langfuse

Langfuse GitHub Banner

Langfuse Python SDK

MIT License CI test status PyPI Version GitHub Repo stars Discord YC W23

Installation

Important

The SDK was rewritten in v3 and released in June 2025. Refer to the v3 migration guide for instructions on updating your code.

pip install langfuse

Docs

Please see our docs for detailed information on this SDK.

 1""".. include:: ../README.md"""
 2
 3from langfuse.experiment import Evaluation
 4
 5from ._client import client as _client_module
 6from ._client.attributes import LangfuseOtelSpanAttributes
 7from ._client.constants import ObservationTypeLiteral
 8from ._client.get_client import get_client
 9from ._client.observe import observe
10from ._client.span import (
11    LangfuseAgent,
12    LangfuseChain,
13    LangfuseEmbedding,
14    LangfuseEvaluator,
15    LangfuseEvent,
16    LangfuseGeneration,
17    LangfuseGuardrail,
18    LangfuseRetriever,
19    LangfuseSpan,
20    LangfuseTool,
21)
22
23Langfuse = _client_module.Langfuse
24
25__all__ = [
26    "Langfuse",
27    "get_client",
28    "observe",
29    "ObservationTypeLiteral",
30    "LangfuseSpan",
31    "LangfuseGeneration",
32    "LangfuseEvent",
33    "LangfuseOtelSpanAttributes",
34    "LangfuseAgent",
35    "LangfuseTool",
36    "LangfuseChain",
37    "LangfuseEmbedding",
38    "LangfuseEvaluator",
39    "LangfuseRetriever",
40    "LangfuseGuardrail",
41    "Evaluation",
42    "experiment",
43    "api",
44]
class Langfuse:
 117class Langfuse:
 118    """Main client for Langfuse tracing and platform features.
 119
 120    This class provides an interface for creating and managing traces, spans,
 121    and generations in Langfuse as well as interacting with the Langfuse API.
 122
 123    The client features a thread-safe singleton pattern for each unique public API key,
 124    ensuring consistent trace context propagation across your application. It implements
 125    efficient batching of spans with configurable flush settings and includes background
 126    thread management for media uploads and score ingestion.
 127
 128    Configuration is flexible through either direct parameters or environment variables,
 129    with graceful fallbacks and runtime configuration updates.
 130
 131    Attributes:
 132        api: Synchronous API client for Langfuse backend communication
 133        async_api: Asynchronous API client for Langfuse backend communication
 134        _otel_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
 135
 136    Parameters:
 137        public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
 138        secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
 139        base_url (Optional[str]): The Langfuse API base URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_BASE_URL environment variable.
 140        host (Optional[str]): Deprecated. Use base_url instead. The Langfuse API host URL. Defaults to "https://cloud.langfuse.com".
 141        timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
 142        httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
 143        debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
 144        tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
 145        flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
 146        flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
 147        environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
 148        release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
 149        media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
 150        sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
 151        mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
 152        blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (`metadata.scope.name`)
 153        additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
 154        tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
 155
 156    Example:
 157        ```python
 158        from langfuse.otel import Langfuse
 159
 160        # Initialize the client (reads from env vars if not provided)
 161        langfuse = Langfuse(
 162            public_key="your-public-key",
 163            secret_key="your-secret-key",
 164            host="https://cloud.langfuse.com",  # Optional, default shown
 165        )
 166
 167        # Create a trace span
 168        with langfuse.start_as_current_span(name="process-query") as span:
 169            # Your application code here
 170
 171            # Create a nested generation span for an LLM call
 172            with span.start_as_current_generation(
 173                name="generate-response",
 174                model="gpt-4",
 175                input={"query": "Tell me about AI"},
 176                model_parameters={"temperature": 0.7, "max_tokens": 500}
 177            ) as generation:
 178                # Generate response here
 179                response = "AI is a field of computer science..."
 180
 181                generation.update(
 182                    output=response,
 183                    usage_details={"prompt_tokens": 10, "completion_tokens": 50},
 184                    cost_details={"total_cost": 0.0023}
 185                )
 186
 187                # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL)
 188                generation.score(name="relevance", value=0.95, data_type="NUMERIC")
 189        ```
 190    """
 191
 192    _resources: Optional[LangfuseResourceManager] = None
 193    _mask: Optional[MaskFunction] = None
 194    _otel_tracer: otel_trace_api.Tracer
 195
 196    def __init__(
 197        self,
 198        *,
 199        public_key: Optional[str] = None,
 200        secret_key: Optional[str] = None,
 201        base_url: Optional[str] = None,
 202        host: Optional[str] = None,
 203        timeout: Optional[int] = None,
 204        httpx_client: Optional[httpx.Client] = None,
 205        debug: bool = False,
 206        tracing_enabled: Optional[bool] = True,
 207        flush_at: Optional[int] = None,
 208        flush_interval: Optional[float] = None,
 209        environment: Optional[str] = None,
 210        release: Optional[str] = None,
 211        media_upload_thread_count: Optional[int] = None,
 212        sample_rate: Optional[float] = None,
 213        mask: Optional[MaskFunction] = None,
 214        blocked_instrumentation_scopes: Optional[List[str]] = None,
 215        additional_headers: Optional[Dict[str, str]] = None,
 216        tracer_provider: Optional[TracerProvider] = None,
 217    ):
 218        self._base_url = (
 219            base_url
 220            or os.environ.get(LANGFUSE_BASE_URL)
 221            or host
 222            or os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com")
 223        )
 224        self._environment = environment or cast(
 225            str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT)
 226        )
 227        self._project_id: Optional[str] = None
 228        sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0))
 229        if not 0.0 <= sample_rate <= 1.0:
 230            raise ValueError(
 231                f"Sample rate must be between 0.0 and 1.0, got {sample_rate}"
 232            )
 233
 234        timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5))
 235
 236        self._tracing_enabled = (
 237            tracing_enabled
 238            and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false"
 239        )
 240        if not self._tracing_enabled:
 241            langfuse_logger.info(
 242                "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API."
 243            )
 244
 245        debug = (
 246            debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true")
 247        )
 248        if debug:
 249            logging.basicConfig(
 250                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
 251            )
 252            langfuse_logger.setLevel(logging.DEBUG)
 253
 254        public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY)
 255        if public_key is None:
 256            langfuse_logger.warning(
 257                "Authentication error: Langfuse client initialized without public_key. Client will be disabled. "
 258                "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. "
 259            )
 260            self._otel_tracer = otel_trace_api.NoOpTracer()
 261            return
 262
 263        secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY)
 264        if secret_key is None:
 265            langfuse_logger.warning(
 266                "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. "
 267                "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. "
 268            )
 269            self._otel_tracer = otel_trace_api.NoOpTracer()
 270            return
 271
 272        if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true":
 273            langfuse_logger.warning(
 274                "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI."
 275            )
 276
 277        # Initialize api and tracer if requirements are met
 278        self._resources = LangfuseResourceManager(
 279            public_key=public_key,
 280            secret_key=secret_key,
 281            base_url=self._base_url,
 282            timeout=timeout,
 283            environment=self._environment,
 284            release=release,
 285            flush_at=flush_at,
 286            flush_interval=flush_interval,
 287            httpx_client=httpx_client,
 288            media_upload_thread_count=media_upload_thread_count,
 289            sample_rate=sample_rate,
 290            mask=mask,
 291            tracing_enabled=self._tracing_enabled,
 292            blocked_instrumentation_scopes=blocked_instrumentation_scopes,
 293            additional_headers=additional_headers,
 294            tracer_provider=tracer_provider,
 295        )
 296        self._mask = self._resources.mask
 297
 298        self._otel_tracer = (
 299            self._resources.tracer
 300            if self._tracing_enabled and self._resources.tracer is not None
 301            else otel_trace_api.NoOpTracer()
 302        )
 303        self.api = self._resources.api
 304        self.async_api = self._resources.async_api
 305
 306    def start_span(
 307        self,
 308        *,
 309        trace_context: Optional[TraceContext] = None,
 310        name: str,
 311        input: Optional[Any] = None,
 312        output: Optional[Any] = None,
 313        metadata: Optional[Any] = None,
 314        version: Optional[str] = None,
 315        level: Optional[SpanLevel] = None,
 316        status_message: Optional[str] = None,
 317    ) -> LangfuseSpan:
 318        """Create a new span for tracing a unit of work.
 319
 320        This method creates a new span but does not set it as the current span in the
 321        context. To create and use a span within a context, use start_as_current_span().
 322
 323        The created span will be the child of the current span in the context.
 324
 325        Args:
 326            trace_context: Optional context for connecting to an existing trace
 327            name: Name of the span (e.g., function or operation name)
 328            input: Input data for the operation (can be any JSON-serializable object)
 329            output: Output data from the operation (can be any JSON-serializable object)
 330            metadata: Additional metadata to associate with the span
 331            version: Version identifier for the code or component
 332            level: Importance level of the span (info, warning, error)
 333            status_message: Optional status message for the span
 334
 335        Returns:
 336            A LangfuseSpan object that must be ended with .end() when the operation completes
 337
 338        Example:
 339            ```python
 340            span = langfuse.start_span(name="process-data")
 341            try:
 342                # Do work
 343                span.update(output="result")
 344            finally:
 345                span.end()
 346            ```
 347        """
 348        return self.start_observation(
 349            trace_context=trace_context,
 350            name=name,
 351            as_type="span",
 352            input=input,
 353            output=output,
 354            metadata=metadata,
 355            version=version,
 356            level=level,
 357            status_message=status_message,
 358        )
 359
 360    def start_as_current_span(
 361        self,
 362        *,
 363        trace_context: Optional[TraceContext] = None,
 364        name: str,
 365        input: Optional[Any] = None,
 366        output: Optional[Any] = None,
 367        metadata: Optional[Any] = None,
 368        version: Optional[str] = None,
 369        level: Optional[SpanLevel] = None,
 370        status_message: Optional[str] = None,
 371        end_on_exit: Optional[bool] = None,
 372    ) -> _AgnosticContextManager[LangfuseSpan]:
 373        """Create a new span and set it as the current span in a context manager.
 374
 375        This method creates a new span and sets it as the current span within a context
 376        manager. Use this method with a 'with' statement to automatically handle span
 377        lifecycle within a code block.
 378
 379        The created span will be the child of the current span in the context.
 380
 381        Args:
 382            trace_context: Optional context for connecting to an existing trace
 383            name: Name of the span (e.g., function or operation name)
 384            input: Input data for the operation (can be any JSON-serializable object)
 385            output: Output data from the operation (can be any JSON-serializable object)
 386            metadata: Additional metadata to associate with the span
 387            version: Version identifier for the code or component
 388            level: Importance level of the span (info, warning, error)
 389            status_message: Optional status message for the span
 390            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
 391
 392        Returns:
 393            A context manager that yields a LangfuseSpan
 394
 395        Example:
 396            ```python
 397            with langfuse.start_as_current_span(name="process-query") as span:
 398                # Do work
 399                result = process_data()
 400                span.update(output=result)
 401
 402                # Create a child span automatically
 403                with span.start_as_current_span(name="sub-operation") as child_span:
 404                    # Do sub-operation work
 405                    child_span.update(output="sub-result")
 406            ```
 407        """
 408        return self.start_as_current_observation(
 409            trace_context=trace_context,
 410            name=name,
 411            as_type="span",
 412            input=input,
 413            output=output,
 414            metadata=metadata,
 415            version=version,
 416            level=level,
 417            status_message=status_message,
 418            end_on_exit=end_on_exit,
 419        )
 420
 421    @overload
 422    def start_observation(
 423        self,
 424        *,
 425        trace_context: Optional[TraceContext] = None,
 426        name: str,
 427        as_type: Literal["generation"],
 428        input: Optional[Any] = None,
 429        output: Optional[Any] = None,
 430        metadata: Optional[Any] = None,
 431        version: Optional[str] = None,
 432        level: Optional[SpanLevel] = None,
 433        status_message: Optional[str] = None,
 434        completion_start_time: Optional[datetime] = None,
 435        model: Optional[str] = None,
 436        model_parameters: Optional[Dict[str, MapValue]] = None,
 437        usage_details: Optional[Dict[str, int]] = None,
 438        cost_details: Optional[Dict[str, float]] = None,
 439        prompt: Optional[PromptClient] = None,
 440    ) -> LangfuseGeneration: ...
 441
 442    @overload
 443    def start_observation(
 444        self,
 445        *,
 446        trace_context: Optional[TraceContext] = None,
 447        name: str,
 448        as_type: Literal["span"] = "span",
 449        input: Optional[Any] = None,
 450        output: Optional[Any] = None,
 451        metadata: Optional[Any] = None,
 452        version: Optional[str] = None,
 453        level: Optional[SpanLevel] = None,
 454        status_message: Optional[str] = None,
 455    ) -> LangfuseSpan: ...
 456
 457    @overload
 458    def start_observation(
 459        self,
 460        *,
 461        trace_context: Optional[TraceContext] = None,
 462        name: str,
 463        as_type: Literal["agent"],
 464        input: Optional[Any] = None,
 465        output: Optional[Any] = None,
 466        metadata: Optional[Any] = None,
 467        version: Optional[str] = None,
 468        level: Optional[SpanLevel] = None,
 469        status_message: Optional[str] = None,
 470    ) -> LangfuseAgent: ...
 471
 472    @overload
 473    def start_observation(
 474        self,
 475        *,
 476        trace_context: Optional[TraceContext] = None,
 477        name: str,
 478        as_type: Literal["tool"],
 479        input: Optional[Any] = None,
 480        output: Optional[Any] = None,
 481        metadata: Optional[Any] = None,
 482        version: Optional[str] = None,
 483        level: Optional[SpanLevel] = None,
 484        status_message: Optional[str] = None,
 485    ) -> LangfuseTool: ...
 486
 487    @overload
 488    def start_observation(
 489        self,
 490        *,
 491        trace_context: Optional[TraceContext] = None,
 492        name: str,
 493        as_type: Literal["chain"],
 494        input: Optional[Any] = None,
 495        output: Optional[Any] = None,
 496        metadata: Optional[Any] = None,
 497        version: Optional[str] = None,
 498        level: Optional[SpanLevel] = None,
 499        status_message: Optional[str] = None,
 500    ) -> LangfuseChain: ...
 501
 502    @overload
 503    def start_observation(
 504        self,
 505        *,
 506        trace_context: Optional[TraceContext] = None,
 507        name: str,
 508        as_type: Literal["retriever"],
 509        input: Optional[Any] = None,
 510        output: Optional[Any] = None,
 511        metadata: Optional[Any] = None,
 512        version: Optional[str] = None,
 513        level: Optional[SpanLevel] = None,
 514        status_message: Optional[str] = None,
 515    ) -> LangfuseRetriever: ...
 516
 517    @overload
 518    def start_observation(
 519        self,
 520        *,
 521        trace_context: Optional[TraceContext] = None,
 522        name: str,
 523        as_type: Literal["evaluator"],
 524        input: Optional[Any] = None,
 525        output: Optional[Any] = None,
 526        metadata: Optional[Any] = None,
 527        version: Optional[str] = None,
 528        level: Optional[SpanLevel] = None,
 529        status_message: Optional[str] = None,
 530    ) -> LangfuseEvaluator: ...
 531
 532    @overload
 533    def start_observation(
 534        self,
 535        *,
 536        trace_context: Optional[TraceContext] = None,
 537        name: str,
 538        as_type: Literal["embedding"],
 539        input: Optional[Any] = None,
 540        output: Optional[Any] = None,
 541        metadata: Optional[Any] = None,
 542        version: Optional[str] = None,
 543        level: Optional[SpanLevel] = None,
 544        status_message: Optional[str] = None,
 545        completion_start_time: Optional[datetime] = None,
 546        model: Optional[str] = None,
 547        model_parameters: Optional[Dict[str, MapValue]] = None,
 548        usage_details: Optional[Dict[str, int]] = None,
 549        cost_details: Optional[Dict[str, float]] = None,
 550        prompt: Optional[PromptClient] = None,
 551    ) -> LangfuseEmbedding: ...
 552
 553    @overload
 554    def start_observation(
 555        self,
 556        *,
 557        trace_context: Optional[TraceContext] = None,
 558        name: str,
 559        as_type: Literal["guardrail"],
 560        input: Optional[Any] = None,
 561        output: Optional[Any] = None,
 562        metadata: Optional[Any] = None,
 563        version: Optional[str] = None,
 564        level: Optional[SpanLevel] = None,
 565        status_message: Optional[str] = None,
 566    ) -> LangfuseGuardrail: ...
 567
 568    def start_observation(
 569        self,
 570        *,
 571        trace_context: Optional[TraceContext] = None,
 572        name: str,
 573        as_type: ObservationTypeLiteralNoEvent = "span",
 574        input: Optional[Any] = None,
 575        output: Optional[Any] = None,
 576        metadata: Optional[Any] = None,
 577        version: Optional[str] = None,
 578        level: Optional[SpanLevel] = None,
 579        status_message: Optional[str] = None,
 580        completion_start_time: Optional[datetime] = None,
 581        model: Optional[str] = None,
 582        model_parameters: Optional[Dict[str, MapValue]] = None,
 583        usage_details: Optional[Dict[str, int]] = None,
 584        cost_details: Optional[Dict[str, float]] = None,
 585        prompt: Optional[PromptClient] = None,
 586    ) -> Union[
 587        LangfuseSpan,
 588        LangfuseGeneration,
 589        LangfuseAgent,
 590        LangfuseTool,
 591        LangfuseChain,
 592        LangfuseRetriever,
 593        LangfuseEvaluator,
 594        LangfuseEmbedding,
 595        LangfuseGuardrail,
 596    ]:
 597        """Create a new observation of the specified type.
 598
 599        This method creates a new observation but does not set it as the current span in the
 600        context. To create and use an observation within a context, use start_as_current_observation().
 601
 602        Args:
 603            trace_context: Optional context for connecting to an existing trace
 604            name: Name of the observation
 605            as_type: Type of observation to create (defaults to "span")
 606            input: Input data for the operation
 607            output: Output data from the operation
 608            metadata: Additional metadata to associate with the observation
 609            version: Version identifier for the code or component
 610            level: Importance level of the observation
 611            status_message: Optional status message for the observation
 612            completion_start_time: When the model started generating (for generation types)
 613            model: Name/identifier of the AI model used (for generation types)
 614            model_parameters: Parameters used for the model (for generation types)
 615            usage_details: Token usage information (for generation types)
 616            cost_details: Cost information (for generation types)
 617            prompt: Associated prompt template (for generation types)
 618
 619        Returns:
 620            An observation object of the appropriate type that must be ended with .end()
 621        """
 622        if trace_context:
 623            trace_id = trace_context.get("trace_id", None)
 624            parent_span_id = trace_context.get("parent_span_id", None)
 625
 626            if trace_id:
 627                remote_parent_span = self._create_remote_parent_span(
 628                    trace_id=trace_id, parent_span_id=parent_span_id
 629                )
 630
 631                with otel_trace_api.use_span(
 632                    cast(otel_trace_api.Span, remote_parent_span)
 633                ):
 634                    otel_span = self._otel_tracer.start_span(name=name)
 635                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
 636
 637                    return self._create_observation_from_otel_span(
 638                        otel_span=otel_span,
 639                        as_type=as_type,
 640                        input=input,
 641                        output=output,
 642                        metadata=metadata,
 643                        version=version,
