap 1173 langfuse_client: Reference to the parent Langfuse client 1174 input: Input data for the span (any JSON-serializable object) 1175 output: Output data from the span (any JSON-serializable object) 1176 metadata: Additional metadata to associate with the span 1177 environment: The tracing environment 1178 version: Version identifier for the code or component 1179 level: Importance level of the span (info, warning, error) 1180 status_message: Optional status message for the span 1181 """ 1182 super().__init__( 1183 otel_span=otel_span, 1184 as_type="span", 1185 langfuse_client=langfuse_client, 1186 input=input, 1187 output=output, 1188 metadata=metadata, 1189 environment=environment, 1190 version=version, 1191 level=level, 1192 status_message=status_message, 1193 )
Initialize a new LangfuseSpan.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the span (any JSON-serializable object)
- output: Output data from the span (any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- environment: The tracing environment
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
1195 def start_span( 1196 self, 1197 name: str, 1198 input: Optional[Any] = None, 1199 output: Optional[Any] = None, 1200 metadata: Optional[Any] = None, 1201 version: Optional[str] = None, 1202 level: Optional[SpanLevel] = None, 1203 status_message: Optional[str] = None, 1204 ) -> "LangfuseSpan": 1205 """Create a new child span. 1206 1207 This method creates a new child span with this span as the parent. 1208 Unlike start_as_current_span(), this method does not set the new span 1209 as the current span in the context. 1210 1211 Args: 1212 name: Name of the span (e.g., function or operation name) 1213 input: Input data for the operation 1214 output: Output data from the operation 1215 metadata: Additional metadata to associate with the span 1216 version: Version identifier for the code or component 1217 level: Importance level of the span (info, warning, error) 1218 status_message: Optional status message for the span 1219 1220 Returns: 1221 A new LangfuseSpan that must be ended with .end() when complete 1222 1223 Example: 1224 ```python 1225 parent_span = langfuse.start_span(name="process-request") 1226 try: 1227 # Create a child span 1228 child_span = parent_span.start_span(name="validate-input") 1229 try: 1230 # Do validation work 1231 validation_result = validate(request_data) 1232 child_span.update(output=validation_result) 1233 finally: 1234 child_span.end() 1235 1236 # Continue with parent span 1237 result = process_validated_data(validation_result) 1238 parent_span.update(output=result) 1239 finally: 1240 parent_span.end() 1241 ``` 1242 """ 1243 return self.start_observation( 1244 name=name, 1245 as_type="span", 1246 input=input, 1247 output=output, 1248 metadata=metadata, 1249 version=version, 1250 level=level, 1251 status_message=status_message, 1252 )
Create a new child span.
This method creates a new child span with this span as the parent. Unlike start_as_current_span(), this method does not set the new span as the current span in the context.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A new LangfuseSpan that must be ended with .end() when complete
Example:
parent_span = langfuse.start_span(name="process-request") try: # Create a child span child_span = parent_span.start_span(name="validate-input") try: # Do validation work validation_result = validate(request_data) child_span.update(output=validation_result) finally: child_span.end() # Continue with parent span result = process_validated_data(validation_result) parent_span.update(output=result) finally: parent_span.end()
1254 def start_as_current_span( 1255 self, 1256 *, 1257 name: str, 1258 input: Optional[Any] = None, 1259 output: Optional[Any] = None, 1260 metadata: Optional[Any] = None, 1261 version: Optional[str] = None, 1262 level: Optional[SpanLevel] = None, 1263 status_message: Optional[str] = None, 1264 ) -> _AgnosticContextManager["LangfuseSpan"]: 1265 """[DEPRECATED] Create a new child span and set it as the current span in a context manager. 1266 1267 DEPRECATED: This method is deprecated and will be removed in a future version. 1268 Use start_as_current_observation(as_type='span') instead. 1269 1270 This method creates a new child span and sets it as the current span within 1271 a context manager. It should be used with a 'with' statement to automatically 1272 manage the span's lifecycle. 1273 1274 Args: 1275 name: Name of the span (e.g., function or operation name) 1276 input: Input data for the operation 1277 output: Output data from the operation 1278 metadata: Additional metadata to associate with the span 1279 version: Version identifier for the code or component 1280 level: Importance level of the span (info, warning, error) 1281 status_message: Optional status message for the span 1282 1283 Returns: 1284 A context manager that yields a new LangfuseSpan 1285 1286 Example: 1287 ```python 1288 with langfuse.start_as_current_span(name="process-request") as parent_span: 1289 # Parent span is active here 1290 1291 # Create a child span with context management 1292 with parent_span.start_as_current_span(name="validate-input") as child_span: 1293 # Child span is active here 1294 validation_result = validate(request_data) 1295 child_span.update(output=validation_result) 1296 1297 # Back to parent span context 1298 result = process_validated_data(validation_result) 1299 parent_span.update(output=result) 1300 ``` 1301 """ 1302 warnings.warn( 1303 "start_as_current_span is deprecated and will be removed in a future version. " 1304 "Use start_as_current_observation(as_type='span') instead.", 1305 DeprecationWarning, 1306 stacklevel=2, 1307 ) 1308 return self.start_as_current_observation( 1309 name=name, 1310 as_type="span", 1311 input=input, 1312 output=output, 1313 metadata=metadata, 1314 version=version, 1315 level=level, 1316 status_message=status_message, 1317 )
[DEPRECATED] Create a new child span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='span') instead.
This method creates a new child span and sets it as the current span within a context manager. It should be used with a 'with' statement to automatically manage the span's lifecycle.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation
- output: Output data from the operation
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
A context manager that yields a new LangfuseSpan
Example:
with langfuse.start_as_current_span(name="process-request") as parent_span: # Parent span is active here # Create a child span with context management with parent_span.start_as_current_span(name="validate-input") as child_span: # Child span is active here validation_result = validate(request_data) child_span.update(output=validation_result) # Back to parent span context result = process_validated_data(validation_result) parent_span.update(output=result)
1319 def start_generation( 1320 self, 1321 *, 1322 name: str, 1323 input: Optional[Any] = None, 1324 output: Optional[Any] = None, 1325 metadata: Optional[Any] = None, 1326 version: Optional[str] = None, 1327 level: Optional[SpanLevel] = None, 1328 status_message: Optional[str] = None, 1329 completion_start_time: Optional[datetime] = None, 1330 model: Optional[str] = None, 1331 model_parameters: Optional[Dict[str, MapValue]] = None, 1332 usage_details: Optional[Dict[str, int]] = None, 1333 cost_details: Optional[Dict[str, float]] = None, 1334 prompt: Optional[PromptClient] = None, 1335 ) -> "LangfuseGeneration": 1336 """[DEPRECATED] Create a new child generation span. 1337 1338 DEPRECATED: This method is deprecated and will be removed in a future version. 1339 Use start_observation(as_type='generation') instead. 1340 1341 This method creates a new child generation span with this span as the parent. 1342 Generation spans are specialized for AI/LLM operations and include additional 1343 fields for model information, usage stats, and costs. 1344 1345 Unlike start_as_current_generation(), this method does not set the new span 1346 as the current span in the context. 1347 1348 Args: 1349 name: Name of the generation operation 1350 input: Input data for the model (e.g., prompts) 1351 output: Output from the model (e.g., completions) 1352 metadata: Additional metadata to associate with the generation 1353 version: Version identifier for the model or component 1354 level: Importance level of the generation (info, warning, error) 1355 status_message: Optional status message for the generation 1356 completion_start_time: When the model started generating the response 1357 model: Name/identifier of the AI model used (e.g., "gpt-4") 1358 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1359 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1360 cost_details: Cost information for the model call 1361 prompt: Associated prompt template from Langfuse prompt management 1362 1363 Returns: 1364 A new LangfuseGeneration that must be ended with .end() when complete 1365 1366 Example: 1367 ```python 1368 span = langfuse.start_span(name="process-query") 1369 try: 1370 # Create a generation child span 1371 generation = span.start_generation( 1372 name="generate-answer", 1373 model="gpt-4", 1374 input={"prompt": "Explain quantum computing"} 1375 ) 1376 try: 1377 # Call model API 1378 response = llm.generate(...) 1379 1380 generation.update( 1381 output=response.text, 1382 usage_details={ 1383 "prompt_tokens": response.usage.prompt_tokens, 1384 "completion_tokens": response.usage.completion_tokens 1385 } 1386 ) 1387 finally: 1388 generation.end() 1389 1390 # Continue with parent span 1391 span.update(output={"answer": response.text, "source": "gpt-4"}) 1392 finally: 1393 span.end() 1394 ``` 1395 """ 1396 warnings.warn( 1397 "start_generation is deprecated and will be removed in a future version. " 1398 "Use start_observation(as_type='generation') instead.", 1399 DeprecationWarning, 1400 stacklevel=2, 1401 ) 1402 return self.start_observation( 1403 name=name, 1404 as_type="generation", 1405 input=input, 1406 output=output, 1407 metadata=metadata, 1408 version=version, 1409 level=level, 1410 status_message=status_message, 1411 completion_start_time=completion_start_time, 1412 model=model, 1413 model_parameters=model_parameters, 1414 usage_details=usage_details, 1415 cost_details=cost_details, 1416 prompt=prompt, 1417 )
[DEPRECATED] Create a new child generation span.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.
This method creates a new child generation span with this span as the parent. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.
Unlike start_as_current_generation(), this method does not set the new span as the current span in the context.