 644                        level=level,
 645                        status_message=status_message,
 646                        completion_start_time=completion_start_time,
 647                        model=model,
 648                        model_parameters=model_parameters,
 649                        usage_details=usage_details,
 650                        cost_details=cost_details,
 651                        prompt=prompt,
 652                    )
 653
 654        otel_span = self._otel_tracer.start_span(name=name)
 655
 656        return self._create_observation_from_otel_span(
 657            otel_span=otel_span,
 658            as_type=as_type,
 659            input=input,
 660            output=output,
 661            metadata=metadata,
 662            version=version,
 663            level=level,
 664            status_message=status_message,
 665            completion_start_time=completion_start_time,
 666            model=model,
 667            model_parameters=model_parameters,
 668            usage_details=usage_details,
 669            cost_details=cost_details,
 670            prompt=prompt,
 671        )
 672
 673    def _create_observation_from_otel_span(
 674        self,
 675        *,
 676        otel_span: otel_trace_api.Span,
 677        as_type: ObservationTypeLiteralNoEvent,
 678        input: Optional[Any] = None,
 679        output: Optional[Any] = None,
 680        metadata: Optional[Any] = None,
 681        version: Optional[str] = None,
 682        level: Optional[SpanLevel] = None,
 683        status_message: Optional[str] = None,
 684        completion_start_time: Optional[datetime] = None,
 685        model: Optional[str] = None,
 686        model_parameters: Optional[Dict[str, MapValue]] = None,
 687        usage_details: Optional[Dict[str, int]] = None,
 688        cost_details: Optional[Dict[str, float]] = None,
 689        prompt: Optional[PromptClient] = None,
 690    ) -> Union[
 691        LangfuseSpan,
 692        LangfuseGeneration,
 693        LangfuseAgent,
 694        LangfuseTool,
 695        LangfuseChain,
 696        LangfuseRetriever,
 697        LangfuseEvaluator,
 698        LangfuseEmbedding,
 699        LangfuseGuardrail,
 700    ]:
 701        """Create the appropriate observation type from an OTEL span."""
 702        if as_type in get_observation_types_list(ObservationTypeGenerationLike):
 703            observation_class = self._get_span_class(as_type)
 704            # Type ignore to prevent overloads of internal _get_span_class function,
 705            # issue is that LangfuseEvent could be returned and that classes have diff. args
 706            return observation_class(  # type: ignore[return-value,call-arg]
 707                otel_span=otel_span,
 708                langfuse_client=self,
 709                environment=self._environment,
 710                input=input,
 711                output=output,
 712                metadata=metadata,
 713                version=version,
 714                level=level,
 715                status_message=status_message,
 716                completion_start_time=completion_start_time,
 717                model=model,
 718                model_parameters=model_parameters,
 719                usage_details=usage_details,
 720                cost_details=cost_details,
 721                prompt=prompt,
 722            )
 723        else:
 724            # For other types (e.g. span, guardrail), create appropriate class without generation properties
 725            observation_class = self._get_span_class(as_type)
 726            # Type ignore to prevent overloads of internal _get_span_class function,
 727            # issue is that LangfuseEvent could be returned and that classes have diff. args
 728            return observation_class(  # type: ignore[return-value,call-arg]
 729                otel_span=otel_span,
 730                langfuse_client=self,
 731                environment=self._environment,
 732                input=input,
 733                output=output,
 734                metadata=metadata,
 735                version=version,
 736                level=level,
 737                status_message=status_message,
 738            )
 739            # span._observation_type = as_type
 740            # span._otel_span.set_attribute("langfuse.observation.type", as_type)
 741            # return span
 742
 743    def start_generation(
 744        self,
 745        *,
 746        trace_context: Optional[TraceContext] = None,
 747        name: str,
 748        input: Optional[Any] = None,
 749        output: Optional[Any] = None,
 750        metadata: Optional[Any] = None,
 751        version: Optional[str] = None,
 752        level: Optional[SpanLevel] = None,
 753        status_message: Optional[str] = None,
 754        completion_start_time: Optional[datetime] = None,
 755        model: Optional[str] = None,
 756        model_parameters: Optional[Dict[str, MapValue]] = None,
 757        usage_details: Optional[Dict[str, int]] = None,
 758        cost_details: Optional[Dict[str, float]] = None,
 759        prompt: Optional[PromptClient] = None,
 760    ) -> LangfuseGeneration:
 761        """Create a new generation span for model generations.
 762
 763        DEPRECATED: This method is deprecated and will be removed in a future version.
 764        Use start_observation(as_type='generation') instead.
 765
 766        This method creates a specialized span for tracking model generations.
 767        It includes additional fields specific to model generations such as model name,
 768        token usage, and cost details.
 769
 770        The created generation span will be the child of the current span in the context.
 771
 772        Args:
 773            trace_context: Optional context for connecting to an existing trace
 774            name: Name of the generation operation
 775            input: Input data for the model (e.g., prompts)
 776            output: Output from the model (e.g., completions)
 777            metadata: Additional metadata to associate with the generation
 778            version: Version identifier for the model or component
 779            level: Importance level of the generation (info, warning, error)
 780            status_message: Optional status message for the generation
 781            completion_start_time: When the model started generating the response
 782            model: Name/identifier of the AI model used (e.g., "gpt-4")
 783            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
 784            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
 785            cost_details: Cost information for the model call
 786            prompt: Associated prompt template from Langfuse prompt management
 787
 788        Returns:
 789            A LangfuseGeneration object that must be ended with .end() when complete
 790
 791        Example:
 792            ```python
 793            generation = langfuse.start_generation(
 794                name="answer-generation",
 795                model="gpt-4",
 796                input={"prompt": "Explain quantum computing"},
 797                model_parameters={"temperature": 0.7}
 798            )
 799            try:
 800                # Call model API
 801                response = llm.generate(...)
 802
 803                generation.update(
 804                    output=response.text,
 805                    usage_details={
 806                        "prompt_tokens": response.usage.prompt_tokens,
 807                        "completion_tokens": response.usage.completion_tokens
 808                    }
 809                )
 810            finally:
 811                generation.end()
 812            ```
 813        """
 814        warnings.warn(
 815            "start_generation is deprecated and will be removed in a future version. "
 816            "Use start_observation(as_type='generation') instead.",
 817            DeprecationWarning,
 818            stacklevel=2,
 819        )
 820        return self.start_observation(
 821            trace_context=trace_context,
 822            name=name,
 823            as_type="generation",
 824            input=input,
 825            output=output,
 826            metadata=metadata,
 827            version=version,
 828            level=level,
 829            status_message=status_message,
 830            completion_start_time=completion_start_time,
 831            model=model,
 832            model_parameters=model_parameters,
 833            usage_details=usage_details,
 834            cost_details=cost_details,
 835            prompt=prompt,
 836        )
 837
 838    def start_as_current_generation(
 839        self,
 840        *,
 841        trace_context: Optional[TraceContext] = None,
 842        name: str,
 843        input: Optional[Any] = None,
 844        output: Optional[Any] = None,
 845        metadata: Optional[Any] = None,
 846        version: Optional[str] = None,
 847        level: Optional[SpanLevel] = None,
 848        status_message: Optional[str] = None,
 849        completion_start_time: Optional[datetime] = None,
 850        model: Optional[str] = None,
 851        model_parameters: Optional[Dict[str, MapValue]] = None,
 852        usage_details: Optional[Dict[str, int]] = None,
 853        cost_details: Optional[Dict[str, float]] = None,
 854        prompt: Optional[PromptClient] = None,
 855        end_on_exit: Optional[bool] = None,
 856    ) -> _AgnosticContextManager[LangfuseGeneration]:
 857        """Create a new generation span and set it as the current span in a context manager.
 858
 859        DEPRECATED: This method is deprecated and will be removed in a future version.
 860        Use start_as_current_observation(as_type='generation') instead.
 861
 862        This method creates a specialized span for model generations and sets it as the
 863        current span within a context manager. Use this method with a 'with' statement to
 864        automatically handle the generation span lifecycle within a code block.
 865
 866        The created generation span will be the child of the current span in the context.
 867
 868        Args:
 869            trace_context: Optional context for connecting to an existing trace
 870            name: Name of the generation operation
 871            input: Input data for the model (e.g., prompts)
 872            output: Output from the model (e.g., completions)
 873            metadata: Additional metadata to associate with the generation
 874            version: Version identifier for the model or component
 875            level: Importance level of the generation (info, warning, error)
 876            status_message: Optional status message for the generation
 877            completion_start_time: When the model started generating the response
 878            model: Name/identifier of the AI model used (e.g., "gpt-4")
 879            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
 880            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
 881            cost_details: Cost information for the model call
 882            prompt: Associated prompt template from Langfuse prompt management
 883            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
 884
 885        Returns:
 886            A context manager that yields a LangfuseGeneration
 887
 888        Example:
 889            ```python
 890            with langfuse.start_as_current_generation(
 891                name="answer-generation",
 892                model="gpt-4",
 893                input={"prompt": "Explain quantum computing"}
 894            ) as generation:
 895                # Call model API
 896                response = llm.generate(...)
 897
 898                # Update with results
 899                generation.update(
 900                    output=response.text,
 901                    usage_details={
 902                        "prompt_tokens": response.usage.prompt_tokens,
 903                        "completion_tokens": response.usage.completion_tokens
 904                    }
 905                )
 906            ```
 907        """
 908        warnings.warn(
 909            "start_as_current_generation is deprecated and will be removed in a future version. "
 910            "Use start_as_current_observation(as_type='generation') instead.",
 911            DeprecationWarning,
 912            stacklevel=2,
 913        )
 914        return self.start_as_current_observation(
 915            trace_context=trace_context,
 916            name=name,
 917            as_type="generation",
 918            input=input,
 919            output=output,
 920            metadata=metadata,
 921            version=version,
 922            level=level,
 923            status_message=status_message,
 924            completion_start_time=completion_start_time,
 925            model=model,
 926            model_parameters=model_parameters,
 927            usage_details=usage_details,
 928            cost_details=cost_details,
 929            prompt=prompt,
 930            end_on_exit=end_on_exit,
 931        )
 932
 933    @overload
 934    def start_as_current_observation(
 935        self,
 936        *,
 937        trace_context: Optional[TraceContext] = None,
 938        name: str,
 939        as_type: Literal["generation"],
 940        input: Optional[Any] = None,
 941        output: Optional[Any] = None,
 942        metadata: Optional[Any] = None,
 943        version: Optional[str] = None,
 944        level: Optional[SpanLevel] = None,
 945        status_message: Optional[str] = None,
 946        completion_start_time: Optional[datetime] = None,
 947        model: Optional[str] = None,
 948        model_parameters: Optional[Dict[str, MapValue]] = None,
 949        usage_details: Optional[Dict[str, int]] = None,
 950        cost_details: Optional[Dict[str, float]] = None,
 951        prompt: Optional[PromptClient] = None,
 952        end_on_exit: Optional[bool] = None,
 953    ) -> _AgnosticContextManager[LangfuseGeneration]: ...
 954
 955    @overload
 956    def start_as_current_observation(
 957        self,
 958        *,
 959        trace_context: Optional[TraceContext] = None,
 960        name: str,
 961        as_type: Literal["span"] = "span",
 962        input: Optional[Any] = None,
 963        output: Optional[Any] = None,
 964        metadata: Optional[Any] = None,
 965        version: Optional[str] = None,
 966        level: Optional[SpanLevel] = None,
 967        status_message: Optional[str] = None,
 968        end_on_exit: Optional[bool] = None,
 969    ) -> _AgnosticContextManager[LangfuseSpan]: ...
 970
 971    @overload
 972    def start_as_current_observation(
 973        self,
 974        *,
 975        trace_context: Optional[TraceContext] = None,
 976        name: str,
 977        as_type: Literal["agent"],
 978        input: Optional[Any] = None,
 979        output: Optional[Any] = None,
 980        metadata: Optional[Any] = None,
 981        version: Optional[str] = None,
 982        level: Optional[SpanLevel] = None,
 983        status_message: Optional[str] = None,
 984        end_on_exit: Optional[bool] = None,
 985    ) -> _AgnosticContextManager[LangfuseAgent]: ...
 986
 987    @overload
 988    def start_as_current_observation(
 989        self,
 990        *,
 991        trace_context: Optional[TraceContext] = None,
 992        name: str,
 993        as_type: Literal["tool"],
 994        input: Optional[Any] = None,
 995        output: Optional[Any] = None,
 996        metadata: Optional[Any] = None,
 997        version: Optional[str] = None,
 998        level: Optional[SpanLevel] = None,
 999        status_message: Optional[str] = None,
1000        end_on_exit: Optional[bool] = None,
1001    ) -> _AgnosticContextManager[LangfuseTool]: ...
1002
1003    @overload
1004    def start_as_current_observation(
1005        self,
1006        *,
1007        trace_context: Optional[TraceContext] = None,
1008        name: str,
1009        as_type: Literal["chain"],
1010        input: Optional[Any] = None,
1011        output: Optional[Any] = None,
1012        metadata: Optional[Any] = None,
1013        version: Optional[str] = None,
1014        level: Optional[SpanLevel] = None,
1015        status_message: Optional[str] = None,
1016        end_on_exit: Optional[bool] = None,
1017    ) -> _AgnosticContextManager[LangfuseChain]: ...
1018
1019    @overload
1020    def start_as_current_observation(
1021        self,
1022        *,
1023        trace_context: Optional[TraceContext] = None,
1024        name: str,
1025        as_type: Literal["retriever"],
1026        input: Optional[Any] = None,
1027        output: Optional[Any] = None,
1028        metadata: Optional[Any] = None,
1029        version: Optional[str] = None,
1030        level: Optional[SpanLevel] = None,
1031        status_message: Optional[str] = None,
1032        end_on_exit: Optional[bool] = None,
1033    ) -> _AgnosticContextManager[LangfuseRetriever]: ...
1034
1035    @overload
1036    def start_as_current_observation(
1037        self,
1038        *,
1039        trace_context: Optional[TraceContext] = None,
1040        name: str,
1041        as_type: Literal["evaluator"],
1042        input: Optional[Any] = None,
1043        output: Optional[Any] = None,
1044        metadata: Optional[Any] = None,
1045        version: Optional[str] = None,
1046        level: Optional[SpanLevel] = None,
1047        status_message: Optional[str] = None,
1048        end_on_exit: Optional[bool] = None,
1049    ) -> _AgnosticContextManager[LangfuseEvaluator]: ...
1050
1051    @overload
1052    def start_as_current_observation(
1053        self,
1054        *,
1055        trace_context: Optional[TraceContext] = None,
1056        name: str,
1057        as_type: Literal["embedding"],
1058        input: Optional[Any] = None,
1059        output: Optional[Any] = None,
1060        metadata: Optional[Any] = None,
1061        version: Optional[str] = None,
1062        level: Optional[SpanLevel] = None,
1063        status_message: Optional[str] = None,
1064        completion_start_time: Optional[datetime] = None,
1065        model: Optional[str] = None,
1066        model_parameters: Optional[Dict[str, MapValue]] = None,
1067        usage_details: Optional[Dict[str, int]] = None,
1068        cost_details: Optional[Dict[str, float]] = None,
1069        prompt: Optional[PromptClient] = None,
1070        end_on_exit: Optional[bool] = None,
1071    ) -> _AgnosticContextManager[LangfuseEmbedding]: ...
1072
1073    @overload
1074    def start_as_current_observation(
1075        self,
1076        *,
1077        trace_context: Optional[TraceContext] = None,
1078        name: str,
1079        as_type: Literal["guardrail"],
1080        input: Optional[Any] = None,
1081        output: Optional[Any] = None,
1082        metadata: Optional[Any] = None,
1083        version: Optional[str] = None,
1084        level: Optional[SpanLevel] = None,
1085        status_message: Optional[str] = None,
1086        end_on_exit: Optional[bool] = None,
1087    ) -> _AgnosticContextManager[LangfuseGuardrail]: ...
1088
1089    def start_as_current_observation(
1090        self,
1091        *,
1092        trace_context: Optional[TraceContext] = None,
1093        name: str,
1094        as_type: ObservationTypeLiteralNoEvent = "span",
1095        input: Optional[Any] = None,
1096        output: Optional[Any] = None,
1097        metadata: Optional[Any] = None,
1098        version: Optional[str] = None,
1099        level: Optional[SpanLevel] = None,
1100        status_message: Optional[str] = None,
1101        completion_start_time: Optional[datetime] = None,
1102        model: Optional[str] = None,
1103        model_parameters: Optional[Dict[str, MapValue]] = None,
1104        usage_details: Optional[Dict[str, int]] = None,
1105        cost_details: Optional[Dict[str, float]] = None,
1106        prompt: Optional[PromptClient] = None,
1107        end_on_exit: Optional[bool] = None,
1108    ) -> Union[
1109        _AgnosticContextManager[LangfuseGeneration],
1110        _AgnosticContextManager[LangfuseSpan],
1111        _AgnosticContextManager[LangfuseAgent],
1112        _AgnosticContextManager[LangfuseTool],
1113        _AgnosticContextManager[LangfuseChain],
1114        _AgnosticContextManager[LangfuseRetriever],
1115        _AgnosticContextManager[LangfuseEvaluator],
1116        _AgnosticContextManager[LangfuseEmbedding],
1117        _AgnosticContextManager[LangfuseGuardrail],
1118    ]:
1119        """Create a new observation and set it as the current span in a context manager.
1120
1121        This method creates a new observation of the specified type and sets it as the
1122        current span within a context manager. Use this method with a 'with' statement to
1123        automatically handle the observation lifecycle within a code block.
1124
1125        The created observation will be the child of the current span in the context.
1126
1127        Args:
1128            trace_context: Optional context for connecting to an existing trace
1129            name: Name of the observation (e.g., function or operation name)
1130            as_type: Type of observation to create (defaults to "span")
1131            input: Input data for the operation (can be any JSON-serializable object)
1132            output: Output data from the operation (can be any JSON-serializable object)
1133            metadata: Additional metadata to associate with the observation
1134            version: Version identifier for the code or component
1135            level: Importance level of the observation (info, warning, error)
1136            status_message: Optional status message for the observation
1137            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
1138
1139            The following parameters are available when as_type is: "generation" or "embedding".
1140            completion_start_time: When the model started generating the response
1141            model: Name/identifier of the AI model used (e.g., "gpt-4")
1142            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1143            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1144            cost_details: Cost information for the model call
1145            prompt: Associated prompt template from Langfuse prompt management
1146
1147        Returns:
1148            A context manager that yields the appropriate observation type based on as_type
1149
1150        Example:
1151            ```python
1152            # Create a span
1153            with langfuse.start_as_current_observation(name="process-query", as_type="span") as span:
1154                # Do work
1155                result = process_data()
1156                span.update(output=result)
1157
1158                # Create a child span automatically
1159                with span.start_as_current_span(name="sub-operation") as child_span:
1160                    # Do sub-operation work
1161                    child_span.update(output="sub-result")
1162
1163            # Create a tool observation
1164            with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool:
1165                # Do tool work
1166                results = search_web(query)
1167                tool.update(output=results)
1168
1169            # Create a generation observation
1170            with langfuse.start_as_current_observation(
1171                name="answer-generation",
1172                as_type="generation",
1173                model="gpt-4"
1174            ) as generation:
1175                # Generate answer
1176                response = llm.generate(...)
1177                generation.update(output=response)
1178            ```
1179        """
1180        if as_type in get_observation_types_list(ObservationTypeGenerationLike):
1181            if trace_context:
1182                trace_id = trace_context.get("trace_id", None)
1183                parent_span_id = trace_context.get("parent_span_id", None)
1184
1185                if trace_id:
1186                    remote_parent_span = self._create_remote_parent_span(
1187                        trace_id=trace_id, parent_span_id=parent_span_id
1188                    )
1189
1190                    return cast(
1191                        Union[
1192                            _AgnosticContextManager[LangfuseGeneration],
1193                            _AgnosticContextManager[LangfuseEmbedding],
1194                        ],
1195                        self._create_span_with_parent_context(
1196                            as_type=as_type,
1197                            name=name,
1198                            remote_parent_span=remote_parent_span,
1199                            parent=None,
1200                            end_on_exit=end_on_exit,
1201                            input=input,
1202                            output=output,
1203                            metadata=metadata,
1204                            version=version,
1205                            level=level,
1206                            status_message=status_message,
1207                            completion_start_time=completion_start_time,
1208                            model=model,
1209                            model_parameters=model_parameters,
1210                            usage_details=usage_details,
1211                            cost_details=cost_details,
1212                            prompt=prompt,
1213                        ),
1214                    )
1215
1216            return cast(
1217                Union[
1218                    _AgnosticContextManager[LangfuseGeneration],
1219                    _AgnosticContextManager[LangfuseEmbedding],
1220                ],
1221                self._start_as_current_otel_span_with_processed_media(
1222                    as_type=as_type,
1223                    name=name,
1224                    end_on_exit=end_on_exit,
1225                    input=input,
1226                    output=output,
1227                    metadata=metadata,
1228                    version=version,
1229                    level=level,
1230                    status_message=status_message,
1231                    completion_start_time=completion_start_time,
1232                    model=model,
1233                    model_parameters=model_parameters,
1234                    usage_details=usage_details,
1235                    cost_details=cost_details,
1236                    prompt=prompt,
1237                ),
1238            )
1239
1240        if as_type in get_observation_types_list(ObservationTypeSpanLike):
1241            if trace_context:
1242                trace_id = trace_context.get("trace_id", None)
1243                parent_span_id = trace_context.get("parent_span_id", None)
1244
1245                if trace_id:
1246                    remote_parent_span = self._create_remote_parent_span(
1247                        trace_id=trace_id, parent_span_id=parent_span_id
1248                    )
1249
1250                    return cast(
1251                        Union[
1252                            _AgnosticContextManager[LangfuseSpan],
1253                            _AgnosticContextManager[LangfuseAgent],
1254                            _AgnosticContextManager[LangfuseTool],
1255                            _AgnosticContextManager[LangfuseChain],
1256                            _AgnosticContextManager[LangfuseRetriever],
1257                            _AgnosticContextManager[LangfuseEvaluator],
1258                            _AgnosticContextManager[LangfuseGuardrail],
1259                        ],
1260                        self._create_span_with_parent_context(
1261                            as_type=as_type,
1262                            name=name,
1263                            remote_parent_span=remote_parent_span,
1264                            parent=None,
1265                            end_on_exit=end_on_exit,
1266                            input=input,
1267                            output=output,
1268                            metadata=metadata,
1269                            version=version,
1270                            level=level,
1271                            status_message=status_message,
1272                        ),
1273                    )
1274
1275            return cast(
1276                Union[
1277                    _AgnosticContextManager[LangfuseSpan],
1278                    _AgnosticContextManager[LangfuseAgent],
1279                    _AgnosticContextManager[LangfuseTool],
1280                    _AgnosticContextManager[LangfuseChain],
1281                    _AgnosticContextManager[LangfuseRetriever],
1282                    _AgnosticContextManager[LangfuseEvaluator],
1283                    _AgnosticContextManager[LangfuseGuardrail],
1284                ],
1285                self._start_as_current_otel_span_with_processed_media(
1286                    as_type=as_type,
1287                    name=name,
1288                    end_on_exit=end_on_exit,
1289                    input=input,
1290                    output=output,
1291                    metadata=metadata,
1292                    version=version,
1293                    level=level,
1294                    status_message=status_message,
1295                ),
1296            )
1297
1298        # This should never be reached since all valid types are handled above
1299        langfuse_logger.warning(
1300            f"Unknown observation type: {as_type}, falling back to span"
1301        )
1302        return self._start_as_current_otel_span_with_processed_media(
1303            as_type="span",
1304            name=name,
1305            end_on_exit=end_on_exit,
1306            input=input,
1307            output=output,
1308            metadata=metadata,
1309            version=version,
1310            level=level,
1311            status_message=status_message,
1312        )
1313
1314    def _get_span_class(
1315        self,
1316        as_type: ObservationTypeLiteral,
1317    ) -> Union[
1318        Type[LangfuseAgent],
1319        Type[LangfuseTool],
1320        Type[LangfuseChain],
1321        Type[LangfuseRetriever],
1322        Type[LangfuseEvaluator],
1323        Type[LangfuseEmbedding],
1324        Type[LangfuseGuardrail],
1325        Type[LangfuseGeneration],
1326        Type[LangfuseEvent],
1327        Type[LangfuseSpan],
1328    ]:
1329        """Get the appropriate span class based on as_type."""
1330        normalized_type = as_type.lower()
1331
1332        if normalized_type == "agent":
1333            return LangfuseAgent
1334        elif normalized_type == "tool":
1335            return LangfuseTool
1336        elif normalized_type == "chain":
1337            return LangfuseChain
1338        elif normalized_type == "retriever":
1339            return LangfuseRetriever
1340        elif normalized_type == "evaluator":
1341            return LangfuseEvaluator
1342        elif normalized_type == "embedding":
1343            return LangfuseEmbedding
1344        elif normalized_type == "guardrail":
1345            return LangfuseGuardrail
1346        elif normalized_type == "generation":
1347            return LangfuseGeneration
1348        elif normalized_type == "event":
1349            return LangfuseEvent
1350        elif normalized_type == "span":
1351            return LangfuseSpan
1352        else:
1353            return LangfuseSpan
1354
1355    @_agnosticcontextmanager
1356    def _create_span_with_parent_context(
1357        self,
1358        *,
1359        name: str,
1360        parent: Optional[otel_trace_api.Span] = None,
1361        remote_parent_span: Optional[otel_trace_api.Span] = None,
1362        as_type: ObservationTypeLiteralNoEvent,
1363        end_on_exit: Optional[bool] = None,
1364        input: Optional[Any] = None,
1365        output: Optional[Any] = None,
1366        metadata: Optional[Any] = None,
1367        version: Optional[str] = None,
1368        level: Optional[SpanLevel] = None,
1369        status_message: Optional[str] = None,
1370        completion_start_time: Optional[datetime] = None,
1371        model: Optional[str] = None,
1372        model_parameters: Optional[Dict[str, MapValue]] = None,
1373        usage_details: Optional[Dict[str, int]] = None,
1374        cost_details: Optional[Dict[str, float]] = None,
1375        prompt: Optional[PromptClient] = None,
1376    ) -> Any:
1377        parent_span = parent or cast(otel_trace_api.Span, remote_parent_span)
1378
1379        with otel_trace_api.use_span(parent_span):
1380            with self._start_as_current_otel_span_with_processed_media(
1381                name=name,
1382                as_type=as_type,
1383                end_on_exit=end_on_exit,
1384                input=input,
1385                output=output,
1386                metadata=metadata,
1387                version=version,
1388                level=level,
1389                status_message=status_message,
1390                completion_start_time=completion_start_time,
1391                model=model,
1392                model_parameters=model_parameters,
1393                usage_details=usage_details,
1394                cost_details=cost_details,
1395                prompt=prompt,
1396            ) as langfuse_span:
1397                if remote_parent_span is not None:
1398                    langfuse_span._otel_span.set_attribute(
1399                        LangfuseOtelSpanAttributes.AS_ROOT, True
1400                    )
1401
1402                yield langfuse_span
1403
1404    @_agnosticcontextmanager
1405    def _start_as_current_otel_span_with_processed_media(
1406        self,
1407        *,
1408        name: str,
1409        as_type: Optional[ObservationTypeLiteralNoEvent] = None,
1410        end_on_exit: Optional[bool] = None,
1411        input: Optional[Any] = None,
1412        output: Optional[Any] = None,
1413        metadata: Optional[Any] = None,
1414        version: Optional[str] = None,
1415        level: Optional[SpanLevel] = None,
1416        status_message: Optional[str] = None,
1417        completion_start_time: Optional[datetime] = None,
1418        model: Optional[str] = None,
1419        model_parameters: Optional[Dict[str, MapValue]] = None,
1420        usage_details: Optional[Dict[str, int]] = None,
1421        cost_details: Optional[Dict[str, float]] = None,
1422        prompt: Optional[PromptClient] = None,
1423    ) -> Any:
1424        with self._otel_tracer.start_as_current_span(
1425            name=name,
1426            end_on_exit=end_on_exit if end_on_exit is not None else True,
1427        ) as otel_span:
1428            span_class = self._get_span_class(
1429                as_type or "generation"
1430            )  # default was "generation"
1431            common_args = {
1432                "otel_span": otel_span,
1433                "langfuse_client": self,
1434                "environment": self._environment,
1435                "input": input,
1436                "output": output,
1437                "metadata": metadata,
1438                "version": version,
1439                "level": level,
1440                "status_message": status_message,
1441            }
1442
1443            if span_class in [
1444                LangfuseGeneration,
1445                LangfuseEmbedding,
1446            ]:
1447                common_args.update(
1448                    {
1449                        "completion_start_time": completion_start_time,
1450                        "model": model,
1451                        "model_parameters": model_parameters,
1452                        "usage_details": usage_details,
1453                        "cost_details": cost_details,
1454                        "prompt": prompt,
1455                    }
1456                )
1457            # For span-like types (span, agent, tool, chain, retriever, evaluator, guardrail), no generation properties needed
1458
1459            yield span_class(**common_args)  # type: ignore[arg-type]
1460
1461    def _get_current_otel_span(self) -> Optional[otel_trace_api.Span]:
1462        current_span = otel_trace_api.get_current_span()
1463
1464        if current_span is otel_trace_api.INVALID_SPAN:
1465            langfuse_logger.warning(
1466                "Context error: No active span in current context. Operations that depend on an active span will be skipped. "
1467                "Ensure spans are created with start_as_current_span() or that you're operating within an active span context."
1468            )
1469            return None
1470
1471        return current_span
1472
1473    def update_current_generation(
1474        self,
1475        *,
1476        name: Optional[str] = None,
1477        input: Optional[Any] = None,
1478        output: Optional[Any] = None,
1479        metadata: Optional[Any] = None,
1480        version: Optional[str] = None,
1481        level: Optional[SpanLevel] = None,
1482        status_message: Optional[str] = None,
1483        completion_start_time: Optional[datetime] = None,
1484        model: Optional[str] = None,
1485        model_parameters: Optional[Dict[str, MapValue]] = None,
1486        usage_details: Optional[Dict[str, int]] = None,
1487        cost_details: Optional[Dict[str, float]] = None,
1488        prompt: Optional[PromptClient] = None,
1489    ) -> None:
1490        """Update the current active generation span with new information.
1491
1492        This method updates the current generation span in the active context with
1493        additional information. It's useful for adding output, usage stats, or other
1494        details that become available during or after model generation.
1495
1496        Args:
1497            name: The generation name
1498            input: Updated input data for the model
1499            output: Output from the model (e.g., completions)
1500            metadata: Additional metadata to associate with the generation
1501            version: Version identifier for the model or component
1502            level: Importance level of the generation (info, warning, error)
1503            status_message: Optional status message for the generation
1504            completion_start_time: When the model started generating the response
1505            model: Name/identifier of the AI model used (e.g., "gpt-4")
1506            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1507            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1508            cost_details: Cost information for the model call
1509            prompt: Associated prompt template from Langfuse prompt management
1510
1511        Example:
1512            ```python
1513            with langfuse.start_as_current_generation(name="answer-query") as generation:
1514                # Initial setup and API call
1515                response = llm.generate(...)
1516
1517                # Update with results that weren't available at creation time
1518                langfuse.update_current_generation(
1519                    output=response.text,
1520                    usage_details={
1521                        "prompt_tokens": response.usage.prompt_tokens,
1522                        "completion_tokens": response.usage.completion_tokens
1523                    }
1524                )
1525            ```
1526        """
1527        if not self._tracing_enabled:
1528            langfuse_logger.debug(
1529                "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode."
1530            )
1531            return
1532
1533        current_otel_span = self._get_current_otel_span()
1534
1535        if current_otel_span is not None:
1536            generation = LangfuseGeneration(
1537                otel_span=current_otel_span, langfuse_client=self
1538            )
1539
1540            if name:
1541                current_otel_span.update_name(name)
1542
1543            generation.update(
1544                input=input,
1545                output=output,
1546                metadata=metadata,
1547                version=version,
1548                level=level,
1549                status_message=status_message,
1550                completion_start_time=completion_start_time,
1551                model=model,
1552                model_parameters=model_parameters,
1553                usage_details=usage_details,
1554                cost_details=cost_details,
1555                prompt=prompt,
1556            )
1557
1558    def update_current_span(
1559        self,
1560        *,
1561        name: Optional[str] = None,
1562        input: Optional[Any] = None,
1563        output: Optional[Any] = None,
1564        metadata: Optional[Any] = None,
1565        version: Optional[str] = None,
1566        level: Optional[SpanLevel] = None,
1567        status_message: Optional[str] = None,
1568    ) -> None:
1569        """Update the current active span with new information.
1570
1571        This method updates the current span in the active context with
1572        additional information. It's useful for adding outputs or metadata
1573        that become available during execution.
1574
1575        Args:
1576            name: The span name
1577            input: Updated input data for the operation
1578            output: Output data from the operation
1579            metadata: Additional metadata to associate with the span
1580            version: Version identifier for the code or component
1581            level: Importance level of the span (info, warning, error)
1582            status_message: Optional status message for the span
1583
1584        Example:
1585            ```python
1586            with langfuse.start_as_current_span(name="process-data") as span:
1587                # Initial processing
1588                result = process_first_part()
1589
1590                # Update with intermediate results
1591                langfuse.update_current_span(metadata={"intermediate_result": result})
1592
1593                # Continue processing
1594                final_result = process_second_part(result)
1595
1596                # Final update
1597                langfuse.update_current_span(output=final_result)
1598            ```
1599        """
1600        if not self._tracing_enabled:
1601            langfuse_logger.debug(
1602                "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode."
1603            )
1604            return
1605
1606        current_otel_span = self._get_current_otel_span()
1607
1608        if current_otel_span is not None:
1609            span = LangfuseSpan(
1610                otel_span=current_otel_span,
1611                langfuse_client=self,
1612                environment=self._environment,
1613            )
1614
1615            if name:
1616                current_otel_span.update_name(name)
1617
1618            span.update(
1619                input=input,
1620                output=output,
1621                metadata=metadata,
1622                version=version,
1623                level=level,
1624                status_message=status_message,
1625            )
1626
1627    def update_current_trace(
1628        self,
1629        *,
1630        name: Optional[str] = None,
1631        user_id: Optional[str] = None,
1632        session_id: Optional[str] = None,
1633        version: Optional[str] = None,
1634        input: Optional[Any] = None,
1635        output: Optional[Any] = None,
1636        metadata: Optional[Any] = None,
1637        tags: Optional[List[str]] = None,
1638        public: Optional[bool] = None,
1639    ) -> None:
1640        """Update the current trace with additional information.
1641
1642        This method updates the Langfuse trace that the current span belongs to. It's useful for
1643        adding trace-level metadata like user ID, session ID, or tags that apply to
1644        the entire Langfuse trace rather than just a single observation.
1645
1646        Args:
1647            name: Updated name for the Langfuse trace
1648            user_id: ID of the user who initiated the Langfuse trace
1649            session_id: Session identifier for grouping related Langfuse traces
1650            version: Version identifier for the application or service
1651            input: Input data for the overall Langfuse trace
1652            output: Output data from the overall Langfuse trace
1653            metadata: Additional metadata to associate with the Langfuse trace
1654            tags: List of tags to categorize the Langfuse trace
1655            public: Whether the Langfuse trace should be publicly accessible
1656
1657        Example:
1658            ```python
1659            with langfuse.start_as_current_span(name="handle-request") as span:
1660                # Get user information
1661                user = authenticate_user(request)
1662
1663                # Update trace with user context
1664                langfuse.update_current_trace(
1665                    user_id=user.id,
1666                    session_id=request.session_id,
1667                    tags=["production", "web-app"]
1668                )
1669
1670                # Continue processing
1671                response = process_request(request)
1672
1673                # Update span with results
1674                span.update(output=response)
1675            ```
1676        """
1677        if not self._tracing_enabled:
1678            langfuse_logger.debug(
1679                "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode."
1680            )
1681            return
1682
1683        current_otel_span = self._get_current_otel_span()
1684
1685        if current_otel_span is not None:
1686            existing_observation_type = current_otel_span.attributes.get(  # type: ignore[attr-defined]
1687                LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span"
1688            )
1689            # We need to preserve the class to keep the correct observation type
1690            span_class = self._get_span_class(existing_observation_type)
1691            span = span_class(
1692                otel_span=current_otel_span,
1693                langfuse_client=self,
1694                environment=self._environment,
1695            )
1696
1697            span.update_trace(
1698                name=name,
1699                user_id=user_id,
1700                session_id=session_id,
1701                version=version,
1702                input=input,
1703                output=output,
1704                metadata=metadata,
1705                tags=tags,
1706                public=public,
1707            )
1708
1709    def create_event(
1710        self,
1711        *,
1712        trace_context: Optional[TraceContext] = None,
1713        name: str,
1714        input: Optional[Any] = None,
1715        output: Optional[Any] = None,
1716        metadata: Optional[Any] = None,
1717        version: Optional[str] = None,
1718        level: Optional[SpanLevel] = None,
1719        status_message: Optional[str] = None,
1720    ) -> LangfuseEvent:
1721        """Create a new Langfuse observation of type 'EVENT'.
1722
1723        The created Langfuse Event observation will be the child of the current span in the context.
1724
1725        Args:
1726            trace_context: Optional context for connecting to an existing trace
1727            name: Name of the span (e.g., function or operation name)
1728            input: Input data for the operation (can be any JSON-serializable object)
1729            output: Output data from the operation (can be any JSON-serializable object)
1730            metadata: Additional metadata to associate with the span
1731            version: Version identifier for the code or component
1732            level: Importance level of the span (info, warning, error)
1733            status_message: Optional status message for the span
1734
1735        Returns:
1736            The Langfuse Event object
1737
1738        Example:
1739            ```python
1740            event = langfuse.create_event(name="process-event")
1741            ```
1742        """