Arguments:
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A new LangfuseGeneration that must be ended with .end() when complete
Example:
span = langfuse.start_span(name="process-query") try: # Create a generation child span generation = span.start_generation( name="generate-answer", model="gpt-4", input={"prompt": "Explain quantum computing"} ) try: # Call model API response = llm.generate(...) generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) finally: generation.end() # Continue with parent span span.update(output={"answer": response.text, "source": "gpt-4"}) finally: span.end()
1419 def start_as_current_generation( 1420 self, 1421 *, 1422 name: str, 1423 input: Optional[Any] = None, 1424 output: Optional[Any] = None, 1425 metadata: Optional[Any] = None, 1426 version: Optional[str] = None, 1427 level: Optional[SpanLevel] = None, 1428 status_message: Optional[str] = None, 1429 completion_start_time: Optional[datetime] = None, 1430 model: Optional[str] = None, 1431 model_parameters: Optional[Dict[str, MapValue]] = None, 1432 usage_details: Optional[Dict[str, int]] = None, 1433 cost_details: Optional[Dict[str, float]] = None, 1434 prompt: Optional[PromptClient] = None, 1435 ) -> _AgnosticContextManager["LangfuseGeneration"]: 1436 """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager. 1437 1438 DEPRECATED: This method is deprecated and will be removed in a future version. 1439 Use start_as_current_observation(as_type='generation') instead. 1440 1441 This method creates a new child generation span and sets it as the current span 1442 within a context manager. Generation spans are specialized for AI/LLM operations 1443 and include additional fields for model information, usage stats, and costs. 1444 1445 Args: 1446 name: Name of the generation operation 1447 input: Input data for the model (e.g., prompts) 1448 output: Output from the model (e.g., completions) 1449 metadata: Additional metadata to associate with the generation 1450 version: Version identifier for the model or component 1451 level: Importance level of the generation (info, warning, error) 1452 status_message: Optional status message for the generation 1453 completion_start_time: When the model started generating the response 1454 model: Name/identifier of the AI model used (e.g., "gpt-4") 1455 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1456 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1457 cost_details: Cost information for the model call 1458 prompt: Associated prompt template from Langfuse prompt management 1459 1460 Returns: 1461 A context manager that yields a new LangfuseGeneration 1462 1463 Example: 1464 ```python 1465 with langfuse.start_as_current_span(name="process-request") as span: 1466 # Prepare data 1467 query = preprocess_user_query(user_input) 1468 1469 # Create a generation span with context management 1470 with span.start_as_current_generation( 1471 name="generate-answer", 1472 model="gpt-4", 1473 input={"query": query} 1474 ) as generation: 1475 # Generation span is active here 1476 response = llm.generate(query) 1477 1478 # Update with results 1479 generation.update( 1480 output=response.text, 1481 usage_details={ 1482 "prompt_tokens": response.usage.prompt_tokens, 1483 "completion_tokens": response.usage.completion_tokens 1484 } 1485 ) 1486 1487 # Back to parent span context 1488 span.update(output={"answer": response.text, "source": "gpt-4"}) 1489 ``` 1490 """ 1491 warnings.warn( 1492 "start_as_current_generation is deprecated and will be removed in a future version. " 1493 "Use start_as_current_observation(as_type='generation') instead.", 1494 DeprecationWarning, 1495 stacklevel=2, 1496 ) 1497 return self.start_as_current_observation( 1498 name=name, 1499 as_type="generation", 1500 input=input, 1501 output=output, 1502 metadata=metadata, 1503 version=version, 1504 level=level, 1505 status_message=status_message, 1506 completion_start_time=completion_start_time, 1507 model=model, 1508 model_parameters=model_parameters, 1509 usage_details=usage_details, 1510 cost_details=cost_details, 1511 prompt=prompt, 1512 )
[DEPRECATED] Create a new child generation span and set it as the current span in a context manager.
DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.
This method creates a new child generation span and sets it as the current span within a context manager. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.
Arguments:
- name: Name of the generation operation
- input: Input data for the model (e.g., prompts)
- output: Output from the model (e.g., completions)
- metadata: Additional metadata to associate with the generation
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
Returns:
A context manager that yields a new LangfuseGeneration
Example:
with langfuse.start_as_current_span(name="process-request") as span: # Prepare data query = preprocess_user_query(user_input) # Create a generation span with context management with span.start_as_current_generation( name="generate-answer", model="gpt-4", input={"query": query} ) as generation: # Generation span is active here response = llm.generate(query) # Update with results generation.update( output=response.text, usage_details={ "prompt_tokens": response.usage.prompt_tokens, "completion_tokens": response.usage.completion_tokens } ) # Back to parent span context span.update(output={"answer": response.text, "source": "gpt-4"})
1514 def create_event( 1515 self, 1516 *, 1517 name: str, 1518 input: Optional[Any] = None, 1519 output: Optional[Any] = None, 1520 metadata: Optional[Any] = None, 1521 version: Optional[str] = None, 1522 level: Optional[SpanLevel] = None, 1523 status_message: Optional[str] = None, 1524 ) -> "LangfuseEvent": 1525 """Create a new Langfuse observation of type 'EVENT'. 1526 1527 Args: 1528 name: Name of the span (e.g., function or operation name) 1529 input: Input data for the operation (can be any JSON-serializable object) 1530 output: Output data from the operation (can be any JSON-serializable object) 1531 metadata: Additional metadata to associate with the span 1532 version: Version identifier for the code or component 1533 level: Importance level of the span (info, warning, error) 1534 status_message: Optional status message for the span 1535 1536 Returns: 1537 The LangfuseEvent object 1538 1539 Example: 1540 ```python 1541 event = langfuse.create_event(name="process-event") 1542 ``` 1543 """ 1544 timestamp = time_ns() 1545 1546 with otel_trace_api.use_span(self._otel_span): 1547 new_otel_span = self._langfuse_client._otel_tracer.start_span( 1548 name=name, start_time=timestamp 1549 ) 1550 1551 return cast( 1552 "LangfuseEvent", 1553 LangfuseEvent( 1554 otel_span=new_otel_span, 1555 langfuse_client=self._langfuse_client, 1556 input=input, 1557 output=output, 1558 metadata=metadata, 1559 environment=self._environment, 1560 version=version, 1561 level=level, 1562 status_message=status_message, 1563 ).end(end_time=timestamp), 1564 )
Create a new Langfuse observation of type 'EVENT'.
Arguments:
- name: Name of the span (e.g., function or operation name)
- input: Input data for the operation (can be any JSON-serializable object)
- output: Output data from the operation (can be any JSON-serializable object)
- metadata: Additional metadata to associate with the span
- version: Version identifier for the code or component
- level: Importance level of the span (info, warning, error)
- status_message: Optional status message for the span
Returns:
The LangfuseEvent object
Example:
event = langfuse.create_event(name="process-event")
1567class LangfuseGeneration(LangfuseObservationWrapper): 1568 """Specialized span implementation for AI model generations in Langfuse. 1569 1570 This class represents a generation span specifically designed for tracking 1571 AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized 1572 attributes for model details, token usage, and costs. 1573 """ 1574 1575 def __init__( 1576 self, 1577 *, 1578 otel_span: otel_trace_api.Span, 1579 langfuse_client: "Langfuse", 1580 input: Optional[Any] = None, 1581 output: Optional[Any] = None, 1582 metadata: Optional[Any] = None, 1583 environment: Optional[str] = None, 1584 version: Optional[str] = None, 1585 level: Optional[SpanLevel] = None, 1586 status_message: Optional[str] = None, 1587 completion_start_time: Optional[datetime] = None, 1588 model: Optional[str] = None, 1589 model_parameters: Optional[Dict[str, MapValue]] = None, 1590 usage_details: Optional[Dict[str, int]] = None, 1591 cost_details: Optional[Dict[str, float]] = None, 1592 prompt: Optional[PromptClient] = None, 1593 ): 1594 """Initialize a new LangfuseGeneration span. 1595 1596 Args: 1597 otel_span: The OpenTelemetry span to wrap 1598 langfuse_client: Reference to the parent Langfuse client 1599 input: Input data for the generation (e.g., prompts) 1600 output: Output from the generation (e.g., completions) 1601 metadata: Additional metadata to associate with the generation 1602 environment: The tracing environment 1603 version: Version identifier for the model or component 1604 level: Importance level of the generation (info, warning, error) 1605 status_message: Optional status message for the generation 1606 completion_start_time: When the model started generating the response 1607 model: Name/identifier of the AI model used (e.g., "gpt-4") 1608 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1609 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1610 cost_details: Cost information for the model call 1611 prompt: Associated prompt template from Langfuse prompt management 1612 """ 1613 super().__init__( 1614 as_type="generation", 1615 otel_span=otel_span, 1616 langfuse_client=langfuse_client, 1617 input=input, 1618 output=output, 1619 metadata=metadata, 1620 environment=environment, 1621 version=version, 1622 level=level, 1623 status_message=status_message, 1624 completion_start_time=completion_start_time, 1625 model=model, 1626 model_parameters=model_parameters, 1627 usage_details=usage_details, 1628 cost_details=cost_details, 1629 prompt=prompt, 1630 )
Specialized span implementation for AI model generations in Langfuse.
This class represents a generation span specifically designed for tracking AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized attributes for model details, token usage, and costs.
1575 def __init__( 1576 self, 1577 *, 1578 otel_span: otel_trace_api.Span, 1579 langfuse_client: "Langfuse", 1580 input: Optional[Any] = None, 1581 output: Optional[Any] = None, 1582 metadata: Optional[Any] = None, 1583 environment: Optional[str] = None, 1584 version: Optional[str] = None, 1585 level: Optional[SpanLevel] = None, 1586 status_message: Optional[str] = None, 1587 completion_start_time: Optional[datetime] = None, 1588 model: Optional[str] = None, 1589 model_parameters: Optional[Dict[str, MapValue]] = None, 1590 usage_details: Optional[Dict[str, int]] = None, 1591 cost_details: Optional[Dict[str, float]] = None, 1592 prompt: Optional[PromptClient] = None, 1593 ): 1594 """Initialize a new LangfuseGeneration span. 1595 1596 Args: 1597 otel_span: The OpenTelemetry span to wrap 1598 langfuse_client: Reference to the parent Langfuse client 1599 input: Input data for the generation (e.g., prompts) 1600 output: Output from the generation (e.g., completions) 1601 metadata: Additional metadata to associate with the generation 1602 environment: The tracing environment 1603 version: Version identifier for the model or component 1604 level: Importance level of the generation (info, warning, error) 1605 status_message: Optional status message for the generation 1606 completion_start_time: When the model started generating the response 1607 model: Name/identifier of the AI model used (e.g., "gpt-4") 1608 model_parameters: Parameters used for the model (e.g., temperature, max_tokens) 1609 usage_details: Token usage information (e.g., prompt_tokens, completion_tokens) 1610 cost_details: Cost information for the model call 1611 prompt: Associated prompt template from Langfuse prompt management 1612 """ 1613 super().__init__( 1614 as_type="generation", 1615 otel_span=otel_span, 1616 langfuse_client=langfuse_client, 1617 input=input, 1618 output=output, 1619 metadata=metadata, 1620 environment=environment, 1621 version=version, 1622 level=level, 1623 status_message=status_message, 1624 completion_start_time=completion_start_time, 1625 model=model, 1626 model_parameters=model_parameters, 1627 usage_details=usage_details, 1628 cost_details=cost_details, 1629 prompt=prompt, 1630 )
Initialize a new LangfuseGeneration span.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the generation (e.g., prompts)
- output: Output from the generation (e.g., completions)
- metadata: Additional metadata to associate with the generation
- environment: The tracing environment
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
- completion_start_time: When the model started generating the response
- model: Name/identifier of the AI model used (e.g., "gpt-4")
- model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
- usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
- cost_details: Cost information for the model call
- prompt: Associated prompt template from Langfuse prompt management
1633class LangfuseEvent(LangfuseObservationWrapper): 1634 """Specialized span implementation for Langfuse Events.""" 1635 1636 def __init__( 1637 self, 1638 *, 1639 otel_span: otel_trace_api.Span, 1640 langfuse_client: "Langfuse", 1641 input: Optional[Any] = None, 1642 output: Optional[Any] = None, 1643 metadata: Optional[Any] = None, 1644 environment: Optional[str] = None, 1645 version: Optional[str] = None, 1646 level: Optional[SpanLevel] = None, 1647 status_message: Optional[str] = None, 1648 ): 1649 """Initialize a new LangfuseEvent span. 1650 1651 Args: 1652 otel_span: The OpenTelemetry span to wrap 1653 langfuse_client: Reference to the parent Langfuse client 1654 input: Input data for the event 1655 output: Output from the event 1656 metadata: Additional metadata to associate with the generation 1657 environment: The tracing environment 1658 version: Version identifier for the model or component 1659 level: Importance level of the generation (info, warning, error) 1660 status_message: Optional status message for the generation 1661 """ 1662 super().__init__( 1663 otel_span=otel_span, 1664 as_type="event", 1665 langfuse_client=langfuse_client, 1666 input=input, 1667 output=output, 1668 metadata=metadata, 1669 environment=environment, 1670 version=version, 1671 level=level, 1672 status_message=status_message, 1673 ) 1674 1675 def update( 1676 self, 1677 *, 1678 name: Optional[str] = None, 1679 input: Optional[Any] = None, 1680 output: Optional[Any] = None, 1681 metadata: Optional[Any] = None, 1682 version: Optional[str] = None, 1683 level: Optional[SpanLevel] = None, 1684 status_message: Optional[str] = None, 1685 completion_start_time: Optional[datetime] = None, 1686 model: Optional[str] = None, 1687 model_parameters: Optional[Dict[str, MapValue]] = None, 1688 usage_details: Optional[Dict[str, int]] = None, 1689 cost_details: Optional[Dict[str, float]] = None, 1690 prompt: Optional[PromptClient] = None, 1691 **kwargs: Any, 1692 ) -> "LangfuseEvent": 1693 """Update is not allowed for LangfuseEvent because events cannot be updated. 1694 1695 This method logs a warning and returns self without making changes. 1696 1697 Returns: 1698 self: Returns the unchanged LangfuseEvent instance 1699 """ 1700 langfuse_logger.warning( 1701 "Attempted to update LangfuseEvent observation. Events cannot be updated after creation." 1702 ) 1703 return self
Specialized span implementation for Langfuse Events.
1636 def __init__( 1637 self, 1638 *, 1639 otel_span: otel_trace_api.Span, 1640 langfuse_client: "Langfuse", 1641 input: Optional[Any] = None, 1642 output: Optional[Any] = None, 1643 metadata: Optional[Any] = None, 1644 environment: Optional[str] = None, 1645 version: Optional[str] = None, 1646 level: Optional[SpanLevel] = None, 1647 status_message: Optional[str] = None, 1648 ): 1649 """Initialize a new LangfuseEvent span. 1650 1651 Args: 1652 otel_span: The OpenTelemetry span to wrap 1653 langfuse_client: Reference to the parent Langfuse client 1654 input: Input data for the event 1655 output: Output from the event 1656 metadata: Additional metadata to associate with the generation 1657 environment: The tracing environment 1658 version: Version identifier for the model or component 1659 level: Importance level of the generation (info, warning, error) 1660 status_message: Optional status message for the generation 1661 """ 1662 super().__init__( 1663 otel_span=otel_span, 1664 as_type="event", 1665 langfuse_client=langfuse_client, 1666 input=input, 1667 output=output, 1668 metadata=metadata, 1669 environment=environment, 1670 version=version, 1671 level=level, 1672 status_message=status_message, 1673 )
Initialize a new LangfuseEvent span.
Arguments:
- otel_span: The OpenTelemetry span to wrap
- langfuse_client: Reference to the parent Langfuse client
- input: Input data for the event
- output: Output from the event
- metadata: Additional metadata to associate with the generation
- environment: The tracing environment
- version: Version identifier for the model or component
- level: Importance level of the generation (info, warning, error)
- status_message: Optional status message for the generation
1675 def update( 1676 self, 1677 *, 1678 name: Optional[str] = None, 1679 input: Optional[Any] = None, 1680 output: Optional[Any] = None, 1681 metadata: Optional[Any] = None, 1682 version: Optional[str] = None, 1683 level: Optional[SpanLevel] = None, 1684 status_message: Optional[str] = None, 1685 completion_start_time: Optional[datetime] = None, 1686 model: Optional[str] = None, 1687 model_parameters: Optional[Dict[str, MapValue]] = None, 1688 usage_details: Optional[Dict[str, int]] = None, 1689 cost_details: Optional[Dict[str, float]] = None, 1690 prompt: Optional[PromptClient] = None, 1691 **kwargs: Any, 1692 ) -> "LangfuseEvent": 1693 """Update is not allowed for LangfuseEvent because events cannot be updated. 1694 1695 This method logs a warning and returns self without making changes. 1696 1697 Returns: 1698 self: Returns the unchanged LangfuseEvent instance 1699 """ 1700 langfuse_logger.warning( 1701 "Attempted to update LangfuseEvent observation. Events cannot be updated after creation." 1702 ) 1703 return self
Update is not allowed for LangfuseEvent because events cannot be updated.
This method logs a warning and returns self without making changes.
Returns:
self: Returns the unchanged LangfuseEvent instance
27class LangfuseOtelSpanAttributes: 28 # Langfuse-Trace attributes 29 TRACE_NAME = "langfuse.trace.name" 30 TRACE_USER_ID = "user.id" 31 TRACE_SESSION_ID = "session.id" 32 TRACE_TAGS = "langfuse.trace.tags" 33 TRACE_PUBLIC = "langfuse.trace.public" 34 TRACE_METADATA = "langfuse.trace.metadata" 35 TRACE_INPUT = "langfuse.trace.input" 36 TRACE_OUTPUT = "langfuse.trace.output" 37 38 # Langfuse-observation attributes 39 OBSERVATION_TYPE = "langfuse.observation.type" 40 OBSERVATION_METADATA = "langfuse.observation.metadata" 41 OBSERVATION_LEVEL = "langfuse.observation.level" 42 OBSERVATION_STATUS_MESSAGE = "langfuse.observation.status_message" 43 OBSERVATION_INPUT = "langfuse.observation.input" 44 OBSERVATION_OUTPUT = "langfuse.observation.output" 45 46 # Langfuse-observation of type Generation attributes 47 OBSERVATION_COMPLETION_START_TIME = "langfuse.observation.completion_start_time" 48 OBSERVATION_MODEL = "langfuse.observation.model.name" 49 OBSERVATION_MODEL_PARAMETERS = "langfuse.observation.model.parameters" 50 OBSERVATION_USAGE_DETAILS = "langfuse.observation.usage_details" 51 OBSERVATION_COST_DETAILS = "langfuse.observation.cost_details" 52 OBSERVATION_PROMPT_NAME = "langfuse.observation.prompt.name" 53 OBSERVATION_PROMPT_VERSION = "langfuse.observation.prompt.version" 54 55 # General 56 ENVIRONMENT = "langfuse.environment" 57 RELEASE = "langfuse.release" 58 VERSION = "langfuse.version" 59 60 # Internal 61 AS_ROOT = "langfuse.internal.as_root" 62 63 # Experiments 64 EXPERIMENT_ID = "langfuse.experiment.id" 65 EXPERIMENT_NAME = "langfuse.experiment.name" 66 EXPERIMENT_DESCRIPTION = "langfuse.experiment.description" 67 EXPERIMENT_METADATA = "langfuse.experiment.metadata" 68 EXPERIMENT_DATASET_ID = "langfuse.experiment.dataset.id" 69 EXPERIMENT_ITEM_ID = "langfuse.experiment.item.id" 70 EXPERIMENT_ITEM_EXPECTED_OUTPUT = "langfuse.experiment.item.expected_output" 71 EXPERIMENT_ITEM_METADATA = "langfuse.experiment.item.metadata" 72 EXPERIMENT_ITEM_ROOT_OBSERVATION_ID = "langfuse.experiment.item.root_observation_id"
1706class LangfuseAgent(LangfuseObservationWrapper): 1707 """Agent observation for reasoning blocks that act on tools using LLM guidance.""" 1708 1709 def __init__(self, **kwargs: Any) -> None: 1710 """Initialize a new LangfuseAgent span.""" 1711 kwargs["as_type"] = "agent" 1712 super().__init__(**kwargs)
Agent observation for reasoning blocks that act on tools using LLM guidance.
1715class LangfuseTool(LangfuseObservationWrapper): 1716 """Tool observation representing external tool calls, e.g., calling a weather API.""" 1717 1718 def __init__(self, **kwargs: Any) -> None: 1719 """Initialize a new LangfuseTool span.""" 1720 kwargs["as_type"] = "tool" 1721 super().__init__(**kwargs)
Tool observation representing external tool calls, e.g., calling a weather API.
1724class LangfuseChain(LangfuseObservationWrapper): 1725 """Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM.""" 1726 1727 def __init__(self, **kwargs: Any) -> None: 1728 """Initialize a new LangfuseChain span.""" 1729 kwargs["as_type"] = "chain" 1730 super().__init__(**kwargs)
Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM.
1742class LangfuseEmbedding(LangfuseObservationWrapper): 1743 """Embedding observation for LLM embedding calls, typically used before retrieval.""" 1744 1745 def __init__(self, **kwargs: Any) -> None: 1746 """Initialize a new LangfuseEmbedding span.""" 1747 kwargs["as_type"] = "embedding" 1748 super().__init__(**kwargs)
Embedding observation for LLM embedding calls, typically used before retrieval.
1751class LangfuseEvaluator(LangfuseObservationWrapper): 1752 """Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs.""" 1753 1754 def __init__(self, **kwargs: Any) -> None: 1755 """Initialize a new LangfuseEvaluator span.""" 1756 kwargs["as_type"] = "evaluator" 1757 super().__init__(**kwargs)
Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs.
1733class LangfuseRetriever(LangfuseObservationWrapper): 1734 """Retriever observation for data retrieval steps, e.g. vector store or database queries.""" 1735 1736 def __init__(self, **kwargs: Any) -> None: 1737 """Initialize a new LangfuseRetriever span.""" 1738 kwargs["as_type"] = "retriever" 1739 super().__init__(**kwargs)
Retriever observation for data retrieval steps, e.g. vector store or database queries.
1760class LangfuseGuardrail(LangfuseObservationWrapper): 1761 """Guardrail observation for protection e.g. against jailbreaks or offensive content.""" 1762 1763 def __init__(self, **kwargs: Any) -> None: 1764 """Initialize a new LangfuseGuardrail span.""" 1765 kwargs["as_type"] = "guardrail" 1766 super().__init__(**kwargs)
Guardrail observation for protection e.g. against jailbreaks or offensive content.