1743        timestamp = time_ns()
1744
1745        if trace_context:
1746            trace_id = trace_context.get("trace_id", None)
1747            parent_span_id = trace_context.get("parent_span_id", None)
1748
1749            if trace_id:
1750                remote_parent_span = self._create_remote_parent_span(
1751                    trace_id=trace_id, parent_span_id=parent_span_id
1752                )
1753
1754                with otel_trace_api.use_span(
1755                    cast(otel_trace_api.Span, remote_parent_span)
1756                ):
1757                    otel_span = self._otel_tracer.start_span(
1758                        name=name, start_time=timestamp
1759                    )
1760                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
1761
1762                    return cast(
1763                        LangfuseEvent,
1764                        LangfuseEvent(
1765                            otel_span=otel_span,
1766                            langfuse_client=self,
1767                            environment=self._environment,
1768                            input=input,
1769                            output=output,
1770                            metadata=metadata,
1771                            version=version,
1772                            level=level,
1773                            status_message=status_message,
1774                        ).end(end_time=timestamp),
1775                    )
1776
1777        otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp)
1778
1779        return cast(
1780            LangfuseEvent,
1781            LangfuseEvent(
1782                otel_span=otel_span,
1783                langfuse_client=self,
1784                environment=self._environment,
1785                input=input,
1786                output=output,
1787                metadata=metadata,
1788                version=version,
1789                level=level,
1790                status_message=status_message,
1791            ).end(end_time=timestamp),
1792        )
1793
1794    def _create_remote_parent_span(
1795        self, *, trace_id: str, parent_span_id: Optional[str]
1796    ) -> Any:
1797        if not self._is_valid_trace_id(trace_id):
1798            langfuse_logger.warning(
1799                f"Passed trace ID '{trace_id}' is not a valid 32 lowercase hex char Langfuse trace id. Ignoring trace ID."
1800            )
1801
1802        if parent_span_id and not self._is_valid_span_id(parent_span_id):
1803            langfuse_logger.warning(
1804                f"Passed span ID '{parent_span_id}' is not a valid 16 lowercase hex char Langfuse span id. Ignoring parent span ID."
1805            )
1806
1807        int_trace_id = int(trace_id, 16)
1808        int_parent_span_id = (
1809            int(parent_span_id, 16)
1810            if parent_span_id
1811            else RandomIdGenerator().generate_span_id()
1812        )
1813
1814        span_context = otel_trace_api.SpanContext(
1815            trace_id=int_trace_id,
1816            span_id=int_parent_span_id,
1817            trace_flags=otel_trace_api.TraceFlags(0x01),  # mark span as sampled
1818            is_remote=False,
1819        )
1820
1821        return trace.NonRecordingSpan(span_context)
1822
1823    def _is_valid_trace_id(self, trace_id: str) -> bool:
1824        pattern = r"^[0-9a-f]{32}$"
1825
1826        return bool(re.match(pattern, trace_id))
1827
1828    def _is_valid_span_id(self, span_id: str) -> bool:
1829        pattern = r"^[0-9a-f]{16}$"
1830
1831        return bool(re.match(pattern, span_id))
1832
1833    def _create_observation_id(self, *, seed: Optional[str] = None) -> str:
1834        """Create a unique observation ID for use with Langfuse.
1835
1836        This method generates a unique observation ID (span ID in OpenTelemetry terms)
1837        for use with various Langfuse APIs. It can either generate a random ID or
1838        create a deterministic ID based on a seed string.
1839
1840        Observation IDs must be 16 lowercase hexadecimal characters, representing 8 bytes.
1841        This method ensures the generated ID meets this requirement. If you need to
1842        correlate an external ID with a Langfuse observation ID, use the external ID as
1843        the seed to get a valid, deterministic observation ID.
1844
1845        Args:
1846            seed: Optional string to use as a seed for deterministic ID generation.
1847                 If provided, the same seed will always produce the same ID.
1848                 If not provided, a random ID will be generated.
1849
1850        Returns:
1851            A 16-character lowercase hexadecimal string representing the observation ID.
1852
1853        Example:
1854            ```python
1855            # Generate a random observation ID
1856            obs_id = langfuse.create_observation_id()
1857
1858            # Generate a deterministic ID based on a seed
1859            user_obs_id = langfuse.create_observation_id(seed="user-123-feedback")
1860
1861            # Correlate an external item ID with a Langfuse observation ID
1862            item_id = "item-789012"
1863            correlated_obs_id = langfuse.create_observation_id(seed=item_id)
1864
1865            # Use the ID with Langfuse APIs
1866            langfuse.create_score(
1867                name="relevance",
1868                value=0.95,
1869                trace_id=trace_id,
1870                observation_id=obs_id
1871            )
1872            ```
1873        """
1874        if not seed:
1875            span_id_int = RandomIdGenerator().generate_span_id()
1876
1877            return self._format_otel_span_id(span_id_int)
1878
1879        return sha256(seed.encode("utf-8")).digest()[:8].hex()
1880
1881    @staticmethod
1882    def create_trace_id(*, seed: Optional[str] = None) -> str:
1883        """Create a unique trace ID for use with Langfuse.
1884
1885        This method generates a unique trace ID for use with various Langfuse APIs.
1886        It can either generate a random ID or create a deterministic ID based on
1887        a seed string.
1888
1889        Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes.
1890        This method ensures the generated ID meets this requirement. If you need to
1891        correlate an external ID with a Langfuse trace ID, use the external ID as the
1892        seed to get a valid, deterministic Langfuse trace ID.
1893
1894        Args:
1895            seed: Optional string to use as a seed for deterministic ID generation.
1896                 If provided, the same seed will always produce the same ID.
1897                 If not provided, a random ID will be generated.
1898
1899        Returns:
1900            A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
1901
1902        Example:
1903            ```python
1904            # Generate a random trace ID
1905            trace_id = langfuse.create_trace_id()
1906
1907            # Generate a deterministic ID based on a seed
1908            session_trace_id = langfuse.create_trace_id(seed="session-456")
1909
1910            # Correlate an external ID with a Langfuse trace ID
1911            external_id = "external-system-123456"
1912            correlated_trace_id = langfuse.create_trace_id(seed=external_id)
1913
1914            # Use the ID with trace context
1915            with langfuse.start_as_current_span(
1916                name="process-request",
1917                trace_context={"trace_id": trace_id}
1918            ) as span:
1919                # Operation will be part of the specific trace
1920                pass
1921            ```
1922        """
1923        if not seed:
1924            trace_id_int = RandomIdGenerator().generate_trace_id()
1925
1926            return Langfuse._format_otel_trace_id(trace_id_int)
1927
1928        return sha256(seed.encode("utf-8")).digest()[:16].hex()
1929
1930    def _get_otel_trace_id(self, otel_span: otel_trace_api.Span) -> str:
1931        span_context = otel_span.get_span_context()
1932
1933        return self._format_otel_trace_id(span_context.trace_id)
1934
1935    def _get_otel_span_id(self, otel_span: otel_trace_api.Span) -> str:
1936        span_context = otel_span.get_span_context()
1937
1938        return self._format_otel_span_id(span_context.span_id)
1939
1940    @staticmethod
1941    def _format_otel_span_id(span_id_int: int) -> str:
1942        """Format an integer span ID to a 16-character lowercase hex string.
1943
1944        Internal method to convert an OpenTelemetry integer span ID to the standard
1945        W3C Trace Context format (16-character lowercase hex string).
1946
1947        Args:
1948            span_id_int: 64-bit integer representing a span ID
1949
1950        Returns:
1951            A 16-character lowercase hexadecimal string
1952        """
1953        return format(span_id_int, "016x")
1954
1955    @staticmethod
1956    def _format_otel_trace_id(trace_id_int: int) -> str:
1957        """Format an integer trace ID to a 32-character lowercase hex string.
1958
1959        Internal method to convert an OpenTelemetry integer trace ID to the standard
1960        W3C Trace Context format (32-character lowercase hex string).
1961
1962        Args:
1963            trace_id_int: 128-bit integer representing a trace ID
1964
1965        Returns:
1966            A 32-character lowercase hexadecimal string
1967        """
1968        return format(trace_id_int, "032x")
1969
1970    @overload
1971    def create_score(
1972        self,
1973        *,
1974        name: str,
1975        value: float,
1976        session_id: Optional[str] = None,
1977        dataset_run_id: Optional[str] = None,
1978        trace_id: Optional[str] = None,
1979        observation_id: Optional[str] = None,
1980        score_id: Optional[str] = None,
1981        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
1982        comment: Optional[str] = None,
1983        config_id: Optional[str] = None,
1984        metadata: Optional[Any] = None,
1985    ) -> None: ...
1986
1987    @overload
1988    def create_score(
1989        self,
1990        *,
1991        name: str,
1992        value: str,
1993        session_id: Optional[str] = None,
1994        dataset_run_id: Optional[str] = None,
1995        trace_id: Optional[str] = None,
1996        score_id: Optional[str] = None,
1997        observation_id: Optional[str] = None,
1998        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
1999        comment: Optional[str] = None,
2000        config_id: Optional[str] = None,
2001        metadata: Optional[Any] = None,
2002    ) -> None: ...
2003
2004    def create_score(
2005        self,
2006        *,
2007        name: str,
2008        value: Union[float, str],
2009        session_id: Optional[str] = None,
2010        dataset_run_id: Optional[str] = None,
2011        trace_id: Optional[str] = None,
2012        observation_id: Optional[str] = None,
2013        score_id: Optional[str] = None,
2014        data_type: Optional[ScoreDataType] = None,
2015        comment: Optional[str] = None,
2016        config_id: Optional[str] = None,
2017        metadata: Optional[Any] = None,
2018    ) -> None:
2019        """Create a score for a specific trace or observation.
2020
2021        This method creates a score for evaluating a Langfuse trace or observation. Scores can be
2022        used to track quality metrics, user feedback, or automated evaluations.
2023
2024        Args:
2025            name: Name of the score (e.g., "relevance", "accuracy")
2026            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2027            session_id: ID of the Langfuse session to associate the score with
2028            dataset_run_id: ID of the Langfuse dataset run to associate the score with
2029            trace_id: ID of the Langfuse trace to associate the score with
2030            observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
2031            score_id: Optional custom ID for the score (auto-generated if not provided)
2032            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2033            comment: Optional comment or explanation for the score
2034            config_id: Optional ID of a score config defined in Langfuse
2035            metadata: Optional metadata to be attached to the score
2036
2037        Example:
2038            ```python
2039            # Create a numeric score for accuracy
2040            langfuse.create_score(
2041                name="accuracy",
2042                value=0.92,
2043                trace_id="abcdef1234567890abcdef1234567890",
2044                data_type="NUMERIC",
2045                comment="High accuracy with minor irrelevant details"
2046            )
2047
2048            # Create a categorical score for sentiment
2049            langfuse.create_score(
2050                name="sentiment",
2051                value="positive",
2052                trace_id="abcdef1234567890abcdef1234567890",
2053                observation_id="abcdef1234567890",
2054                data_type="CATEGORICAL"
2055            )
2056            ```
2057        """
2058        if not self._tracing_enabled:
2059            return
2060
2061        score_id = score_id or self._create_observation_id()
2062
2063        try:
2064            new_body = ScoreBody(
2065                id=score_id,
2066                sessionId=session_id,
2067                datasetRunId=dataset_run_id,
2068                traceId=trace_id,
2069                observationId=observation_id,
2070                name=name,
2071                value=value,
2072                dataType=data_type,  # type: ignore
2073                comment=comment,
2074                configId=config_id,
2075                environment=self._environment,
2076                metadata=metadata,
2077            )
2078
2079            event = {
2080                "id": self.create_trace_id(),
2081                "type": "score-create",
2082                "timestamp": _get_timestamp(),
2083                "body": new_body,
2084            }
2085
2086            if self._resources is not None:
2087                # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar
2088                force_sample = (
2089                    not self._is_valid_trace_id(trace_id) if trace_id else True
2090                )
2091
2092                self._resources.add_score_task(
2093                    event,
2094                    force_sample=force_sample,
2095                )
2096
2097        except Exception as e:
2098            langfuse_logger.exception(
2099                f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}"
2100            )
2101
2102    @overload
2103    def score_current_span(
2104        self,
2105        *,
2106        name: str,
2107        value: float,
2108        score_id: Optional[str] = None,
2109        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
2110        comment: Optional[str] = None,
2111        config_id: Optional[str] = None,
2112    ) -> None: ...
2113
2114    @overload
2115    def score_current_span(
2116        self,
2117        *,
2118        name: str,
2119        value: str,
2120        score_id: Optional[str] = None,
2121        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
2122        comment: Optional[str] = None,
2123        config_id: Optional[str] = None,
2124    ) -> None: ...
2125
2126    def score_current_span(
2127        self,
2128        *,
2129        name: str,
2130        value: Union[float, str],
2131        score_id: Optional[str] = None,
2132        data_type: Optional[ScoreDataType] = None,
2133        comment: Optional[str] = None,
2134        config_id: Optional[str] = None,
2135    ) -> None:
2136        """Create a score for the current active span.
2137
2138        This method scores the currently active span in the context. It's a convenient
2139        way to score the current operation without needing to know its trace and span IDs.
2140
2141        Args:
2142            name: Name of the score (e.g., "relevance", "accuracy")
2143            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2144            score_id: Optional custom ID for the score (auto-generated if not provided)
2145            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2146            comment: Optional comment or explanation for the score
2147            config_id: Optional ID of a score config defined in Langfuse
2148
2149        Example:
2150            ```python
2151            with langfuse.start_as_current_generation(name="answer-query") as generation:
2152                # Generate answer
2153                response = generate_answer(...)
2154                generation.update(output=response)
2155
2156                # Score the generation
2157                langfuse.score_current_span(
2158                    name="relevance",
2159                    value=0.85,
2160                    data_type="NUMERIC",
2161                    comment="Mostly relevant but contains some tangential information"
2162                )
2163            ```
2164        """
2165        current_span = self._get_current_otel_span()
2166
2167        if current_span is not None:
2168            trace_id = self._get_otel_trace_id(current_span)
2169            observation_id = self._get_otel_span_id(current_span)
2170
2171            langfuse_logger.info(
2172                f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}"
2173            )
2174
2175            self.create_score(
2176                trace_id=trace_id,
2177                observation_id=observation_id,
2178                name=name,
2179                value=cast(str, value),
2180                score_id=score_id,
2181                data_type=cast(Literal["CATEGORICAL"], data_type),
2182                comment=comment,
2183                config_id=config_id,
2184            )
2185
2186    @overload
2187    def score_current_trace(
2188        self,
2189        *,
2190        name: str,
2191        value: float,
2192        score_id: Optional[str] = None,
2193        data_type: Optional[Literal["NUMERIC", "BOOLEAN"]] = None,
2194        comment: Optional[str] = None,
2195        config_id: Optional[str] = None,
2196    ) -> None: ...
2197
2198    @overload
2199    def score_current_trace(
2200        self,
2201        *,
2202        name: str,
2203        value: str,
2204        score_id: Optional[str] = None,
2205        data_type: Optional[Literal["CATEGORICAL"]] = "CATEGORICAL",
2206        comment: Optional[str] = None,
2207        config_id: Optional[str] = None,
2208    ) -> None: ...
2209
2210    def score_current_trace(
2211        self,
2212        *,
2213        name: str,
2214        value: Union[float, str],
2215        score_id: Optional[str] = None,
2216        data_type: Optional[ScoreDataType] = None,
2217        comment: Optional[str] = None,
2218        config_id: Optional[str] = None,
2219    ) -> None:
2220        """Create a score for the current trace.
2221
2222        This method scores the trace of the currently active span. Unlike score_current_span,
2223        this method associates the score with the entire trace rather than a specific span.
2224        It's useful for scoring overall performance or quality of the entire operation.
2225
2226        Args:
2227            name: Name of the score (e.g., "user_satisfaction", "overall_quality")
2228            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2229            score_id: Optional custom ID for the score (auto-generated if not provided)
2230            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2231            comment: Optional comment or explanation for the score
2232            config_id: Optional ID of a score config defined in Langfuse
2233
2234        Example:
2235            ```python
2236            with langfuse.start_as_current_span(name="process-user-request") as span:
2237                # Process request
2238                result = process_complete_request()
2239                span.update(output=result)
2240
2241                # Score the overall trace
2242                langfuse.score_current_trace(
2243                    name="overall_quality",
2244                    value=0.95,
2245                    data_type="NUMERIC",
2246                    comment="High quality end-to-end response"
2247                )
2248            ```
2249        """
2250        current_span = self._get_current_otel_span()
2251
2252        if current_span is not None:
2253            trace_id = self._get_otel_trace_id(current_span)
2254
2255            langfuse_logger.info(
2256                f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}"
2257            )
2258
2259            self.create_score(
2260                trace_id=trace_id,
2261                name=name,
2262                value=cast(str, value),
2263                score_id=score_id,
2264                data_type=cast(Literal["CATEGORICAL"], data_type),
2265                comment=comment,
2266                config_id=config_id,
2267            )
2268
2269    def flush(self) -> None:
2270        """Force flush all pending spans and events to the Langfuse API.
2271
2272        This method manually flushes any pending spans, scores, and other events to the
2273        Langfuse API. It's useful in scenarios where you want to ensure all data is sent
2274        before proceeding, without waiting for the automatic flush interval.
2275
2276        Example:
2277            ```python
2278            # Record some spans and scores
2279            with langfuse.start_as_current_span(name="operation") as span:
2280                # Do work...
2281                pass
2282
2283            # Ensure all data is sent to Langfuse before proceeding
2284            langfuse.flush()
2285
2286            # Continue with other work
2287            ```
2288        """
2289        if self._resources is not None:
2290            self._resources.flush()
2291
2292    def shutdown(self) -> None:
2293        """Shut down the Langfuse client and flush all pending data.
2294
2295        This method cleanly shuts down the Langfuse client, ensuring all pending data
2296        is flushed to the API and all background threads are properly terminated.
2297
2298        It's important to call this method when your application is shutting down to
2299        prevent data loss and resource leaks. For most applications, using the client
2300        as a context manager or relying on the automatic shutdown via atexit is sufficient.
2301
2302        Example:
2303            ```python
2304            # Initialize Langfuse
2305            langfuse = Langfuse(public_key="...", secret_key="...")
2306
2307            # Use Langfuse throughout your application
2308            # ...
2309
2310            # When application is shutting down
2311            langfuse.shutdown()
2312            ```
2313        """
2314        if self._resources is not None:
2315            self._resources.shutdown()
2316
2317    def get_current_trace_id(self) -> Optional[str]:
2318        """Get the trace ID of the current active span.
2319
2320        This method retrieves the trace ID from the currently active span in the context.
2321        It can be used to get the trace ID for referencing in logs, external systems,
2322        or for creating related operations.
2323
2324        Returns:
2325            The current trace ID as a 32-character lowercase hexadecimal string,
2326            or None if there is no active span.
2327
2328        Example:
2329            ```python
2330            with langfuse.start_as_current_span(name="process-request") as span:
2331                # Get the current trace ID for reference
2332                trace_id = langfuse.get_current_trace_id()
2333
2334                # Use it for external correlation
2335                log.info(f"Processing request with trace_id: {trace_id}")
2336
2337                # Or pass to another system
2338                external_system.process(data, trace_id=trace_id)
2339            ```
2340        """