97class Evaluation: 98 """Represents an evaluation result for an experiment item or an entire experiment run. 99 100 This class provides a strongly-typed way to create evaluation results in evaluator functions. 101 Users must use keyword arguments when instantiating this class. 102 103 Attributes: 104 name: Unique identifier for the evaluation metric. Should be descriptive 105 and consistent across runs (e.g., "accuracy", "bleu_score", "toxicity"). 106 Used for aggregation and comparison across experiment runs. 107 value: The evaluation score or result. Can be: 108 - Numeric (int/float): For quantitative metrics like accuracy (0.85), BLEU (0.42) 109 - String: For categorical results like "positive", "negative", "neutral" 110 - Boolean: For binary assessments like "passes_safety_check" 111 - None: When evaluation cannot be computed (missing data, API errors, etc.) 112 comment: Optional human-readable explanation of the evaluation result. 113 Useful for providing context, explaining scoring rationale, or noting 114 special conditions. Displayed in Langfuse UI for interpretability. 115 metadata: Optional structured metadata about the evaluation process. 116 Can include confidence scores, intermediate calculations, model versions, 117 or any other relevant technical details. 118 data_type: Optional score data type. Required if value is not NUMERIC. 119 One of NUMERIC, CATEGORICAL, or BOOLEAN. Defaults to NUMERIC. 120 config_id: Optional Langfuse score config ID. 121 122 Examples: 123 Basic accuracy evaluation: 124 ```python 125 from langfuse import Evaluation 126 127 def accuracy_evaluator(*, input, output, expected_output=None, **kwargs): 128 if not expected_output: 129 return Evaluation(name="accuracy", value=None, comment="No expected output") 130 131 is_correct = output.strip().lower() == expected_output.strip().lower() 132 return Evaluation( 133 name="accuracy", 134 value=1.0 if is_correct else 0.0, 135 comment="Correct answer" if is_correct else "Incorrect answer" 136 ) 137 ``` 138 139 Multi-metric evaluator: 140 ```python 141 def comprehensive_evaluator(*, input, output, expected_output=None, **kwargs): 142 return [ 143 Evaluation(name="length", value=len(output), comment=f"Output length: {len(output)} chars"), 144 Evaluation(name="has_greeting", value="hello" in output.lower(), comment="Contains greeting"), 145 Evaluation( 146 name="quality", 147 value=0.85, 148 comment="High quality response", 149 metadata={"confidence": 0.92, "model": "gpt-4"} 150 ) 151 ] 152 ``` 153 154 Categorical evaluation: 155 ```python 156 def sentiment_evaluator(*, input, output, **kwargs): 157 sentiment = analyze_sentiment(output) # Returns "positive", "negative", or "neutral" 158 return Evaluation( 159 name="sentiment", 160 value=sentiment, 161 comment=f"Response expresses {sentiment} sentiment", 162 data_type="CATEGORICAL" 163 ) 164 ``` 165 166 Failed evaluation with error handling: 167 ```python 168 def external_api_evaluator(*, input, output, **kwargs): 169 try: 170 score = external_api.evaluate(output) 171 return Evaluation(name="external_score", value=score) 172 except Exception as e: 173 return Evaluation( 174 name="external_score", 175 value=None, 176 comment=f"API unavailable: {e}", 177 metadata={"error": str(e), "retry_count": 3} 178 ) 179 ``` 180 181 Note: 182 All arguments must be passed as keywords. Positional arguments are not allowed 183 to ensure code clarity and prevent errors from argument reordering. 184 """ 185 186 def __init__( 187 self, 188 *, 189 name: str, 190 value: Union[int, float, str, bool, None], 191 comment: Optional[str] = None, 192 metadata: Optional[Dict[str, Any]] = None, 193 data_type: Optional[ScoreDataType] = None, 194 config_id: Optional[str] = None, 195 ): 196 """Initialize an Evaluation with the provided data. 197 198 Args: 199 name: Unique identifier for the evaluation metric. 200 value: The evaluation score or result. 201 comment: Optional human-readable explanation of the result. 202 metadata: Optional structured metadata about the evaluation process. 203 data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN). 204 config_id: Optional Langfuse score config ID. 205 206 Note: 207 All arguments must be provided as keywords. Positional arguments will raise a TypeError. 208 """ 209 self.name = name 210 self.value = value 211 self.comment = comment 212 self.metadata = metadata 213 self.data_type = data_type 214 self.config_id = config_id
Represents an evaluation result for an experiment item or an entire experiment run.
This class provides a strongly-typed way to create evaluation results in evaluator functions. Users must use keyword arguments when instantiating this class.
Attributes:
- name: Unique identifier for the evaluation metric. Should be descriptive and consistent across runs (e.g., "accuracy", "bleu_score", "toxicity"). Used for aggregation and comparison across experiment runs.
- value: The evaluation score or result. Can be:
- Numeric (int/float): For quantitative metrics like accuracy (0.85), BLEU (0.42)
- String: For categorical results like "positive", "negative", "neutral"
- Boolean: For binary assessments like "passes_safety_check"
- None: When evaluation cannot be computed (missing data, API errors, etc.)
- comment: Optional human-readable explanation of the evaluation result. Useful for providing context, explaining scoring rationale, or noting special conditions. Displayed in Langfuse UI for interpretability.
- metadata: Optional structured metadata about the evaluation process. Can include confidence scores, intermediate calculations, model versions, or any other relevant technical details.
- data_type: Optional score data type. Required if value is not NUMERIC. One of NUMERIC, CATEGORICAL, or BOOLEAN. Defaults to NUMERIC.
- config_id: Optional Langfuse score config ID.
Examples:
Basic accuracy evaluation:
from langfuse import Evaluation def accuracy_evaluator(*, input, output, expected_output=None, **kwargs): if not expected_output: return Evaluation(name="accuracy", value=None, comment="No expected output") is_correct = output.strip().lower() == expected_output.strip().lower() return Evaluation( name="accuracy", value=1.0 if is_correct else 0.0, comment="Correct answer" if is_correct else "Incorrect answer" )Multi-metric evaluator:
def comprehensive_evaluator(*, input, output, expected_output=None, **kwargs): return [ Evaluation(name="length", value=len(output), comment=f"Output length: {len(output)} chars"), Evaluation(name="has_greeting", value="hello" in output.lower(), comment="Contains greeting"), Evaluation( name="quality", value=0.85, comment="High quality response", metadata={"confidence": 0.92, "model": "gpt-4"} ) ]Categorical evaluation:
def sentiment_evaluator(*, input, output, **kwargs): sentiment = analyze_sentiment(output) # Returns "positive", "negative", or "neutral" return Evaluation( name="sentiment", value=sentiment, comment=f"Response expresses {sentiment} sentiment", data_type="CATEGORICAL" )Failed evaluation with error handling:
def external_api_evaluator(*, input, output, **kwargs): try: score = external_api.evaluate(output) return Evaluation(name="external_score", value=score) except Exception as e: return Evaluation( name="external_score", value=None, comment=f"API unavailable: {e}", metadata={"error": str(e), "retry_count": 3} )
Note:
All arguments must be passed as keywords. Positional arguments are not allowed to ensure code clarity and prevent errors from argument reordering.
186 def __init__( 187 self, 188 *, 189 name: str, 190 value: Union[int, float, str, bool, None], 191 comment: Optional[str] = None, 192 metadata: Optional[Dict[str, Any]] = None, 193 data_type: Optional[ScoreDataType] = None, 194 config_id: Optional[str] = None, 195 ): 196 """Initialize an Evaluation with the provided data. 197 198 Args: 199 name: Unique identifier for the evaluation metric. 200 value: The evaluation score or result. 201 comment: Optional human-readable explanation of the result. 202 metadata: Optional structured metadata about the evaluation process. 203 data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN). 204 config_id: Optional Langfuse score config ID. 205 206 Note: 207 All arguments must be provided as keywords. Positional arguments will raise a TypeError. 208 """ 209 self.name = name 210 self.value = value 211 self.comment = comment 212 self.metadata = metadata 213 self.data_type = data_type 214 self.config_id = config_id
Initialize an Evaluation with the provided data.
Arguments:
- name: Unique identifier for the evaluation metric.
- value: The evaluation score or result.
- comment: Optional human-readable explanation of the result.
- metadata: Optional structured metadata about the evaluation process.
- data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN).
- config_id: Optional Langfuse score config ID.
Note:
All arguments must be provided as keywords. Positional arguments will raise a TypeError.
38class EvaluatorInputs: 39 """Input data structure for evaluators, returned by mapper functions. 40 41 This class provides a strongly-typed container for transforming API response 42 objects (traces, observations) into the standardized format expected 43 by evaluator functions. It ensures consistent access to input, output, expected 44 output, and metadata regardless of the source entity type. 45 46 Attributes: 47 input: The input data that was provided to generate the output being evaluated. 48 For traces, this might be the initial prompt or request. For observations, 49 this could be the span's input. The exact meaning depends on your use case. 50 output: The actual output that was produced and needs to be evaluated. 51 For traces, this is typically the final response. For observations, 52 this might be the generation output or span result. 53 expected_output: Optional ground truth or expected result for comparison. 54 Used by evaluators to assess correctness. May be None if no ground truth 55 is available for the entity being evaluated. 56 metadata: Optional structured metadata providing additional context for evaluation. 57 Can include information about the entity, execution context, user attributes, 58 or any other relevant data that evaluators might use. 59 60 Examples: 61 Simple mapper for traces: 62 ```python 63 from langfuse import EvaluatorInputs 64 65 def trace_mapper(trace): 66 return EvaluatorInputs( 67 input=trace.input, 68 output=trace.output, 69 expected_output=None, # No ground truth available 70 metadata={"user_id": trace.user_id, "tags": trace.tags} 71 ) 72 ``` 73 74 Mapper for observations extracting specific fields: 75 ```python 76 def observation_mapper(observation): 77 # Extract input/output from observation's data 78 input_data = observation.input if hasattr(observation, 'input') else None 79 output_data = observation.output if hasattr(observation, 'output') else None 80 81 return EvaluatorInputs( 82 input=input_data, 83 output=output_data, 84 expected_output=None, 85 metadata={ 86 "observation_type": observation.type, 87 "model": observation.model, 88 "latency_ms": observation.end_time - observation.start_time 89 } 90 ) 91 ``` 92 ``` 93 94 Note: 95 All arguments must be passed as keywords when instantiating this class. 96 """ 97 98 def __init__( 99 self, 100 *, 101 input: Any, 102 output: Any, 103 expected_output: Any = None, 104 metadata: Optional[Dict[str, Any]] = None, 105 ): 106 """Initialize EvaluatorInputs with the provided data. 107 108 Args: 109 input: The input data for evaluation. 110 output: The output data to be evaluated. 111 expected_output: Optional ground truth for comparison. 112 metadata: Optional additional context for evaluation. 113 114 Note: 115 All arguments must be provided as keywords. 116 """ 117 self.input = input 118 self.output = output 119 self.expected_output = expected_output 120 self.metadata = metadata
Input data structure for evaluators, returned by mapper functions.
This class provides a strongly-typed container for transforming API response objects (traces, observations) into the standardized format expected by evaluator functions. It ensures consistent access to input, output, expected output, and metadata regardless of the source entity type.
Attributes:
- input: The input data that was provided to generate the output being evaluated. For traces, this might be the initial prompt or request. For observations, this could be the span's input. The exact meaning depends on your use case.
- output: The actual output that was produced and needs to be evaluated. For traces, this is typically the final response. For observations, this might be the generation output or span result.
- expected_output: Optional ground truth or expected result for comparison. Used by evaluators to assess correctness. May be None if no ground truth is available for the entity being evaluated.
- metadata: Optional structured metadata providing additional context for evaluation. Can include information about the entity, execution context, user attributes, or any other relevant data that evaluators might use.
Examples:
Simple mapper for traces:
from langfuse import EvaluatorInputs def trace_mapper(trace): return EvaluatorInputs( input=trace.input, output=trace.output, expected_output=None, # No ground truth available metadata={"user_id": trace.user_id, "tags": trace.tags} )Mapper for observations extracting specific fields:
def observation_mapper(observation): # Extract input/output from observation's data input_data = observation.input if hasattr(observation, 'input') else None output_data = observation.output if hasattr(observation, 'output') else None return EvaluatorInputs( input=input_data, output=output_data, expected_output=None, metadata={ "observation_type": observation.type, "model": observation.model, "latency_ms": observation.end_time - observation.start_time } )```
Note:
All arguments must be passed as keywords when instantiating this class.
98 def __init__( 99 self, 100 *, 101 input: Any, 102 output: Any, 103 expected_output: Any = None, 104 metadata: Optional[Dict[str, Any]] = None, 105 ): 106 """Initialize EvaluatorInputs with the provided data. 107 108 Args: 109 input: The input data for evaluation. 110 output: The output data to be evaluated. 111 expected_output: Optional ground truth for comparison. 112 metadata: Optional additional context for evaluation. 113 114 Note: 115 All arguments must be provided as keywords. 116 """ 117 self.input = input 118 self.output = output 119 self.expected_output = expected_output 120 self.metadata = metadata
Initialize EvaluatorInputs with the provided data.
Arguments:
- input: The input data for evaluation.
- output: The output data to be evaluated.
- expected_output: Optional ground truth for comparison.
- metadata: Optional additional context for evaluation.
Note:
All arguments must be provided as keywords.
123class MapperFunction(Protocol): 124 """Protocol defining the interface for mapper functions in batch evaluation. 125 126 Mapper functions transform API response objects (traces or observations) 127 into the standardized EvaluatorInputs format that evaluators expect. This abstraction 128 allows you to define how to extract and structure evaluation data from different 129 entity types. 130 131 Mapper functions must: 132 - Accept a single item parameter (trace, observation) 133 - Return an EvaluatorInputs instance with input, output, expected_output, metadata 134 - Can be either synchronous or asynchronous 135 - Should handle missing or malformed data gracefully 136 """ 137 138 def __call__( 139 self, 140 *, 141 item: Union["TraceWithFullDetails", "ObservationsView"], 142 **kwargs: Dict[str, Any], 143 ) -> Union[EvaluatorInputs, Awaitable[EvaluatorInputs]]: 144 """Transform an API response object into evaluator inputs. 145 146 This method defines how to extract evaluation-relevant data from the raw 147 API response object. The implementation should map entity-specific fields 148 to the standardized input/output/expected_output/metadata structure. 149 150 Args: 151 item: The API response object to transform. The type depends on the scope: 152 - TraceWithFullDetails: When evaluating traces 153 - ObservationsView: When evaluating observations 154 155 Returns: 156 EvaluatorInputs: A structured container with: 157 - input: The input data that generated the output 158 - output: The output to be evaluated 159 - expected_output: Optional ground truth for comparison 160 - metadata: Optional additional context 161 162 Can return either a direct EvaluatorInputs instance or an awaitable 163 (for async mappers that need to fetch additional data). 164 165 Examples: 166 Basic trace mapper: 167 ```python 168 def map_trace(trace): 169 return EvaluatorInputs( 170 input=trace.input, 171 output=trace.output, 172 expected_output=None, 173 metadata={"trace_id": trace.id, "user": trace.user_id} 174 ) 175 ``` 176 177 Observation mapper with conditional logic: 178 ```python 179 def map_observation(observation): 180 # Extract fields based on observation type 181 if observation.type == "GENERATION": 182 input_data = observation.input 183 output_data = observation.output 184 else: 185 # For other types, use different fields 186 input_data = observation.metadata.get("input") 187 output_data = observation.metadata.get("output") 188 189 return EvaluatorInputs( 190 input=input_data, 191 output=output_data, 192 expected_output=None, 193 metadata={"obs_id": observation.id, "type": observation.type} 194 ) 195 ``` 196 197 Async mapper (if additional processing needed): 198 ```python 199 async def map_trace_async(trace): 200 # Could do async processing here if needed 201 processed_output = await some_async_transformation(trace.output) 202 203 return EvaluatorInputs( 204 input=trace.input, 205 output=processed_output, 206 expected_output=None, 207 metadata={"trace_id": trace.id} 208 ) 209 ``` 210 """ 211 ...
Protocol defining the interface for mapper functions in batch evaluation.
Mapper functions transform API response objects (traces or observations) into the standardized EvaluatorInputs format that evaluators expect. This abstraction allows you to define how to extract and structure evaluation data from different entity types.
Mapper functions must:
- Accept a single item parameter (trace, observation)
- Return an EvaluatorInputs instance with input, output, expected_output, metadata
- Can be either synchronous or asynchronous
- Should handle missing or malformed data gracefully
1927def _no_init_or_replace_init(self, *args, **kwargs): 1928 cls = type(self) 1929 1930 if cls._is_protocol: 1931 raise TypeError('Protocols cannot be instantiated') 1932 1933 # Already using a custom `__init__`. No need to calculate correct 1934 # `__init__` to call. This can lead to RecursionError. See bpo-45121. 1935 if cls.__init__ is not _no_init_or_replace_init: 1936 return 1937 1938 # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`. 1939 # The first instantiation of the subclass will call `_no_init_or_replace_init` which 1940 # searches for a proper new `__init__` in the MRO. The new `__init__` 1941 # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent 1942 # instantiation of the protocol subclass will thus use the new 1943 # `__init__` and no longer call `_no_init_or_replace_init`. 1944 for base in cls.__mro__: 1945 init = base.__dict__.get('__init__', _no_init_or_replace_init) 1946 if init is not _no_init_or_replace_init: 1947 cls.__init__ = init 1948 break 1949 else: 1950 # should not happen 1951 cls.__init__ = object.__init__ 1952 1953 cls.__init__(self, *args, **kwargs)
214class CompositeEvaluatorFunction(Protocol): 215 """Protocol defining the interface for composite evaluator functions. 216 217 Composite evaluators create aggregate scores from multiple item-level evaluations. 218 This is commonly used to compute weighted averages, combined metrics, or other 219 composite assessments based on individual evaluation results. 220 221 Composite evaluators: 222 - Accept the same inputs as item-level evaluators (input, output, expected_output, metadata) 223 plus the list of evaluations 224 - Return either a single Evaluation, a list of Evaluations, or a dict 225 - Can be either synchronous or asynchronous 226 - Have access to both raw item data and evaluation results 227 """ 228 229 def __call__( 230 self, 231 *, 232 input: Optional[Any] = None, 233 output: Optional[Any] = None, 234 expected_output: Optional[Any] = None, 235 metadata: Optional[Dict[str, Any]] = None, 236 evaluations: List[Evaluation], 237 **kwargs: Dict[str, Any], 238 ) -> Union[ 239 Evaluation, 240 List[Evaluation], 241 Dict[str, Any], 242 Awaitable[Evaluation], 243 Awaitable[List[Evaluation]], 244 Awaitable[Dict[str, Any]], 245 ]: 246 r"""Create a composite evaluation from item-level evaluation results. 247 248 This method combines multiple evaluation scores into a single composite metric. 249 Common use cases include weighted averages, pass/fail decisions based on multiple 250 criteria, or custom scoring logic that considers multiple dimensions. 251 252 Args: 253 input: The input data that was provided to the system being evaluated. 254 output: The output generated by the system being evaluated. 255 expected_output: The expected/reference output for comparison (if available). 256 metadata: Additional metadata about the evaluation context. 257 evaluations: List of evaluation results from item-level evaluators. 258 Each evaluation contains name, value, comment, and metadata. 259 260 Returns: 261 Can return any of: 262 - Evaluation: A single composite evaluation result 263 - List[Evaluation]: Multiple composite evaluations 264 - Dict: A dict that will be converted to an Evaluation 265 - name: Identifier for the composite metric (e.g., "composite_score") 266 - value: The computed composite value 267 - comment: Optional explanation of how the score was computed 268 - metadata: Optional details about the composition logic 269 270 Can return either a direct Evaluation instance or an awaitable 271 (for async composite evaluators). 272 273 Examples: 274 Simple weighted average: 275 ```python 276 def weighted_composite(*, input, output, expected_output, metadata, evaluations): 277 weights = { 278 "accuracy": 0.5, 279 "relevance": 0.3, 280 "safety": 0.2 281 } 282 283 total_score = 0.0 284 total_weight = 0.0 285 286 for eval in evaluations: 287 if eval.name in weights and isinstance(eval.value, (int, float)): 288 total_score += eval.value * weights[eval.name] 289 total_weight += weights[eval.name] 290 291 final_score = total_score / total_weight if total_weight > 0 else 0.0 292 293 return Evaluation( 294 name="composite_score", 295 value=final_score, 296 comment=f"Weighted average of {len(evaluations)} metrics" 297 ) 298 ``` 299 300 Pass/fail composite based on thresholds: 301 ```python 302 def pass_fail_composite(*, input, output, expected_output, metadata, evaluations): 303 # Must pass all criteria 304 thresholds = { 305 "accuracy": 0.7, 306 "safety": 0.9, 307 "relevance": 0.6 308 } 309 310 passes = True 311 failing_metrics = [] 312 313 for metric, threshold in thresholds.items(): 314 eval_result = next((e for e in evaluations if e.name == metric), None) 315 if eval_result and isinstance(eval_result.value, (int, float)): 316 if eval_result.value < threshold: 317 passes = False 318 failing_metrics.append(metric) 319 320 return Evaluation( 321 name="passes_all_checks", 322 value=passes, 323 comment=f"Failed: {', '.join(failing_metrics)}" if failing_metrics else "All checks passed", 324 data_type="BOOLEAN" 325 ) 326 ``` 327 328 Async composite with external scoring: 329 ```python 330 async def llm_composite(*, input, output, expected_output, metadata, evaluations): 331 # Use LLM to synthesize multiple evaluation results 332 eval_summary = "\n".join( 333 f"- {e.name}: {e.value}" for e in evaluations 334 ) 335 336 prompt = f"Given these evaluation scores:\n{eval_summary}\n" 337 prompt += f"For the output: {output}\n" 338 prompt += "Provide an overall quality score from 0-1." 339 340 response = await openai.chat.completions.create( 341 model="gpt-4", 342 messages=[{"role": "user", "content": prompt}] 343 ) 344 345 score = float(response.choices[0].message.content.strip()) 346 347 return Evaluation( 348 name="llm_composite_score", 349 value=score, 350 comment="LLM-synthesized composite score" 351 ) 352 ``` 353 354 Context-aware composite: 355 ```python 356 def context_composite(*, input, output, expected_output, metadata, evaluations): 357 # Adjust weighting based on metadata 358 base_weights = {"accuracy": 0.5, "speed": 0.3, "cost": 0.2} 359 360 # If metadata indicates high importance, prioritize accuracy 361 if metadata and metadata.get('importance') == 'high': 362 weights = {"accuracy": 0.7, "speed": 0.2, "cost": 0.1} 363 else: 364 weights = base_weights 365 366 total = sum( 367 e.value * weights.get(e.name, 0) 368 for e in evaluations 369 if isinstance(e.value, (int, float)) 370 ) 371 372 return Evaluation( 373 name="weighted_composite", 374 value=total, 375 comment="Context-aware weighted composite" 376 ) 377 ``` 378 """ 379 ...