2341        if not self._tracing_enabled:
2342            langfuse_logger.debug(
2343                "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode."
2344            )
2345            return None
2346
2347        current_otel_span = self._get_current_otel_span()
2348
2349        return self._get_otel_trace_id(current_otel_span) if current_otel_span else None
2350
2351    def get_current_observation_id(self) -> Optional[str]:
2352        """Get the observation ID (span ID) of the current active span.
2353
2354        This method retrieves the observation ID from the currently active span in the context.
2355        It can be used to get the observation ID for referencing in logs, external systems,
2356        or for creating scores or other related operations.
2357
2358        Returns:
2359            The current observation ID as a 16-character lowercase hexadecimal string,
2360            or None if there is no active span.
2361
2362        Example:
2363            ```python
2364            with langfuse.start_as_current_span(name="process-user-query") as span:
2365                # Get the current observation ID
2366                observation_id = langfuse.get_current_observation_id()
2367
2368                # Store it for later reference
2369                cache.set(f"query_{query_id}_observation", observation_id)
2370
2371                # Process the query...
2372            ```
2373        """
2374        if not self._tracing_enabled:
2375            langfuse_logger.debug(
2376                "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode."
2377            )
2378            return None
2379
2380        current_otel_span = self._get_current_otel_span()
2381
2382        return self._get_otel_span_id(current_otel_span) if current_otel_span else None
2383
2384    def _get_project_id(self) -> Optional[str]:
2385        """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys."""
2386        if not self._project_id:
2387            proj = self.api.projects.get()
2388            if not proj.data or not proj.data[0].id:
2389                return None
2390
2391            self._project_id = proj.data[0].id
2392
2393        return self._project_id
2394
2395    def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
2396        """Get the URL to view a trace in the Langfuse UI.
2397
2398        This method generates a URL that links directly to a trace in the Langfuse UI.
2399        It's useful for providing links in logs, notifications, or debugging tools.
2400
2401        Args:
2402            trace_id: Optional trace ID to generate a URL for. If not provided,
2403                     the trace ID of the current active span will be used.
2404
2405        Returns:
2406            A URL string pointing to the trace in the Langfuse UI,
2407            or None if the project ID couldn't be retrieved or no trace ID is available.
2408
2409        Example:
2410            ```python
2411            # Get URL for the current trace
2412            with langfuse.start_as_current_span(name="process-request") as span:
2413                trace_url = langfuse.get_trace_url()
2414                log.info(f"Processing trace: {trace_url}")
2415
2416            # Get URL for a specific trace
2417            specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
2418            send_notification(f"Review needed for trace: {specific_trace_url}")
2419            ```
2420        """
2421        project_id = self._get_project_id()
2422        final_trace_id = trace_id or self.get_current_trace_id()
2423
2424        return (
2425            f"{self._base_url}/project/{project_id}/traces/{final_trace_id}"
2426            if project_id and final_trace_id
2427            else None
2428        )
2429
2430    def get_dataset(
2431        self, name: str, *, fetch_items_page_size: Optional[int] = 50
2432    ) -> "DatasetClient":
2433        """Fetch a dataset by its name.
2434
2435        Args:
2436            name (str): The name of the dataset to fetch.
2437            fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
2438
2439        Returns:
2440            DatasetClient: The dataset with the given name.
2441        """
2442        try:
2443            langfuse_logger.debug(f"Getting datasets {name}")
2444            dataset = self.api.datasets.get(dataset_name=name)
2445
2446            dataset_items = []
2447            page = 1
2448
2449            while True:
2450                new_items = self.api.dataset_items.list(
2451                    dataset_name=self._url_encode(name, is_url_param=True),
2452                    page=page,
2453                    limit=fetch_items_page_size,
2454                )
2455                dataset_items.extend(new_items.data)
2456
2457                if new_items.meta.total_pages <= page:
2458                    break
2459
2460                page += 1
2461
2462            items = [DatasetItemClient(i, langfuse=self) for i in dataset_items]
2463
2464            return DatasetClient(dataset, items=items)
2465
2466        except Error as e:
2467            handle_fern_exception(e)
2468            raise e
2469
2470    def run_experiment(
2471        self,
2472        *,
2473        name: str,
2474        run_name: Optional[str] = None,
2475        description: Optional[str] = None,
2476        data: ExperimentData,
2477        task: TaskFunction,
2478        evaluators: List[EvaluatorFunction] = [],
2479        run_evaluators: List[RunEvaluatorFunction] = [],
2480        max_concurrency: int = 50,
2481        metadata: Optional[Dict[str, Any]] = None,
2482    ) -> ExperimentResult:
2483        """Run an experiment on a dataset with automatic tracing and evaluation.
2484
2485        This method executes a task function on each item in the provided dataset,
2486        automatically traces all executions with Langfuse for observability, runs
2487        item-level and run-level evaluators on the outputs, and returns comprehensive
2488        results with evaluation metrics.
2489
2490        The experiment system provides:
2491        - Automatic tracing of all task executions
2492        - Concurrent processing with configurable limits
2493        - Comprehensive error handling that isolates failures
2494        - Integration with Langfuse datasets for experiment tracking
2495        - Flexible evaluation framework supporting both sync and async evaluators
2496
2497        Args:
2498            name: Human-readable name for the experiment. Used for identification
2499                in the Langfuse UI.
2500            run_name: Optional exact name for the experiment run. If provided, this will be
2501                used as the exact dataset run name if the `data` contains Langfuse dataset items.
2502                If not provided, this will default to the experiment name appended with an ISO timestamp.
2503            description: Optional description explaining the experiment's purpose,
2504                methodology, or expected outcomes.
2505            data: Array of data items to process. Can be either:
2506                - List of dict-like items with 'input', 'expected_output', 'metadata' keys
2507                - List of Langfuse DatasetItem objects from dataset.items
2508            task: Function that processes each data item and returns output.
2509                Must accept 'item' as keyword argument and can return sync or async results.
2510                The task function signature should be: task(*, item, **kwargs) -> Any
2511            evaluators: List of functions to evaluate each item's output individually.
2512                Each evaluator receives input, output, expected_output, and metadata.
2513                Can return single Evaluation dict or list of Evaluation dicts.
2514            run_evaluators: List of functions to evaluate the entire experiment run.
2515                Each run evaluator receives all item_results and can compute aggregate metrics.
2516                Useful for calculating averages, distributions, or cross-item comparisons.
2517            max_concurrency: Maximum number of concurrent task executions (default: 50).
2518                Controls the number of items processed simultaneously. Adjust based on
2519                API rate limits and system resources.
2520            metadata: Optional metadata dictionary to attach to all experiment traces.
2521                This metadata will be included in every trace created during the experiment.
2522                If `data` are Langfuse dataset items, the metadata will be attached to the dataset run, too.
2523
2524        Returns:
2525            ExperimentResult containing:
2526            - run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset.
2527            - item_results: List of results for each processed item with outputs and evaluations
2528            - run_evaluations: List of aggregate evaluation results for the entire run
2529            - dataset_run_id: ID of the dataset run (if using Langfuse datasets)
2530            - dataset_run_url: Direct URL to view results in Langfuse UI (if applicable)
2531
2532        Raises:
2533            ValueError: If required parameters are missing or invalid
2534            Exception: If experiment setup fails (individual item failures are handled gracefully)
2535
2536        Examples:
2537            Basic experiment with local data:
2538            ```python
2539            def summarize_text(*, item, **kwargs):
2540                return f"Summary: {item['input'][:50]}..."
2541
2542            def length_evaluator(*, input, output, expected_output=None, **kwargs):
2543                return {
2544                    "name": "output_length",
2545                    "value": len(output),
2546                    "comment": f"Output contains {len(output)} characters"
2547                }
2548
2549            result = langfuse.run_experiment(
2550                name="Text Summarization Test",
2551                description="Evaluate summarization quality and length",
2552                data=[
2553                    {"input": "Long article text...", "expected_output": "Expected summary"},
2554                    {"input": "Another article...", "expected_output": "Another summary"}
2555                ],
2556                task=summarize_text,
2557                evaluators=[length_evaluator]
2558            )
2559
2560            print(f"Processed {len(result.item_results)} items")
2561            for item_result in result.item_results:
2562                print(f"Input: {item_result.item['input']}")
2563                print(f"Output: {item_result.output}")
2564                print(f"Evaluations: {item_result.evaluations}")
2565            ```
2566
2567            Advanced experiment with async task and multiple evaluators:
2568            ```python
2569            async def llm_task(*, item, **kwargs):
2570                # Simulate async LLM call
2571                response = await openai_client.chat.completions.create(
2572                    model="gpt-4",
2573                    messages=[{"role": "user", "content": item["input"]}]
2574                )
2575                return response.choices[0].message.content
2576
2577            def accuracy_evaluator(*, input, output, expected_output=None, **kwargs):
2578                if expected_output and expected_output.lower() in output.lower():
2579                    return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"}
2580                return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"}
2581
2582            def toxicity_evaluator(*, input, output, expected_output=None, **kwargs):
2583                # Simulate toxicity check
2584                toxicity_score = check_toxicity(output)  # Your toxicity checker
2585                return {
2586                    "name": "toxicity",
2587                    "value": toxicity_score,
2588                    "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}"
2589                }
2590
2591            def average_accuracy(*, item_results, **kwargs):
2592                accuracies = [
2593                    eval.value for result in item_results
2594                    for eval in result.evaluations
2595                    if eval.name == "accuracy"
2596                ]
2597                return {
2598                    "name": "average_accuracy",
2599                    "value": sum(accuracies) / len(accuracies) if accuracies else 0,
2600                    "comment": f"Average accuracy across {len(accuracies)} items"
2601                }
2602
2603            result = langfuse.run_experiment(
2604                name="LLM Safety and Accuracy Test",
2605                description="Evaluate model accuracy and safety across diverse prompts",
2606                data=test_dataset,  # Your dataset items
2607                task=llm_task,
2608                evaluators=[accuracy_evaluator, toxicity_evaluator],
2609                run_evaluators=[average_accuracy],
2610                max_concurrency=5,  # Limit concurrent API calls
2611                metadata={"model": "gpt-4", "temperature": 0.7}
2612            )
2613            ```
2614
2615            Using with Langfuse datasets:
2616            ```python
2617            # Get dataset from Langfuse
2618            dataset = langfuse.get_dataset("my-eval-dataset")
2619
2620            result = dataset.run_experiment(
2621                name="Production Model Evaluation",
2622                description="Monthly evaluation of production model performance",
2623                task=my_production_task,
2624                evaluators=[accuracy_evaluator, latency_evaluator]
2625            )
2626
2627            # Results automatically linked to dataset in Langfuse UI
2628            print(f"View results: {result['dataset_run_url']}")
2629            ```
2630
2631        Note:
2632            - Task and evaluator functions can be either synchronous or asynchronous
2633            - Individual item failures are logged but don't stop the experiment
2634            - All executions are automatically traced and visible in Langfuse UI
2635            - When using Langfuse datasets, results are automatically linked for easy comparison
2636            - This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.)
2637            - Async execution is handled automatically with smart event loop detection
2638        """
2639        return cast(
2640            ExperimentResult,
2641            run_async_safely(
2642                self._run_experiment_async(
2643                    name=name,
2644                    run_name=self._create_experiment_run_name(
2645                        name=name, run_name=run_name
2646                    ),
2647                    description=description,
2648                    data=data,
2649                    task=task,
2650                    evaluators=evaluators or [],
2651                    run_evaluators=run_evaluators or [],
2652                    max_concurrency=max_concurrency,
2653                    metadata=metadata or {},
2654                ),
2655            ),
2656        )
2657
2658    async def _run_experiment_async(
2659        self,
2660        *,
2661        name: str,
2662        run_name: str,
2663        description: Optional[str],
2664        data: ExperimentData,
2665        task: TaskFunction,
2666        evaluators: List[EvaluatorFunction],
2667        run_evaluators: List[RunEvaluatorFunction],
2668        max_concurrency: int,
2669        metadata: Dict[str, Any],
2670    ) -> ExperimentResult:
2671        langfuse_logger.debug(
2672            f"Starting experiment '{name}' run '{run_name}' with {len(data)} items"
2673        )
2674
2675        # Set up concurrency control
2676        semaphore = asyncio.Semaphore(max_concurrency)
2677
2678        # Process all items
2679        async def process_item(item: ExperimentItem) -> ExperimentItemResult:
2680            async with semaphore:
2681                return await self._process_experiment_item(
2682                    item, task, evaluators, name, run_name, description, metadata
2683                )
2684
2685        # Run all items concurrently
2686        tasks = [process_item(item) for item in data]
2687        item_results = await asyncio.gather(*tasks, return_exceptions=True)
2688
2689        # Filter out any exceptions and log errors
2690        valid_results: List[ExperimentItemResult] = []
2691        for i, result in enumerate(item_results):
2692            if isinstance(result, Exception):
2693                langfuse_logger.error(f"Item {i} failed: {result}")
2694            elif isinstance(result, ExperimentItemResult):
2695                valid_results.append(result)  # type: ignore
2696
2697        # Run experiment-level evaluators
2698        run_evaluations: List[Evaluation] = []
2699        for run_evaluator in run_evaluators:
2700            try:
2701                evaluations = await _run_evaluator(
2702                    run_evaluator, item_results=valid_results
2703                )
2704                run_evaluations.extend(evaluations)
2705            except Exception as e:
2706                langfuse_logger.error(f"Run evaluator failed: {e}")
2707
2708        # Generate dataset run URL if applicable
2709        dataset_run_id = valid_results[0].dataset_run_id if valid_results else None
2710        dataset_run_url = None
2711        if dataset_run_id and data:
2712            try:
2713                # Check if the first item has dataset_id (for DatasetItem objects)
2714                first_item = data[0]
2715                dataset_id = None
2716
2717                if hasattr(first_item, "dataset_id"):
2718                    dataset_id = getattr(first_item, "dataset_id", None)
2719
2720                if dataset_id:
2721                    project_id = self._get_project_id()
2722
2723                    if project_id:
2724                        dataset_run_url = f"{self._base_url}/project/{project_id}/datasets/{dataset_id}/runs/{dataset_run_id}"
2725
2726            except Exception:
2727                pass  # URL generation is optional
2728
2729        # Store run-level evaluations as scores
2730        for evaluation in run_evaluations:
2731            try:
2732                if dataset_run_id:
2733                    self.create_score(
2734                        dataset_run_id=dataset_run_id,
2735                        name=evaluation.name or "<unknown>",
2736                        value=evaluation.value,  # type: ignore
2737                        comment=evaluation.comment,
2738                        metadata=evaluation.metadata,
2739                        data_type=evaluation.data_type,  # type: ignore
2740                        config_id=evaluation.config_id,
2741                    )
2742
2743            except Exception as e:
2744                langfuse_logger.error(f"Failed to store run evaluation: {e}")
2745
2746        # Flush scores and traces
2747        self.flush()
2748
2749        return ExperimentResult(
2750            name=name,
2751            run_name=run_name,
2752            description=description,
2753            item_results=valid_results,
2754            run_evaluations=run_evaluations,
2755            dataset_run_id=dataset_run_id,
2756            dataset_run_url=dataset_run_url,
2757        )
2758
2759    async def _process_experiment_item(
2760        self,
2761        item: ExperimentItem,
2762        task: Callable,
2763        evaluators: List[Callable],
2764        experiment_name: str,
2765        experiment_run_name: str,
2766        experiment_description: Optional[str],
2767        experiment_metadata: Dict[str, Any],
2768    ) -> ExperimentItemResult:
2769        # Execute task with tracing
2770        span_name = "experiment-item-run"
2771
2772        with self.start_as_current_span(name=span_name) as span:
2773            try:
2774                output = await _run_task(task, item)
2775
2776                input_data = (
2777                    item.get("input")
2778                    if isinstance(item, dict)
2779                    else getattr(item, "input", None)
2780                )
2781
2782                item_metadata: Dict[str, Any] = {}
2783
2784                if isinstance(item, dict):
2785                    item_metadata = item.get("metadata", None) or {}
2786
2787                final_metadata = {
2788                    "experiment_name": experiment_name,
2789                    "experiment_run_name": experiment_run_name,
2790                    **experiment_metadata,
2791                }
2792
2793                if (
2794                    not isinstance(item, dict)
2795                    and hasattr(item, "dataset_id")
2796                    and hasattr(item, "id")
2797                ):
2798                    final_metadata.update(
2799                        {"dataset_id": item.dataset_id, "dataset_item_id": item.id}
2800                    )
2801
2802                if isinstance(item_metadata, dict):
2803                    final_metadata.update(item_metadata)
2804
2805                span.update(
2806                    input=input_data,
2807                    output=output,
2808                    metadata=final_metadata,
2809                )
2810
2811                # Get trace ID for linking
2812                trace_id = span.trace_id
2813                dataset_run_id = None
2814
2815                # Link to dataset run if this is a dataset item
2816                if hasattr(item, "id") and hasattr(item, "dataset_id"):
2817                    try:
2818                        dataset_run_item = self.api.dataset_run_items.create(
2819                            request=CreateDatasetRunItemRequest(
2820                                runName=experiment_run_name,
2821                                runDescription=experiment_description,
2822                                metadata=experiment_metadata,
2823                                datasetItemId=item.id,  # type: ignore
2824                                traceId=trace_id,
2825                                observationId=span.id,
2826                            )
2827                        )
2828
2829                        dataset_run_id = dataset_run_item.dataset_run_id
2830
2831                    except Exception as e:
2832                        langfuse_logger.error(f"Failed to create dataset run item: {e}")
2833
2834                # Run evaluators
2835                evaluations = []
2836
2837                for evaluator in evaluators:
2838                    try:
2839                        expected_output = None
2840
2841                        if isinstance(item, dict):
2842                            expected_output = item.get("expected_output")
2843                        elif hasattr(item, "expected_output"):
2844                            expected_output = item.expected_output
2845
2846                        eval_metadata: Optional[Dict[str, Any]] = None
2847
2848                        if isinstance(item, dict):
2849                            eval_metadata = item.get("metadata")
2850                        elif hasattr(item, "metadata"):
2851                            eval_metadata = item.metadata
2852
2853                        eval_results = await _run_evaluator(
2854                            evaluator,
2855                            input=input_data,
2856                            output=output,
2857                            expected_output=expected_output,
2858                            metadata=eval_metadata,
2859                        )
2860                        evaluations.extend(eval_results)
2861
2862                        # Store evaluations as scores
2863                        for evaluation in eval_results:
2864                            self.create_score(
2865                                trace_id=trace_id,
2866                                name=evaluation.name,
2867                                value=evaluation.value,  # type: ignore