Protocol defining the interface for composite evaluator functions.
Composite evaluators create aggregate scores from multiple item-level evaluations. This is commonly used to compute weighted averages, combined metrics, or other composite assessments based on individual evaluation results.
Composite evaluators:
- Accept the same inputs as item-level evaluators (input, output, expected_output, metadata) plus the list of evaluations
- Return either a single Evaluation, a list of Evaluations, or a dict
- Can be either synchronous or asynchronous
- Have access to both raw item data and evaluation results
1927def _no_init_or_replace_init(self, *args, **kwargs): 1928 cls = type(self) 1929 1930 if cls._is_protocol: 1931 raise TypeError('Protocols cannot be instantiated') 1932 1933 # Already using a custom `__init__`. No need to calculate correct 1934 # `__init__` to call. This can lead to RecursionError. See bpo-45121. 1935 if cls.__init__ is not _no_init_or_replace_init: 1936 return 1937 1938 # Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`. 1939 # The first instantiation of the subclass will call `_no_init_or_replace_init` which 1940 # searches for a proper new `__init__` in the MRO. The new `__init__` 1941 # replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent 1942 # instantiation of the protocol subclass will thus use the new 1943 # `__init__` and no longer call `_no_init_or_replace_init`. 1944 for base in cls.__mro__: 1945 init = base.__dict__.get('__init__', _no_init_or_replace_init) 1946 if init is not _no_init_or_replace_init: 1947 cls.__init__ = init 1948 break 1949 else: 1950 # should not happen 1951 cls.__init__ = object.__init__ 1952 1953 cls.__init__(self, *args, **kwargs)
382class EvaluatorStats: 383 """Statistics for a single evaluator's performance during batch evaluation. 384 385 This class tracks detailed metrics about how a specific evaluator performed 386 across all items in a batch evaluation run. It helps identify evaluator issues, 387 understand reliability, and optimize evaluation pipelines. 388 389 Attributes: 390 name: The name of the evaluator function (extracted from __name__). 391 total_runs: Total number of times the evaluator was invoked. 392 successful_runs: Number of times the evaluator completed successfully. 393 failed_runs: Number of times the evaluator raised an exception or failed. 394 total_scores_created: Total number of evaluation scores created by this evaluator. 395 Can be higher than successful_runs if the evaluator returns multiple scores. 396 397 Examples: 398 Accessing evaluator stats from batch evaluation result: 399 ```python 400 result = client.run_batched_evaluation(...) 401 402 for stats in result.evaluator_stats: 403 print(f"Evaluator: {stats.name}") 404 print(f" Success rate: {stats.successful_runs / stats.total_runs:.1%}") 405 print(f" Scores created: {stats.total_scores_created}") 406 407 if stats.failed_runs > 0: 408 print(f" â ī¸ Failed {stats.failed_runs} times") 409 ``` 410 411 Identifying problematic evaluators: 412 ```python 413 result = client.run_batched_evaluation(...) 414 415 # Find evaluators with high failure rates 416 for stats in result.evaluator_stats: 417 failure_rate = stats.failed_runs / stats.total_runs 418 if failure_rate > 0.1: # More than 10% failures 419 print(f"â ī¸ {stats.name} has {failure_rate:.1%} failure rate") 420 print(f" Consider debugging or removing this evaluator") 421 ``` 422 423 Note: 424 All arguments must be passed as keywords when instantiating this class. 425 """ 426 427 def __init__( 428 self, 429 *, 430 name: str, 431 total_runs: int = 0, 432 successful_runs: int = 0, 433 failed_runs: int = 0, 434 total_scores_created: int = 0, 435 ): 436 """Initialize EvaluatorStats with the provided metrics. 437 438 Args: 439 name: The evaluator function name. 440 total_runs: Total number of evaluator invocations. 441 successful_runs: Number of successful completions. 442 failed_runs: Number of failures. 443 total_scores_created: Total scores created by this evaluator. 444 445 Note: 446 All arguments must be provided as keywords. 447 """ 448 self.name = name 449 self.total_runs = total_runs 450 self.successful_runs = successful_runs 451 self.failed_runs = failed_runs 452 self.total_scores_created = total_scores_created
Statistics for a single evaluator's performance during batch evaluation.
This class tracks detailed metrics about how a specific evaluator performed across all items in a batch evaluation run. It helps identify evaluator issues, understand reliability, and optimize evaluation pipelines.
Attributes:
- name: The name of the evaluator function (extracted from __name__).
- total_runs: Total number of times the evaluator was invoked.
- successful_runs: Number of times the evaluator completed successfully.
- failed_runs: Number of times the evaluator raised an exception or failed.
- total_scores_created: Total number of evaluation scores created by this evaluator. Can be higher than successful_runs if the evaluator returns multiple scores.
Examples:
Accessing evaluator stats from batch evaluation result:
result = client.run_batched_evaluation(...) for stats in result.evaluator_stats: print(f"Evaluator: {stats.name}") print(f" Success rate: {stats.successful_runs / stats.total_runs:.1%}") print(f" Scores created: {stats.total_scores_created}") if stats.failed_runs > 0: print(f" â ī¸ Failed {stats.failed_runs} times")Identifying problematic evaluators:
result = client.run_batched_evaluation(...) # Find evaluators with high failure rates for stats in result.evaluator_stats: failure_rate = stats.failed_runs / stats.total_runs if failure_rate > 0.1: # More than 10% failures print(f"â ī¸ {stats.name} has {failure_rate:.1%} failure rate") print(f" Consider debugging or removing this evaluator")
Note:
All arguments must be passed as keywords when instantiating this class.
427 def __init__( 428 self, 429 *, 430 name: str, 431 total_runs: int = 0, 432 successful_runs: int = 0, 433 failed_runs: int = 0, 434 total_scores_created: int = 0, 435 ): 436 """Initialize EvaluatorStats with the provided metrics. 437 438 Args: 439 name: The evaluator function name. 440 total_runs: Total number of evaluator invocations. 441 successful_runs: Number of successful completions. 442 failed_runs: Number of failures. 443 total_scores_created: Total scores created by this evaluator. 444 445 Note: 446 All arguments must be provided as keywords. 447 """ 448 self.name = name 449 self.total_runs = total_runs 450 self.successful_runs = successful_runs 451 self.failed_runs = failed_runs 452 self.total_scores_created = total_scores_created
Initialize EvaluatorStats with the provided metrics.
Arguments:
- name: The evaluator function name.
- total_runs: Total number of evaluator invocations.
- successful_runs: Number of successful completions.
- failed_runs: Number of failures.
- total_scores_created: Total scores created by this evaluator.
Note:
All arguments must be provided as keywords.
455class BatchEvaluationResumeToken: 456 """Token for resuming a failed batch evaluation run. 457 458 This class encapsulates all the information needed to resume a batch evaluation 459 that was interrupted or failed partway through. It uses timestamp-based filtering 460 to avoid re-processing items that were already evaluated, even if the underlying 461 dataset changed between runs. 462 463 Attributes: 464 scope: The type of items being evaluated ("traces", "observations"). 465 filter: The original JSON filter string used to query items. 466 last_processed_timestamp: ISO 8601 timestamp of the last successfully processed item. 467 Used to construct a filter that only fetches items after this timestamp. 468 last_processed_id: The ID of the last successfully processed item, for reference. 469 items_processed: Count of items successfully processed before interruption. 470 471 Examples: 472 Resuming a failed batch evaluation: 473 ```python 474 # Initial run that fails partway through 475 try: 476 result = client.run_batched_evaluation( 477 scope="traces", 478 mapper=my_mapper, 479 evaluators=[evaluator1, evaluator2], 480 filter='{"tags": ["production"]}', 481 max_items=10000 482 ) 483 except Exception as e: 484 print(f"Evaluation failed: {e}") 485 486 # Save the resume token 487 if result.resume_token: 488 # Store resume token for later (e.g., in a file or database) 489 import json 490 with open("resume_token.json", "w") as f: 491 json.dump({ 492 "scope": result.resume_token.scope, 493 "filter": result.resume_token.filter, 494 "last_timestamp": result.resume_token.last_processed_timestamp, 495 "last_id": result.resume_token.last_processed_id, 496 "items_done": result.resume_token.items_processed 497 }, f) 498 499 # Later, resume from where it left off 500 with open("resume_token.json") as f: 501 token_data = json.load(f) 502 503 resume_token = BatchEvaluationResumeToken( 504 scope=token_data["scope"], 505 filter=token_data["filter"], 506 last_processed_timestamp=token_data["last_timestamp"], 507 last_processed_id=token_data["last_id"], 508 items_processed=token_data["items_done"] 509 ) 510 511 # Resume the evaluation 512 result = client.run_batched_evaluation( 513 scope="traces", 514 mapper=my_mapper, 515 evaluators=[evaluator1, evaluator2], 516 resume_from=resume_token 517 ) 518 519 print(f"Processed {result.total_items_processed} additional items") 520 ``` 521 522 Handling partial completion: 523 ```python 524 result = client.run_batched_evaluation(...) 525 526 if not result.completed: 527 print(f"Evaluation incomplete. Processed {result.resume_token.items_processed} items") 528 print(f"Last item: {result.resume_token.last_processed_id}") 529 print(f"Resume from: {result.resume_token.last_processed_timestamp}") 530 531 # Optionally retry automatically 532 if result.resume_token: 533 print("Retrying...") 534 result = client.run_batched_evaluation( 535 scope=result.resume_token.scope, 536 mapper=my_mapper, 537 evaluators=my_evaluators, 538 resume_from=result.resume_token 539 ) 540 ``` 541 542 Note: 543 All arguments must be passed as keywords when instantiating this class. 544 The timestamp-based approach means that items created after the initial run 545 but before the timestamp will be skipped. This is intentional to avoid 546 duplicates and ensure consistent evaluation. 547 """ 548 549 def __init__( 550 self, 551 *, 552 scope: str, 553 filter: Optional[str], 554 last_processed_timestamp: str, 555 last_processed_id: str, 556 items_processed: int, 557 ): 558 """Initialize BatchEvaluationResumeToken with the provided state. 559 560 Args: 561 scope: The scope type ("traces", "observations"). 562 filter: The original JSON filter string. 563 last_processed_timestamp: ISO 8601 timestamp of last processed item. 564 last_processed_id: ID of last processed item. 565 items_processed: Count of items processed before interruption. 566 567 Note: 568 All arguments must be provided as keywords. 569 """ 570 self.scope = scope 571 self.filter = filter 572 self.last_processed_timestamp = last_processed_timestamp 573 self.last_processed_id = last_processed_id 574 self.items_processed = items_processed
Token for resuming a failed batch evaluation run.
This class encapsulates all the information needed to resume a batch evaluation that was interrupted or failed partway through. It uses timestamp-based filtering to avoid re-processing items that were already evaluated, even if the underlying dataset changed between runs.
Attributes:
- scope: The type of items being evaluated ("traces", "observations").
- filter: The original JSON filter string used to query items.
- last_processed_timestamp: ISO 8601 timestamp of the last successfully processed item. Used to construct a filter that only fetches items after this timestamp.
- last_processed_id: The ID of the last successfully processed item, for reference.
- items_processed: Count of items successfully processed before interruption.
Examples:
Resuming a failed batch evaluation:
# Initial run that fails partway through try: result = client.run_batched_evaluation( scope="traces", mapper=my_mapper, evaluators=[evaluator1, evaluator2], filter='{"tags": ["production"]}', max_items=10000 ) except Exception as e: print(f"Evaluation failed: {e}") # Save the resume token if result.resume_token: # Store resume token for later (e.g., in a file or database) import json with open("resume_token.json", "w") as f: json.dump({ "scope": result.resume_token.scope, "filter": result.resume_token.filter, "last_timestamp": result.resume_token.last_processed_timestamp, "last_id": result.resume_token.last_processed_id, "items_done": result.resume_token.items_processed }, f) # Later, resume from where it left off with open("resume_token.json") as f: token_data = json.load(f) resume_token = BatchEvaluationResumeToken( scope=token_data["scope"], filter=token_data["filter"], last_processed_timestamp=token_data["last_timestamp"], last_processed_id=token_data["last_id"], items_processed=token_data["items_done"] ) # Resume the evaluation result = client.run_batched_evaluation( scope="traces", mapper=my_mapper, evaluators=[evaluator1, evaluator2], resume_from=resume_token ) print(f"Processed {result.total_items_processed} additional items")Handling partial completion:
result = client.run_batched_evaluation(...) if not result.completed: print(f"Evaluation incomplete. Processed {result.resume_token.items_processed} items") print(f"Last item: {result.resume_token.last_processed_id}") print(f"Resume from: {result.resume_token.last_processed_timestamp}") # Optionally retry automatically if result.resume_token: print("Retrying...") result = client.run_batched_evaluation( scope=result.resume_token.scope, mapper=my_mapper, evaluators=my_evaluators, resume_from=result.resume_token )
Note:
All arguments must be passed as keywords when instantiating this class. The timestamp-based approach means that items created after the initial run but before the timestamp will be skipped. This is intentional to avoid duplicates and ensure consistent evaluation.
549 def __init__( 550 self, 551 *, 552 scope: str, 553 filter: Optional[str], 554 last_processed_timestamp: str, 555 last_processed_id: str, 556 items_processed: int, 557 ): 558 """Initialize BatchEvaluationResumeToken with the provided state. 559 560 Args: 561 scope: The scope type ("traces", "observations"). 562 filter: The original JSON filter string. 563 last_processed_timestamp: ISO 8601 timestamp of last processed item. 564 last_processed_id: ID of last processed item. 565 items_processed: Count of items processed before interruption. 566 567 Note: 568 All arguments must be provided as keywords. 569 """ 570 self.scope = scope 571 self.filter = filter 572 self.last_processed_timestamp = last_processed_timestamp 573 self.last_processed_id = last_processed_id 574 self.items_processed = items_processed
Initialize BatchEvaluationResumeToken with the provided state.
Arguments:
- scope: The scope type ("traces", "observations").
- filter: The original JSON filter string.
- last_processed_timestamp: ISO 8601 timestamp of last processed item.
- last_processed_id: ID of last processed item.
- items_processed: Count of items processed before interruption.
Note:
All arguments must be provided as keywords.
577class BatchEvaluationResult: 578 r"""Complete result structure for batch evaluation execution. 579 580 This class encapsulates comprehensive statistics and metadata about a batch 581 evaluation run, including counts, evaluator-specific metrics, timing information, 582 error details, and resume capability. 583 584 Attributes: 585 total_items_fetched: Total number of items fetched from the API. 586 total_items_processed: Number of items successfully evaluated. 587 total_items_failed: Number of items that failed during evaluation. 588 total_scores_created: Total scores created by all item-level evaluators. 589 total_composite_scores_created: Scores created by the composite evaluator. 590 total_evaluations_failed: Number of individual evaluator failures across all items. 591 evaluator_stats: List of per-evaluator statistics (success/failure rates, scores created). 592 resume_token: Token for resuming if evaluation was interrupted (None if completed). 593 completed: True if all items were processed, False if stopped early or failed. 594 duration_seconds: Total time taken to execute the batch evaluation. 595 failed_item_ids: List of IDs for items that failed evaluation. 596 error_summary: Dictionary mapping error types to occurrence counts. 597 has_more_items: True if max_items limit was reached but more items exist. 598 item_evaluations: Dictionary mapping item IDs to their evaluation results (both regular and composite). 599 600 Examples: 601 Basic result inspection: 602 ```python 603 result = client.run_batched_evaluation(...) 604 605 print(f"Processed: {result.total_items_processed}/{result.total_items_fetched}") 606 print(f"Scores created: {result.total_scores_created}") 607 print(f"Duration: {result.duration_seconds:.2f}s") 608 print(f"Success rate: {result.total_items_processed / result.total_items_fetched:.1%}") 609 ``` 610 611 Detailed analysis with evaluator stats: 612 ```python 613 result = client.run_batched_evaluation(...) 614 615 print(f"\nđ Batch Evaluation Results") 616 print(f"{'='*50}") 617 print(f"Items processed: {result.total_items_processed}") 618 print(f"Items failed: {result.total_items_failed}") 619 print(f"Scores created: {result.total_scores_created}") 620 621 if result.total_composite_scores_created > 0: 622 print(f"Composite scores: {result.total_composite_scores_created}") 623 624 print(f"\nđ Evaluator Performance:") 625 for stats in result.evaluator_stats: 626 success_rate = stats.successful_runs / stats.total_runs if stats.total_runs > 0 else 0 627 print(f"\n {stats.name}:") 628 print(f" Success rate: {success_rate:.1%}") 629 print(f" Scores created: {stats.total_scores_created}") 630 if stats.failed_runs > 0: 631 print(f" â ī¸ Failures: {stats.failed_runs}") 632 633 if result.error_summary: 634 print(f"\nâ ī¸ Errors encountered:") 635 for error_type, count in result.error_summary.items(): 636 print(f" {error_type}: {count}") 637 ``` 638 639 Handling incomplete runs: 640 ```python 641 result = client.run_batched_evaluation(...) 642 643 if not result.completed: 644 print("â ī¸ Evaluation incomplete!") 645 646 if result.resume_token: 647 print(f"Processed {result.resume_token.items_processed} items before failure") 648 print(f"Use resume_from parameter to continue from:") 649 print(f" Timestamp: {result.resume_token.last_processed_timestamp}") 650 print(f" Last ID: {result.resume_token.last_processed_id}") 651 652 if result.has_more_items: 653 print(f"âšī¸ More items available beyond max_items limit") 654 ``` 655 656 Performance monitoring: 657 ```python 658 result = client.run_batched_evaluation(...) 659 660 items_per_second = result.total_items_processed / result.duration_seconds 661 avg_scores_per_item = result.total_scores_created / result.total_items_processed 662 663 print(f"Performance metrics:") 664 print(f" Throughput: {items_per_second:.2f} items/second") 665 print(f" Avg scores/item: {avg_scores_per_item:.2f}") 666 print(f" Total duration: {result.duration_seconds:.2f}s") 667 668 if result.total_evaluations_failed > 0: 669 failure_rate = result.total_evaluations_failed / ( 670 result.total_items_processed * len(result.evaluator_stats) 671 ) 672 print(f" Evaluation failure rate: {failure_rate:.1%}") 673 ``` 674 675 Note: 676 All arguments must be passed as keywords when instantiating this class. 677 """ 678 679 def __init__( 680 self, 681 *, 682 total_items_fetched: int, 683 total_items_processed: int, 684 total_items_failed: int, 685 total_scores_created: int, 686 total_composite_scores_created: int, 687 total_evaluations_failed: int, 688 evaluator_stats: List[EvaluatorStats], 689 resume_token: Optional[BatchEvaluationResumeToken], 690 completed: bool, 691 duration_seconds: float, 692 failed_item_ids: List[str], 693 error_summary: Dict[str, int], 694 has_more_items: bool, 695 item_evaluations: Dict[str, List["Evaluation"]], 696 ): 697 """Initialize BatchEvaluationResult with comprehensive statistics. 698 699 Args: 700 total_items_fetched: Total items fetched from API. 701 total_items_processed: Items successfully evaluated. 702 total_items_failed: Items that failed evaluation. 703 total_scores_created: Scores from item-level evaluators. 704 total_composite_scores_created: Scores from composite evaluator. 705 total_evaluations_failed: Individual evaluator failures. 706 evaluator_stats: Per-evaluator statistics. 707 resume_token: Token for resuming (None if completed). 708 completed: Whether all items were processed. 709 duration_seconds: Total execution time. 710 failed_item_ids: IDs of failed items. 711 error_summary: Error types and counts. 712 has_more_items: Whether more items exist beyond max_items. 713 item_evaluations: Dictionary mapping item IDs to their evaluation results. 714 715 Note: 716 All arguments must be provided as keywords. 