2868                                comment=evaluation.comment,
2869                                metadata=evaluation.metadata,
2870                                config_id=evaluation.config_id,
2871                                data_type=evaluation.data_type,  # type: ignore
2872                            )
2873
2874                    except Exception as e:
2875                        langfuse_logger.error(f"Evaluator failed: {e}")
2876
2877                return ExperimentItemResult(
2878                    item=item,
2879                    output=output,
2880                    evaluations=evaluations,
2881                    trace_id=trace_id,
2882                    dataset_run_id=dataset_run_id,
2883                )
2884
2885            except Exception as e:
2886                span.update(
2887                    output=f"Error: {str(e)}", level="ERROR", status_message=str(e)
2888                )
2889                raise e
2890
2891    def _create_experiment_run_name(
2892        self, *, name: Optional[str] = None, run_name: Optional[str] = None
2893    ) -> str:
2894        if run_name:
2895            return run_name
2896
2897        iso_timestamp = _get_timestamp().isoformat().replace("+00:00", "Z")
2898
2899        return f"{name} - {iso_timestamp}"
2900
2901    def auth_check(self) -> bool:
2902        """Check if the provided credentials (public and secret key) are valid.
2903
2904        Raises:
2905            Exception: If no projects were found for the provided credentials.
2906
2907        Note:
2908            This method is blocking. It is discouraged to use it in production code.
2909        """
2910        try:
2911            projects = self.api.projects.get()
2912            langfuse_logger.debug(
2913                f"Auth check successful, found {len(projects.data)} projects"
2914            )
2915            if len(projects.data) == 0:
2916                raise Exception(
2917                    "Auth check failed, no project found for the keys provided."
2918                )
2919            return True
2920
2921        except AttributeError as e:
2922            langfuse_logger.warning(
2923                f"Auth check failed: Client not properly initialized. Error: {e}"
2924            )
2925            return False
2926
2927        except Error as e:
2928            handle_fern_exception(e)
2929            raise e
2930
2931    def create_dataset(
2932        self,
2933        *,
2934        name: str,
2935        description: Optional[str] = None,
2936        metadata: Optional[Any] = None,
2937    ) -> Dataset:
2938        """Create a dataset with the given name on Langfuse.
2939
2940        Args:
2941            name: Name of the dataset to create.
2942            description: Description of the dataset. Defaults to None.
2943            metadata: Additional metadata. Defaults to None.
2944
2945        Returns:
2946            Dataset: The created dataset as returned by the Langfuse API.
2947        """
2948        try:
2949            body = CreateDatasetRequest(
2950                name=name, description=description, metadata=metadata
2951            )
2952            langfuse_logger.debug(f"Creating datasets {body}")
2953
2954            return self.api.datasets.create(request=body)
2955
2956        except Error as e:
2957            handle_fern_exception(e)
2958            raise e
2959
2960    def create_dataset_item(
2961        self,
2962        *,
2963        dataset_name: str,
2964        input: Optional[Any] = None,
2965        expected_output: Optional[Any] = None,
2966        metadata: Optional[Any] = None,
2967        source_trace_id: Optional[str] = None,
2968        source_observation_id: Optional[str] = None,
2969        status: Optional[DatasetStatus] = None,
2970        id: Optional[str] = None,
2971    ) -> DatasetItem:
2972        """Create a dataset item.
2973
2974        Upserts if an item with id already exists.
2975
2976        Args:
2977            dataset_name: Name of the dataset in which the dataset item should be created.
2978            input: Input data. Defaults to None. Can contain any dict, list or scalar.
2979            expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
2980            metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
2981            source_trace_id: Id of the source trace. Defaults to None.
2982            source_observation_id: Id of the source observation. Defaults to None.
2983            status: Status of the dataset item. Defaults to ACTIVE for newly created items.
2984            id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
2985
2986        Returns:
2987            DatasetItem: The created dataset item as returned by the Langfuse API.
2988
2989        Example:
2990            ```python
2991            from langfuse import Langfuse
2992
2993            langfuse = Langfuse()
2994
2995            # Uploading items to the Langfuse dataset named "capital_cities"
2996            langfuse.create_dataset_item(
2997                dataset_name="capital_cities",
2998                input={"input": {"country": "Italy"}},
2999                expected_output={"expected_output": "Rome"},
3000                metadata={"foo": "bar"}
3001            )
3002            ```
3003        """
3004        try:
3005            body = CreateDatasetItemRequest(
3006                datasetName=dataset_name,
3007                input=input,
3008                expectedOutput=expected_output,
3009                metadata=metadata,
3010                sourceTraceId=source_trace_id,
3011                sourceObservationId=source_observation_id,
3012                status=status,
3013                id=id,
3014            )
3015            langfuse_logger.debug(f"Creating dataset item {body}")
3016            return self.api.dataset_items.create(request=body)
3017        except Error as e:
3018            handle_fern_exception(e)
3019            raise e
3020
3021    def resolve_media_references(
3022        self,
3023        *,
3024        obj: Any,
3025        resolve_with: Literal["base64_data_uri"],
3026        max_depth: int = 10,
3027        content_fetch_timeout_seconds: int = 5,
3028    ) -> Any:
3029        """Replace media reference strings in an object with base64 data URIs.
3030
3031        This method recursively traverses an object (up to max_depth) looking for media reference strings
3032        in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using
3033        the provided Langfuse client and replaces the reference string with a base64 data URI.
3034
3035        If fetching media content fails for a reference string, a warning is logged and the reference
3036        string is left unchanged.
3037
3038        Args:
3039            obj: The object to process. Can be a primitive value, array, or nested object.
3040                If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
3041            resolve_with: The representation of the media content to replace the media reference string with.
3042                Currently only "base64_data_uri" is supported.
3043            max_depth: int: The maximum depth to traverse the object. Default is 10.
3044            content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
3045
3046        Returns:
3047            A deep copy of the input object with all media references replaced with base64 data URIs where possible.
3048            If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
3049
3050        Example:
3051            obj = {
3052                "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@",
3053                "nested": {
3054                    "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@"
3055                }
3056            }
3057
3058            result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
3059
3060            # Result:
3061            # {
3062            #     "image": "...",
3063            #     "nested": {
3064            #         "pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
3065            #     }
3066            # }
3067        """
3068        return LangfuseMedia.resolve_media_references(
3069            langfuse_client=self,
3070            obj=obj,
3071            resolve_with=resolve_with,
3072            max_depth=max_depth,
3073            content_fetch_timeout_seconds=content_fetch_timeout_seconds,
3074        )
3075
3076    @overload
3077    def get_prompt(
3078        self,
3079        name: str,
3080        *,
3081        version: Optional[int] = None,
3082        label: Optional[str] = None,
3083        type: Literal["chat"],
3084        cache_ttl_seconds: Optional[int] = None,
3085        fallback: Optional[List[ChatMessageDict]] = None,
3086        max_retries: Optional[int] = None,
3087        fetch_timeout_seconds: Optional[int] = None,
3088    ) -> ChatPromptClient: ...
3089
3090    @overload
3091    def get_prompt(
3092        self,
3093        name: str,
3094        *,
3095        version: Optional[int] = None,
3096        label: Optional[str] = None,
3097        type: Literal["text"] = "text",
3098        cache_ttl_seconds: Optional[int] = None,
3099        fallback: Optional[str] = None,
3100        max_retries: Optional[int] = None,
3101        fetch_timeout_seconds: Optional[int] = None,
3102    ) -> TextPromptClient: ...
3103
3104    def get_prompt(
3105        self,
3106        name: str,
3107        *,
3108        version: Optional[int] = None,
3109        label: Optional[str] = None,
3110        type: Literal["chat", "text"] = "text",
3111        cache_ttl_seconds: Optional[int] = None,
3112        fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None,
3113        max_retries: Optional[int] = None,
3114        fetch_timeout_seconds: Optional[int] = None,
3115    ) -> PromptClient:
3116        """Get a prompt.
3117
3118        This method attempts to fetch the requested prompt from the local cache. If the prompt is not found
3119        in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again
3120        and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will
3121        return the expired prompt as a fallback.
3122
3123        Args:
3124            name (str): The name of the prompt to retrieve.
3125
3126        Keyword Args:
3127            version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
3128            label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
3129            cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a
3130            keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0.
3131            type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text".
3132            fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None.
3133            max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds.
3134            fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
3135
3136        Returns:
3137            The prompt object retrieved from the cache or directly fetched if not cached or expired of type
3138            - TextPromptClient, if type argument is 'text'.
3139            - ChatPromptClient, if type argument is 'chat'.
3140
3141        Raises:
3142            Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
3143            expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
3144        """
3145        if self._resources is None:
3146            raise Error(
3147                "SDK is not correctly initialized. Check the init logs for more details."
3148            )
3149        if version is not None and label is not None:
3150            raise ValueError("Cannot specify both version and label at the same time.")
3151
3152        if not name:
3153            raise ValueError("Prompt name cannot be empty.")
3154
3155        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
3156        bounded_max_retries = self._get_bounded_max_retries(
3157            max_retries, default_max_retries=2, max_retries_upper_bound=4
3158        )
3159
3160        langfuse_logger.debug(f"Getting prompt '{cache_key}'")
3161        cached_prompt = self._resources.prompt_cache.get(cache_key)
3162
3163        if cached_prompt is None or cache_ttl_seconds == 0:
3164            langfuse_logger.debug(
3165                f"Prompt '{cache_key}' not found in cache or caching disabled."
3166            )
3167            try:
3168                return self._fetch_prompt_and_update_cache(
3169                    name,
3170                    version=version,
3171                    label=label,
3172                    ttl_seconds=cache_ttl_seconds,
3173                    max_retries=bounded_max_retries,
3174                    fetch_timeout_seconds=fetch_timeout_seconds,
3175                )
3176            except Exception as e:
3177                if fallback:
3178                    langfuse_logger.warning(
3179                        f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}"
3180                    )
3181
3182                    fallback_client_args: Dict[str, Any] = {
3183                        "name": name,
3184                        "prompt": fallback,
3185                        "type": type,
3186                        "version": version or 0,
3187                        "config": {},
3188                        "labels": [label] if label else [],
3189                        "tags": [],
3190                    }
3191
3192                    if type == "text":
3193                        return TextPromptClient(
3194                            prompt=Prompt_Text(**fallback_client_args),
3195                            is_fallback=True,
3196                        )
3197
3198                    if type == "chat":
3199                        return ChatPromptClient(
3200                            prompt=Prompt_Chat(**fallback_client_args),
3201                            is_fallback=True,
3202                        )
3203
3204                raise e
3205
3206        if cached_prompt.is_expired():
3207            langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.")
3208            try:
3209                # refresh prompt in background thread, refresh_prompt deduplicates tasks
3210                langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.")
3211
3212                def refresh_task() -> None:
3213                    self._fetch_prompt_and_update_cache(
3214                        name,
3215                        version=version,
3216                        label=label,
3217                        ttl_seconds=cache_ttl_seconds,
3218                        max_retries=bounded_max_retries,
3219                        fetch_timeout_seconds=fetch_timeout_seconds,
3220                    )
3221
3222                self._resources.prompt_cache.add_refresh_prompt_task(
3223                    cache_key,
3224                    refresh_task,
3225                )
3226                langfuse_logger.debug(
3227                    f"Returning stale prompt '{cache_key}' from cache."
3228                )
3229                # return stale prompt
3230                return cached_prompt.value
3231
3232            except Exception as e:
3233                langfuse_logger.warning(
3234                    f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}"
3235                )
3236                # creation of refresh prompt task failed, return stale prompt
3237                return cached_prompt.value
3238
3239        return cached_prompt.value
3240
3241    def _fetch_prompt_and_update_cache(
3242        self,
3243        name: str,
3244        *,
3245        version: Optional[int] = None,
3246        label: Optional[str] = None,
3247        ttl_seconds: Optional[int] = None,
3248        max_retries: int,
3249        fetch_timeout_seconds: Optional[int],
3250    ) -> PromptClient:
3251        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
3252        langfuse_logger.debug(f"Fetching prompt '{cache_key}' from server...")
3253
3254        try:
3255
3256            @backoff.on_exception(
3257                backoff.constant, Exception, max_tries=max_retries + 1, logger=None
3258            )
3259            def fetch_prompts() -> Any:
3260                return self.api.prompts.get(
3261                    self._url_encode(name),
3262                    version=version,
3263                    label=label,
3264                    request_options={
3265                        "timeout_in_seconds": fetch_timeout_seconds,
3266                    }
3267                    if fetch_timeout_seconds is not None
3268                    else None,
3269                )
3270
3271            prompt_response = fetch_prompts()
3272
3273            prompt: PromptClient
3274            if prompt_response.type == "chat":
3275                prompt = ChatPromptClient(prompt_response)
3276            else:
3277                prompt = TextPromptClient(prompt_response)
3278
3279            if self._resources is not None:
3280                self._resources.prompt_cache.set(cache_key, prompt, ttl_seconds)
3281
3282            return prompt
3283
3284        except Exception as e:
3285            langfuse_logger.error(
3286                f"Error while fetching prompt '{cache_key}': {str(e)}"
3287            )
3288            raise e
3289
3290    def _get_bounded_max_retries(
3291        self,
3292        max_retries: Optional[int],
3293        *,
3294        default_max_retries: int = 2,
3295        max_retries_upper_bound: int = 4,
3296    ) -> int:
3297        if max_retries is None:
3298            return default_max_retries
3299
3300        bounded_max_retries = min(
3301            max(max_retries, 0),
3302            max_retries_upper_bound,
3303        )
3304
3305        return bounded_max_retries
3306
3307    @overload
3308    def create_prompt(
3309        self,
3310        *,
3311        name: str,
3312        prompt: List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]],
3313        labels: List[str] = [],
3314        tags: Optional[List[str]] = None,
3315        type: Optional[Literal["chat"]],
3316        config: Optional[Any] = None,
3317        commit_message: Optional[str] = None,
3318    ) -> ChatPromptClient: ...
3319
3320    @overload
3321    def create_prompt(
3322        self,
3323        *,
3324        name: str,
3325        prompt: str,
3326        labels: List[str] = [],
3327        tags: Optional[List[str]] = None,
3328        type: Optional[Literal["text"]] = "text",
3329        config: Optional[Any] = None,
3330        commit_message: Optional[str] = None,
3331    ) -> TextPromptClient: ...
3332
3333    def create_prompt(
3334        self,
3335        *,
3336        name: str,
3337        prompt: Union[
3338            str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]]
3339        ],
3340        labels: List[str] = [],
3341        tags: Optional[List[str]] = None,
3342        type: Optional[Literal["chat", "text"]] = "text",
3343        config: Optional[Any] = None,
3344        commit_message: Optional[str] = None,
3345    ) -> PromptClient:
3346        """Create a new prompt in Langfuse.
3347
3348        Keyword Args:
3349            name : The name of the prompt to be created.
3350            prompt : The content of the prompt to be created.
3351            is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead.
3352            labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label.
3353            tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt.
3354            config: Additional structured data to be saved with the prompt. Defaults to None.
3355            type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text".
3356            commit_message: Optional string describing the change.
3357
3358        Returns:
3359            TextPromptClient: The prompt if type argument is 'text'.
3360            ChatPromptClient: The prompt if type argument is 'chat'.
3361        """
3362        try:
3363            langfuse_logger.debug(f"Creating prompt {name=}, {labels=}")
3364
3365            if type == "chat":
3366                if not isinstance(prompt, list):
3367                    raise ValueError(
3368                        "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes."
3369                    )
3370                request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = (
3371                    CreatePromptRequest_Chat(
3372                        name=name,
3373                        prompt=cast(Any, prompt),
3374                        labels=labels,
3375                        tags=tags,
3376                        config=config or {},
3377                        commitMessage=commit_message,
3378                        type="chat",
3379                    )
3380                )
3381                server_prompt = self.api.prompts.create(request=request)
3382
3383                if self._resources is not None:
3384                    self._resources.prompt_cache.invalidate(name)
3385
3386                return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt))
3387
3388            if not isinstance(prompt, str):
3389                raise ValueError("For 'text' type, 'prompt' must be a string.")
3390
3391            request = CreatePromptRequest_Text(
3392                name=name,
3393                prompt=prompt,
3394                labels=labels,
3395                tags=tags,
3396                config=config or {},
3397                commitMessage=commit_message,
3398                type="text",
3399            )
3400
3401            server_prompt = self.api.prompts.create(request=request)
3402
3403            if self._resources is not None:
3404                self._resources.prompt_cache.invalidate(name)
3405
3406            return TextPromptClient(prompt=cast(Prompt_Text, server_prompt))
3407
3408        except Error as e:
3409            handle_fern_exception(e)
3410            raise e
3411
3412    def update_prompt(
3413        self,
3414        *,
3415        name: str,
3416        version: int,
3417        new_labels: List[str] = [],
3418    ) -> Any:
3419        """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
3420
3421        Args:
3422            name (str): The name of the prompt to update.
3423            version (int): The version number of the prompt to update.
3424            new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
3425
3426        Returns:
3427            Prompt: The updated prompt from the Langfuse API.
3428
3429        """
3430        updated_prompt = self.api.prompt_version.update(
3431            name=self._url_encode(name),
3432            version=version,
3433            new_labels=new_labels,
3434        )
3435
3436        if self._resources is not None:
3437            self._resources.prompt_cache.invalidate(name)
3438
3439        return updated_prompt
3440
3441    def _url_encode(self, url: str, *, is_url_param: Optional[bool] = False) -> str:
3442        # httpx ≥ 0.28 does its own WHATWG-compliant quoting (eg. encodes bare
3443        # “%”, “?”, “#”, “|”, … in query/path parts).  Re-quoting here would
3444        # double-encode, so we skip when the value is about to be sent straight
3445        # to httpx (`is_url_param=True`) and the installed version is ≥ 0.28.
3446        if is_url_param and Version(httpx.__version__) >= Version("0.28.0"):
3447            return url
3448
3449        # urllib.parse.quote does not escape slashes "/" by default; we need to add safe="" to force escaping
3450        # we need add safe="" to force escaping of slashes
3451        # This is necessary for prompts in prompt folders
3452        return urllib.parse.quote(url, safe="")
3453
3454    def clear_prompt_cache(self) -> None:
3455        """Clear the entire prompt cache, removing all cached prompts.
3456
3457        This method is useful when you want to force a complete refresh of all
3458        cached prompts, for example after major updates or when you need to
3459        ensure the latest versions are fetched from the server.
3460        """
3461        if self._resources is not None:
3462            self._resources.prompt_cache.clear()

Main client for Langfuse tracing and platform features.

This class provides an interface for creating and managing traces, spans, and generations in Langfuse as well as interacting with the Langfuse API.

The client features a thread-safe singleton pattern for each unique public API key, ensuring consistent trace context propagation across your application. It implements efficient batching of spans with configurable flush settings and includes background thread management for media uploads and score ingestion.

Configuration is flexible through either direct parameters or environment variables, with graceful fallbacks and runtime configuration updates.

Attributes:
  • api: Synchronous API client for Langfuse backend communication
  • async_api: Asynchronous API client for Langfuse backend communication
  • _otel_tracer: Internal LangfuseTracer instance managing OpenTelemetry components
Arguments:
  • public_key (Optional[str]): Your Langfuse public API key. Can also be set via LANGFUSE_PUBLIC_KEY environment variable.
  • secret_key (Optional[str]): Your Langfuse secret API key. Can also be set via LANGFUSE_SECRET_KEY environment variable.
  • base_url (Optional[str]): The Langfuse API base URL. Defaults to "https://cloud.langfuse.com". Can also be set via LANGFUSE_BASE_URL environment variable.
  • host (Optional[str]): Deprecated. Use base_url instead. The Langfuse API host URL. Defaults to "https://cloud.langfuse.com".
  • timeout (Optional[int]): Timeout in seconds for API requests. Defaults to 5 seconds.
  • httpx_client (Optional[httpx.Client]): Custom httpx client for making non-tracing HTTP requests. If not provided, a default client will be created.
  • debug (bool): Enable debug logging. Defaults to False. Can also be set via LANGFUSE_DEBUG environment variable.
  • tracing_enabled (Optional[bool]): Enable or disable tracing. Defaults to True. Can also be set via LANGFUSE_TRACING_ENABLED environment variable.
  • flush_at (Optional[int]): Number of spans to batch before sending to the API. Defaults to 512. Can also be set via LANGFUSE_FLUSH_AT environment variable.
  • flush_interval (Optional[float]): Time in seconds between batch flushes. Defaults to 5 seconds. Can also be set via LANGFUSE_FLUSH_INTERVAL environment variable.
  • environment (Optional[str]): Environment name for tracing. Default is 'default'. Can also be set via LANGFUSE_TRACING_ENVIRONMENT environment variable. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'.
  • release (Optional[str]): Release version/hash of your application. Used for grouping analytics by release.
  • media_upload_thread_count (Optional[int]): Number of background threads for handling media uploads. Defaults to 1. Can also be set via LANGFUSE_MEDIA_UPLOAD_THREAD_COUNT environment variable.
  • sample_rate (Optional[float]): Sampling rate for traces (0.0 to 1.0). Defaults to 1.0 (100% of traces are sampled). Can also be set via LANGFUSE_SAMPLE_RATE environment variable.
  • mask (Optional[MaskFunction]): Function to mask sensitive data in traces before sending to the API.
  • blocked_instrumentation_scopes (Optional[List[str]]): List of instrumentation scope names to block from being exported to Langfuse. Spans from these scopes will be filtered out before being sent to the API. Useful for filtering out spans from specific libraries or frameworks. For exported spans, you can see the instrumentation scope name in the span metadata in Langfuse (metadata.scope.name)
  • additional_headers (Optional[Dict[str, str]]): Additional headers to include in all API requests and OTLPSpanExporter requests. These headers will be merged with default headers. Note: If httpx_client is provided, additional_headers must be set directly on your custom httpx_client as well.
  • tracer_provider(Optional[TracerProvider]): OpenTelemetry TracerProvider to use for Langfuse. This can be useful to set to have disconnected tracing between Langfuse and other OpenTelemetry-span emitting libraries. Note: To track active spans, the context is still shared between TracerProviders. This may lead to broken trace trees.
Example:
from langfuse.otel import Langfuse

# Initialize the client (reads from env vars if not provided)
langfuse = Langfuse(
    public_key="your-public-key",
    secret_key="your-secret-key",
    host="https://cloud.langfuse.com",  # Optional, default shown
)

# Create a trace span
with langfuse.start_as_current_span(name="process-query") as span:
    # Your application code here

    # Create a nested generation span for an LLM call
    with span.start_as_current_generation(
        name="generate-response",
        model="gpt-4",
        input={"query": "Tell me about AI"},
        model_parameters={"temperature": 0.7, "max_tokens": 500}
    ) as generation:
        # Generate response here
        response = "AI is a field of computer science..."

        generation.update(
            output=response,
            usage_details={"prompt_tokens": 10, "completion_tokens": 50},
            cost_details={"total_cost": 0.0023}
        )

        # Score the generation (supports NUMERIC, BOOLEAN, CATEGORICAL)
        generation.score(name="relevance", value=0.95, data_type="NUMERIC")
Langfuse( *, public_key: Optional[str] = None, secret_key: Optional[str] = None, base_url: Optional[str] = None, host: Optional[str] = None, timeout: Optional[int] = None, httpx_client: Optional[httpx.Client] = None, debug: bool = False, tracing_enabled: Optional[bool] = True, flush_at: Optional[int] = None, flush_interval: Optional[float] = None, environment: Optional[str] = None, release: Optional[str] = None, media_upload_thread_count: Optional[int] = None, sample_rate: Optional[float] = None, mask: Optional[langfuse.types.MaskFunction] = None, blocked_instrumentation_scopes: Optional[List[str]] = None, additional_headers: Optional[Dict[str, str]] = None, tracer_provider: Optional[opentelemetry.sdk.trace.TracerProvider] = None)
196    def __init__(
197        self,
198        *,
199        public_key: Optional[str] = None,
200        secret_key: Optional[str] = None,
201        base_url: Optional[str] = None,
202        host: Optional[str] = None,
203        timeout: Optional[int] = None,
204        httpx_client: Optional[httpx.Client] = None,
205        debug: bool = False,
206        tracing_enabled: Optional[bool] = True,
207        flush_at: Optional[int] = None,
208        flush_interval: Optional[float] = None,
209        environment: Optional[str] = None,
210        release: Optional[str] = None,
211        media_upload_thread_count: Optional[int] = None,
212        sample_rate: Optional[float] = None,
213        mask: Optional[MaskFunction] = None,
214        blocked_instrumentation_scopes: Optional[List[str]] = None,
215        additional_headers: Optional[Dict[str, str]] = None,
216        tracer_provider: Optional[TracerProvider] = None,
217    ):
218        self._base_url = (
219            base_url
220            or os.environ.get(LANGFUSE_BASE_URL)
221            or host
222            or os.environ.get(LANGFUSE_HOST, "https://cloud.langfuse.com")
223        )
224        self._environment = environment or cast(
225            str, os.environ.get(LANGFUSE_TRACING_ENVIRONMENT)
226        )
227        self._project_id: Optional[str] = None
228        sample_rate = sample_rate or float(os.environ.get(LANGFUSE_SAMPLE_RATE, 1.0))
229        if not 0.0 <= sample_rate <= 1.0:
230            raise ValueError(
231                f"Sample rate must be between 0.0 and 1.0, got {sample_rate}"
232            )
233
234        timeout = timeout or int(os.environ.get(LANGFUSE_TIMEOUT, 5))
235
236        self._tracing_enabled = (
237            tracing_enabled
238            and os.environ.get(LANGFUSE_TRACING_ENABLED, "true").lower() != "false"
239        )
240        if not self._tracing_enabled:
241            langfuse_logger.info(
242                "Configuration: Langfuse tracing is explicitly disabled. No data will be sent to the Langfuse API."
243            )
244
245        debug = (
246            debug if debug else (os.getenv(LANGFUSE_DEBUG, "false").lower() == "true")
247        )
248        if debug:
249            logging.basicConfig(
250                format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
251            )
252            langfuse_logger.setLevel(logging.DEBUG)
253
254        public_key = public_key or os.environ.get(LANGFUSE_PUBLIC_KEY)
255        if public_key is None:
256            langfuse_logger.warning(
257                "Authentication error: Langfuse client initialized without public_key. Client will be disabled. "
258                "Provide a public_key parameter or set LANGFUSE_PUBLIC_KEY environment variable. "
259            )
260            self._otel_tracer = otel_trace_api.NoOpTracer()
261            return
262
263        secret_key = secret_key or os.environ.get(LANGFUSE_SECRET_KEY)
264        if secret_key is None:
265            langfuse_logger.warning(
266                "Authentication error: Langfuse client initialized without secret_key. Client will be disabled. "
267                "Provide a secret_key parameter or set LANGFUSE_SECRET_KEY environment variable. "
268            )
269            self._otel_tracer = otel_trace_api.NoOpTracer()
270            return
271
272        if os.environ.get("OTEL_SDK_DISABLED", "false").lower() == "true":
273            langfuse_logger.warning(
274                "OTEL_SDK_DISABLED is set. Langfuse tracing will be disabled and no traces will appear in the UI."
275            )
276
277        # Initialize api and tracer if requirements are met
278        self._resources = LangfuseResourceManager(
279            public_key=public_key,
280            secret_key=secret_key,
281            base_url=self._base_url,
282            timeout=timeout,
283            environment=self._environment,
284            release=release,
285            flush_at=flush_at,
286            flush_interval=flush_interval,
287            httpx_client=httpx_client,
288            media_upload_thread_count=media_upload_thread_count,
289            sample_rate=sample_rate,
290            mask=mask,
291            tracing_enabled=self._tracing_enabled,
292            blocked_instrumentation_scopes=blocked_instrumentation_scopes,
293            additional_headers=additional_headers,
294            tracer_provider=tracer_provider,
295        )
296        self._mask = self._resources.mask
297
298        self._otel_tracer = (
299            self._resources.tracer
300            if self._tracing_enabled and self._resources.tracer is not None
301            else otel_trace_api.NoOpTracer()
302        )
303        self.api = self._resources.api
304        self.async_api = self._resources.async_api
api
async_api
def start_span( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseSpan:
306    def start_span(
307        self,
308        *,
309        trace_context: Optional[TraceContext] = None,
310        name: str,
311        input: Optional[Any] = None,
312        output: Optional[Any] = None,
313        metadata: Optional[Any] = None,
314        version: Optional[str] = None,
315        level: Optional[SpanLevel] = None,
316        status_message: Optional[str] = None,
317    ) -> LangfuseSpan:
318        """Create a new span for tracing a unit of work.
319
320        This method creates a new span but does not set it as the current span in the
321        context. To create and use a span within a context, use start_as_current_span().
322
323        The created span will be the child of the current span in the context.
324
325        Args:
326            trace_context: Optional context for connecting to an existing trace
327            name: Name of the span (e.g., function or operation name)
328            input: Input data for the operation (can be any JSON-serializable object)
329            output: Output data from the operation (can be any JSON-serializable object)
330            metadata: Additional metadata to associate with the span
331            version: Version identifier for the code or component
332            level: Importance level of the span (info, warning, error)
333            status_message: Optional status message for the span
334
335        Returns:
336            A LangfuseSpan object that must be ended with .end() when the operation completes
337
338        Example:
339            ```python
340            span = langfuse.start_span(name="process-data")
341            try:
342                # Do work
343                span.update(output="result")
344            finally:
345                span.end()
346            ```
347        """
348        return self.start_observation(
349            trace_context=trace_context,
350            name=name,
351            as_type="span",
352            input=input,
353            output=output,
354            metadata=metadata,
355            version=version,
356            level=level,
357            status_message=status_message,
358        )

Create a new span for tracing a unit of work.