717 """ 718 self.total_items_fetched = total_items_fetched 719 self.total_items_processed = total_items_processed 720 self.total_items_failed = total_items_failed 721 self.total_scores_created = total_scores_created 722 self.total_composite_scores_created = total_composite_scores_created 723 self.total_evaluations_failed = total_evaluations_failed 724 self.evaluator_stats = evaluator_stats 725 self.resume_token = resume_token 726 self.completed = completed 727 self.duration_seconds = duration_seconds 728 self.failed_item_ids = failed_item_ids 729 self.error_summary = error_summary 730 self.has_more_items = has_more_items 731 self.item_evaluations = item_evaluations 732 733 def __str__(self) -> str: 734 """Return a formatted string representation of the batch evaluation results. 735 736 Returns: 737 A multi-line string with a summary of the evaluation results. 738 """ 739 lines = [] 740 lines.append("=" * 60) 741 lines.append("Batch Evaluation Results") 742 lines.append("=" * 60) 743 744 # Summary statistics 745 lines.append(f"\nStatus: {'Completed' if self.completed else 'Incomplete'}") 746 lines.append(f"Duration: {self.duration_seconds:.2f}s") 747 lines.append(f"\nItems fetched: {self.total_items_fetched}") 748 lines.append(f"Items processed: {self.total_items_processed}") 749 750 if self.total_items_failed > 0: 751 lines.append(f"Items failed: {self.total_items_failed}") 752 753 # Success rate 754 if self.total_items_fetched > 0: 755 success_rate = self.total_items_processed / self.total_items_fetched * 100 756 lines.append(f"Success rate: {success_rate:.1f}%") 757 758 # Scores created 759 lines.append(f"\nScores created: {self.total_scores_created}") 760 if self.total_composite_scores_created > 0: 761 lines.append(f"Composite scores: {self.total_composite_scores_created}") 762 763 total_scores = self.total_scores_created + self.total_composite_scores_created 764 lines.append(f"Total scores: {total_scores}") 765 766 # Evaluator statistics 767 if self.evaluator_stats: 768 lines.append("\nEvaluator Performance:") 769 for stats in self.evaluator_stats: 770 lines.append(f" {stats.name}:") 771 if stats.total_runs > 0: 772 success_rate = ( 773 stats.successful_runs / stats.total_runs * 100 774 if stats.total_runs > 0 775 else 0 776 ) 777 lines.append( 778 f" Runs: {stats.successful_runs}/{stats.total_runs} " 779 f"({success_rate:.1f}% success)" 780 ) 781 lines.append(f" Scores created: {stats.total_scores_created}") 782 if stats.failed_runs > 0: 783 lines.append(f" Failed runs: {stats.failed_runs}") 784 785 # Performance metrics 786 if self.total_items_processed > 0 and self.duration_seconds > 0: 787 items_per_sec = self.total_items_processed / self.duration_seconds 788 lines.append("\nPerformance:") 789 lines.append(f" Throughput: {items_per_sec:.2f} items/second") 790 if self.total_scores_created > 0: 791 avg_scores = self.total_scores_created / self.total_items_processed 792 lines.append(f" Avg scores per item: {avg_scores:.2f}") 793 794 # Errors and warnings 795 if self.error_summary: 796 lines.append("\nErrors encountered:") 797 for error_type, count in self.error_summary.items(): 798 lines.append(f" {error_type}: {count}") 799 800 # Incomplete run information 801 if not self.completed: 802 lines.append("\nWarning: Evaluation incomplete") 803 if self.resume_token: 804 lines.append( 805 f" Last processed: {self.resume_token.last_processed_timestamp}" 806 ) 807 lines.append(f" Items processed: {self.resume_token.items_processed}") 808 lines.append(" Use resume_from parameter to continue") 809 810 if self.has_more_items: 811 lines.append("\nNote: More items available beyond max_items limit") 812 813 lines.append("=" * 60) 814 return "\n".join(lines)
Complete result structure for batch evaluation execution.
This class encapsulates comprehensive statistics and metadata about a batch evaluation run, including counts, evaluator-specific metrics, timing information, error details, and resume capability.
Attributes:
- total_items_fetched: Total number of items fetched from the API.
- total_items_processed: Number of items successfully evaluated.
- total_items_failed: Number of items that failed during evaluation.
- total_scores_created: Total scores created by all item-level evaluators.
- total_composite_scores_created: Scores created by the composite evaluator.
- total_evaluations_failed: Number of individual evaluator failures across all items.
- evaluator_stats: List of per-evaluator statistics (success/failure rates, scores created).
- resume_token: Token for resuming if evaluation was interrupted (None if completed).
- completed: True if all items were processed, False if stopped early or failed.
- duration_seconds: Total time taken to execute the batch evaluation.
- failed_item_ids: List of IDs for items that failed evaluation.
- error_summary: Dictionary mapping error types to occurrence counts.
- has_more_items: True if max_items limit was reached but more items exist.
- item_evaluations: Dictionary mapping item IDs to their evaluation results (both regular and composite).
Examples:
Basic result inspection:
result = client.run_batched_evaluation(...) print(f"Processed: {result.total_items_processed}/{result.total_items_fetched}") print(f"Scores created: {result.total_scores_created}") print(f"Duration: {result.duration_seconds:.2f}s") print(f"Success rate: {result.total_items_processed / result.total_items_fetched:.1%}")Detailed analysis with evaluator stats:
result = client.run_batched_evaluation(...) print(f"\nđ Batch Evaluation Results") print(f"{'='*50}") print(f"Items processed: {result.total_items_processed}") print(f"Items failed: {result.total_items_failed}") print(f"Scores created: {result.total_scores_created}") if result.total_composite_scores_created > 0: print(f"Composite scores: {result.total_composite_scores_created}") print(f"\nđ Evaluator Performance:") for stats in result.evaluator_stats: success_rate = stats.successful_runs / stats.total_runs if stats.total_runs > 0 else 0 print(f"\n {stats.name}:") print(f" Success rate: {success_rate:.1%}") print(f" Scores created: {stats.total_scores_created}") if stats.failed_runs > 0: print(f" â ī¸ Failures: {stats.failed_runs}") if result.error_summary: print(f"\nâ ī¸ Errors encountered:") for error_type, count in result.error_summary.items(): print(f" {error_type}: {count}")Handling incomplete runs:
result = client.run_batched_evaluation(...) if not result.completed: print("â ī¸ Evaluation incomplete!") if result.resume_token: print(f"Processed {result.resume_token.items_processed} items before failure") print(f"Use resume_from parameter to continue from:") print(f" Timestamp: {result.resume_token.last_processed_timestamp}") print(f" Last ID: {result.resume_token.last_processed_id}") if result.has_more_items: print(f"âšī¸ More items available beyond max_items limit")Performance monitoring:
result = client.run_batched_evaluation(...) items_per_second = result.total_items_processed / result.duration_seconds avg_scores_per_item = result.total_scores_created / result.total_items_processed print(f"Performance metrics:") print(f" Throughput: {items_per_second:.2f} items/second") print(f" Avg scores/item: {avg_scores_per_item:.2f}") print(f" Total duration: {result.duration_seconds:.2f}s") if result.total_evaluations_failed > 0: failure_rate = result.total_evaluations_failed / ( result.total_items_processed * len(result.evaluator_stats) ) print(f" Evaluation failure rate: {failure_rate:.1%}")
Note:
All arguments must be passed as keywords when instantiating this class.
679 def __init__( 680 self, 681 *, 682 total_items_fetched: int, 683 total_items_processed: int, 684 total_items_failed: int, 685 total_scores_created: int, 686 total_composite_scores_created: int, 687 total_evaluations_failed: int, 688 evaluator_stats: List[EvaluatorStats], 689 resume_token: Optional[BatchEvaluationResumeToken], 690 completed: bool, 691 duration_seconds: float, 692 failed_item_ids: List[str], 693 error_summary: Dict[str, int], 694 has_more_items: bool, 695 item_evaluations: Dict[str, List["Evaluation"]], 696 ): 697 """Initialize BatchEvaluationResult with comprehensive statistics. 698 699 Args: 700 total_items_fetched: Total items fetched from API. 701 total_items_processed: Items successfully evaluated. 702 total_items_failed: Items that failed evaluation. 703 total_scores_created: Scores from item-level evaluators. 704 total_composite_scores_created: Scores from composite evaluator. 705 total_evaluations_failed: Individual evaluator failures. 706 evaluator_stats: Per-evaluator statistics. 707 resume_token: Token for resuming (None if completed). 708 completed: Whether all items were processed. 709 duration_seconds: Total execution time. 710 failed_item_ids: IDs of failed items. 711 error_summary: Error types and counts. 712 has_more_items: Whether more items exist beyond max_items. 713 item_evaluations: Dictionary mapping item IDs to their evaluation results. 714 715 Note: 716 All arguments must be provided as keywords. 717 """ 718 self.total_items_fetched = total_items_fetched 719 self.total_items_processed = total_items_processed 720 self.total_items_failed = total_items_failed 721 self.total_scores_created = total_scores_created 722 self.total_composite_scores_created = total_composite_scores_created 723 self.total_evaluations_failed = total_evaluations_failed 724 self.evaluator_stats = evaluator_stats 725 self.resume_token = resume_token 726 self.completed = completed 727 self.duration_seconds = duration_seconds 728 self.failed_item_ids = failed_item_ids 729 self.error_summary = error_summary 730 self.has_more_items = has_more_items 731 self.item_evaluations = item_evaluations
Initialize BatchEvaluationResult with comprehensive statistics.
Arguments:
- total_items_fetched: Total items fetched from API.
- total_items_processed: Items successfully evaluated.
- total_items_failed: Items that failed evaluation.
- total_scores_created: Scores from item-level evaluators.
- total_composite_scores_created: Scores from composite evaluator.
- total_evaluations_failed: Individual evaluator failures.
- evaluator_stats: Per-evaluator statistics.
- resume_token: Token for resuming (None if completed).
- completed: Whether all items were processed.
- duration_seconds: Total execution time.
- failed_item_ids: IDs of failed items.
- error_summary: Error types and counts.
- has_more_items: Whether more items exist beyond max_items.
- item_evaluations: Dictionary mapping item IDs to their evaluation results.
Note:
All arguments must be provided as keywords.