This method creates a new span but does not set it as the current span in the context. To create and use a span within a context, use start_as_current_span().

The created span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A LangfuseSpan object that must be ended with .end() when the operation completes

Example:
span = langfuse.start_span(name="process-data")
try:
    # Do work
    span.update(output="result")
finally:
    span.end()
def start_as_current_span( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, end_on_exit: Optional[bool] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseSpan]:
360    def start_as_current_span(
361        self,
362        *,
363        trace_context: Optional[TraceContext] = None,
364        name: str,
365        input: Optional[Any] = None,
366        output: Optional[Any] = None,
367        metadata: Optional[Any] = None,
368        version: Optional[str] = None,
369        level: Optional[SpanLevel] = None,
370        status_message: Optional[str] = None,
371        end_on_exit: Optional[bool] = None,
372    ) -> _AgnosticContextManager[LangfuseSpan]:
373        """Create a new span and set it as the current span in a context manager.
374
375        This method creates a new span and sets it as the current span within a context
376        manager. Use this method with a 'with' statement to automatically handle span
377        lifecycle within a code block.
378
379        The created span will be the child of the current span in the context.
380
381        Args:
382            trace_context: Optional context for connecting to an existing trace
383            name: Name of the span (e.g., function or operation name)
384            input: Input data for the operation (can be any JSON-serializable object)
385            output: Output data from the operation (can be any JSON-serializable object)
386            metadata: Additional metadata to associate with the span
387            version: Version identifier for the code or component
388            level: Importance level of the span (info, warning, error)
389            status_message: Optional status message for the span
390            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
391
392        Returns:
393            A context manager that yields a LangfuseSpan
394
395        Example:
396            ```python
397            with langfuse.start_as_current_span(name="process-query") as span:
398                # Do work
399                result = process_data()
400                span.update(output=result)
401
402                # Create a child span automatically
403                with span.start_as_current_span(name="sub-operation") as child_span:
404                    # Do sub-operation work
405                    child_span.update(output="sub-result")
406            ```
407        """
408        return self.start_as_current_observation(
409            trace_context=trace_context,
410            name=name,
411            as_type="span",
412            input=input,
413            output=output,
414            metadata=metadata,
415            version=version,
416            level=level,
417            status_message=status_message,
418            end_on_exit=end_on_exit,
419        )

Create a new span and set it as the current span in a context manager.

This method creates a new span and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle span lifecycle within a code block.

The created span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
  • end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:

A context manager that yields a LangfuseSpan

Example:
with langfuse.start_as_current_span(name="process-query") as span:
    # Do work
    result = process_data()
    span.update(output=result)

    # Create a child span automatically
    with span.start_as_current_span(name="sub-operation") as child_span:
        # Do sub-operation work
        child_span.update(output="sub-result")
def start_observation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, as_type: Union[Literal['generation', 'embedding'], Literal['span', 'agent', 'tool', 'chain', 'retriever', 'evaluator', 'guardrail']] = 'span', input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> Union[LangfuseSpan, LangfuseGeneration, LangfuseAgent, LangfuseTool, LangfuseChain, LangfuseRetriever, LangfuseEvaluator, LangfuseEmbedding, LangfuseGuardrail]:
568    def start_observation(
569        self,
570        *,
571        trace_context: Optional[TraceContext] = None,
572        name: str,
573        as_type: ObservationTypeLiteralNoEvent = "span",
574        input: Optional[Any] = None,
575        output: Optional[Any] = None,
576        metadata: Optional[Any] = None,
577        version: Optional[str] = None,
578        level: Optional[SpanLevel] = None,
579        status_message: Optional[str] = None,
580        completion_start_time: Optional[datetime] = None,
581        model: Optional[str] = None,
582        model_parameters: Optional[Dict[str, MapValue]] = None,
583        usage_details: Optional[Dict[str, int]] = None,
584        cost_details: Optional[Dict[str, float]] = None,
585        prompt: Optional[PromptClient] = None,
586    ) -> Union[
587        LangfuseSpan,
588        LangfuseGeneration,
589        LangfuseAgent,
590        LangfuseTool,
591        LangfuseChain,
592        LangfuseRetriever,
593        LangfuseEvaluator,
594        LangfuseEmbedding,
595        LangfuseGuardrail,
596    ]:
597        """Create a new observation of the specified type.
598
599        This method creates a new observation but does not set it as the current span in the
600        context. To create and use an observation within a context, use start_as_current_observation().
601
602        Args:
603            trace_context: Optional context for connecting to an existing trace
604            name: Name of the observation
605            as_type: Type of observation to create (defaults to "span")
606            input: Input data for the operation
607            output: Output data from the operation
608            metadata: Additional metadata to associate with the observation
609            version: Version identifier for the code or component
610            level: Importance level of the observation
611            status_message: Optional status message for the observation
612            completion_start_time: When the model started generating (for generation types)
613            model: Name/identifier of the AI model used (for generation types)
614            model_parameters: Parameters used for the model (for generation types)
615            usage_details: Token usage information (for generation types)
616            cost_details: Cost information (for generation types)
617            prompt: Associated prompt template (for generation types)
618
619        Returns:
620            An observation object of the appropriate type that must be ended with .end()
621        """
622        if trace_context:
623            trace_id = trace_context.get("trace_id", None)
624            parent_span_id = trace_context.get("parent_span_id", None)
625
626            if trace_id:
627                remote_parent_span = self._create_remote_parent_span(
628                    trace_id=trace_id, parent_span_id=parent_span_id
629                )
630
631                with otel_trace_api.use_span(
632                    cast(otel_trace_api.Span, remote_parent_span)
633                ):
634                    otel_span = self._otel_tracer.start_span(name=name)
635                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
636
637                    return self._create_observation_from_otel_span(
638                        otel_span=otel_span,
639                        as_type=as_type,
640                        input=input,
641                        output=output,
642                        metadata=metadata,
643                        version=version,
644                        level=level,
645                        status_message=status_message,
646                        completion_start_time=completion_start_time,
647                        model=model,
648                        model_parameters=model_parameters,
649                        usage_details=usage_details,
650                        cost_details=cost_details,
651                        prompt=prompt,
652                    )
653
654        otel_span = self._otel_tracer.start_span(name=name)
655
656        return self._create_observation_from_otel_span(
657            otel_span=otel_span,
658            as_type=as_type,
659            input=input,
660            output=output,
661            metadata=metadata,
662            version=version,
663            level=level,
664            status_message=status_message,
665            completion_start_time=completion_start_time,
666            model=model,
667            model_parameters=model_parameters,
668            usage_details=usage_details,
669            cost_details=cost_details,
670            prompt=prompt,
671        )

Create a new observation of the specified type.

This method creates a new observation but does not set it as the current span in the context. To create and use an observation within a context, use start_as_current_observation().

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the observation
  • as_type: Type of observation to create (defaults to "span")
  • input: Input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the observation
  • version: Version identifier for the code or component
  • level: Importance level of the observation
  • status_message: Optional status message for the observation
  • completion_start_time: When the model started generating (for generation types)
  • model: Name/identifier of the AI model used (for generation types)
  • model_parameters: Parameters used for the model (for generation types)
  • usage_details: Token usage information (for generation types)
  • cost_details: Cost information (for generation types)
  • prompt: Associated prompt template (for generation types)
Returns:

An observation object of the appropriate type that must be ended with .end()

def start_generation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> LangfuseGeneration:
743    def start_generation(
744        self,
745        *,
746        trace_context: Optional[TraceContext] = None,
747        name: str,
748        input: Optional[Any] = None,
749        output: Optional[Any] = None,
750        metadata: Optional[Any] = None,
751        version: Optional[str] = None,
752        level: Optional[SpanLevel] = None,
753        status_message: Optional[str] = None,
754        completion_start_time: Optional[datetime] = None,
755        model: Optional[str] = None,
756        model_parameters: Optional[Dict[str, MapValue]] = None,
757        usage_details: Optional[Dict[str, int]] = None,
758        cost_details: Optional[Dict[str, float]] = None,
759        prompt: Optional[PromptClient] = None,
760    ) -> LangfuseGeneration:
761        """Create a new generation span for model generations.
762
763        DEPRECATED: This method is deprecated and will be removed in a future version.
764        Use start_observation(as_type='generation') instead.
765
766        This method creates a specialized span for tracking model generations.
767        It includes additional fields specific to model generations such as model name,
768        token usage, and cost details.
769
770        The created generation span will be the child of the current span in the context.
771
772        Args:
773            trace_context: Optional context for connecting to an existing trace
774            name: Name of the generation operation
775            input: Input data for the model (e.g., prompts)
776            output: Output from the model (e.g., completions)
777            metadata: Additional metadata to associate with the generation
778            version: Version identifier for the model or component
779            level: Importance level of the generation (info, warning, error)
780            status_message: Optional status message for the generation
781            completion_start_time: When the model started generating the response
782            model: Name/identifier of the AI model used (e.g., "gpt-4")
783            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
784            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
785            cost_details: Cost information for the model call
786            prompt: Associated prompt template from Langfuse prompt management
787
788        Returns:
789            A LangfuseGeneration object that must be ended with .end() when complete
790
791        Example:
792            ```python
793            generation = langfuse.start_generation(
794                name="answer-generation",
795                model="gpt-4",
796                input={"prompt": "Explain quantum computing"},
797                model_parameters={"temperature": 0.7}
798            )
799            try:
800                # Call model API
801                response = llm.generate(...)
802
803                generation.update(
804                    output=response.text,
805                    usage_details={
806                        "prompt_tokens": response.usage.prompt_tokens,
807                        "completion_tokens": response.usage.completion_tokens
808                    }
809                )
810            finally:
811                generation.end()
812            ```
813        """
814        warnings.warn(
815            "start_generation is deprecated and will be removed in a future version. "
816            "Use start_observation(as_type='generation') instead.",
817            DeprecationWarning,
818            stacklevel=2,
819        )
820        return self.start_observation(
821            trace_context=trace_context,
822            name=name,
823            as_type="generation",
824            input=input,
825            output=output,
826            metadata=metadata,
827            version=version,
828            level=level,
829            status_message=status_message,
830            completion_start_time=completion_start_time,
831            model=model,
832            model_parameters=model_parameters,
833            usage_details=usage_details,
834            cost_details=cost_details,
835            prompt=prompt,
836        )

Create a new generation span for model generations.

DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.

This method creates a specialized span for tracking model generations. It includes additional fields specific to model generations such as model name, token usage, and cost details.

The created generation span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A LangfuseGeneration object that must be ended with .end() when complete

Example:
generation = langfuse.start_generation(
    name="answer-generation",
    model="gpt-4",
    input={"prompt": "Explain quantum computing"},
    model_parameters={"temperature": 0.7}
)
try:
    # Call model API
    response = llm.generate(...)

    generation.update(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
finally:
    generation.end()
def start_as_current_generation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None, end_on_exit: Optional[bool] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseGeneration]:
838    def start_as_current_generation(
839        self,
840        *,
841        trace_context: Optional[TraceContext] = None,
842        name: str,
843        input: Optional[Any] = None,
844        output: Optional[Any] = None,
845        metadata: Optional[Any] = None,
846        version: Optional[str] = None,
847        level: Optional[SpanLevel] = None,
848        status_message: Optional[str] = None,
849        completion_start_time: Optional[datetime] = None,
850        model: Optional[str] = None,
851        model_parameters: Optional[Dict[str, MapValue]] = None,
852        usage_details: Optional[Dict[str, int]] = None,
853        cost_details: Optional[Dict[str, float]] = None,
854        prompt: Optional[PromptClient] = None,
855        end_on_exit: Optional[bool] = None,
856    ) -> _AgnosticContextManager[LangfuseGeneration]:
857        """Create a new generation span and set it as the current span in a context manager.
858
859        DEPRECATED: This method is deprecated and will be removed in a future version.
860        Use start_as_current_observation(as_type='generation') instead.
861
862        This method creates a specialized span for model generations and sets it as the
863        current span within a context manager. Use this method with a 'with' statement to
864        automatically handle the generation span lifecycle within a code block.
865
866        The created generation span will be the child of the current span in the context.
867
868        Args:
869            trace_context: Optional context for connecting to an existing trace
870            name: Name of the generation operation
871            input: Input data for the model (e.g., prompts)
872            output: Output from the model (e.g., completions)
873            metadata: Additional metadata to associate with the generation
874            version: Version identifier for the model or component
875            level: Importance level of the generation (info, warning, error)
876            status_message: Optional status message for the generation
877            completion_start_time: When the model started generating the response
878            model: Name/identifier of the AI model used (e.g., "gpt-4")
879            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
880            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
881            cost_details: Cost information for the model call
882            prompt: Associated prompt template from Langfuse prompt management
883            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
884
885        Returns:
886            A context manager that yields a LangfuseGeneration
887
888        Example:
889            ```python
890            with langfuse.start_as_current_generation(
891                name="answer-generation",
892                model="gpt-4",
893                input={"prompt": "Explain quantum computing"}
894            ) as generation:
895                # Call model API
896                response = llm.generate(...)
897
898                # Update with results
899                generation.update(
900                    output=response.text,
901                    usage_details={
902                        "prompt_tokens": response.usage.prompt_tokens,
903                        "completion_tokens": response.usage.completion_tokens
904                    }
905                )
906            ```
907        """
908        warnings.warn(
909            "start_as_current_generation is deprecated and will be removed in a future version. "
910            "Use start_as_current_observation(as_type='generation') instead.",
911            DeprecationWarning,
912            stacklevel=2,
913        )
914        return self.start_as_current_observation(
915            trace_context=trace_context,
916            name=name,
917            as_type="generation",
918            input=input,
919            output=output,
920            metadata=metadata,
921            version=version,
922            level=level,
923            status_message=status_message,
924            completion_start_time=completion_start_time,
925            model=model,
926            model_parameters=model_parameters,
927            usage_details=usage_details,
928            cost_details=cost_details,
929            prompt=prompt,
930            end_on_exit=end_on_exit,
931        )

Create a new generation span and set it as the current span in a context manager.

DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.

This method creates a specialized span for model generations and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the generation span lifecycle within a code block.

The created generation span will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
  • end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
Returns:

A context manager that yields a LangfuseGeneration

Example:
with langfuse.start_as_current_generation(
    name="answer-generation",
    model="gpt-4",
    input={"prompt": "Explain quantum computing"}
) as generation:
    # Call model API
    response = llm.generate(...)

    # Update with results
    generation.update(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
def start_as_current_observation( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, as_type: Union[Literal['generation', 'embedding'], Literal['span', 'agent', 'tool', 'chain', 'retriever', 'evaluator', 'guardrail']] = 'span', input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None, end_on_exit: Optional[bool] = None) -> Union[opentelemetry.util._decorator._AgnosticContextManager[LangfuseGeneration], opentelemetry.util._decorator._AgnosticContextManager[LangfuseSpan], opentelemetry.util._decorator._AgnosticContextManager[LangfuseAgent], opentelemetry.util._decorator._AgnosticContextManager[LangfuseTool], opentelemetry.util._decorator._AgnosticContextManager[LangfuseChain], opentelemetry.util._decorator._AgnosticContextManager[LangfuseRetriever], opentelemetry.util._decorator._AgnosticContextManager[LangfuseEvaluator], opentelemetry.util._decorator._AgnosticContextManager[LangfuseEmbedding], opentelemetry.util._decorator._AgnosticContextManager[LangfuseGuardrail]]:
1089    def start_as_current_observation(
1090        self,
1091        *,
1092        trace_context: Optional[TraceContext] = None,
1093        name: str,
1094        as_type: ObservationTypeLiteralNoEvent = "span",
1095        input: Optional[Any] = None,
1096        output: Optional[Any] = None,
1097        metadata: Optional[Any] = None,
1098        version: Optional[str] = None,
1099        level: Optional[SpanLevel] = None,
1100        status_message: Optional[str] = None,
1101        completion_start_time: Optional[datetime] = None,
1102        model: Optional[str] = None,
1103        model_parameters: Optional[Dict[str, MapValue]] = None,
1104        usage_details: Optional[Dict[str, int]] = None,
1105        cost_details: Optional[Dict[str, float]] = None,
1106        prompt: Optional[PromptClient] = None,
1107        end_on_exit: Optional[bool] = None,
1108    ) -> Union[
1109        _AgnosticContextManager[LangfuseGeneration],
1110        _AgnosticContextManager[LangfuseSpan],
1111        _AgnosticContextManager[LangfuseAgent],
1112        _AgnosticContextManager[LangfuseTool],
1113        _AgnosticContextManager[LangfuseChain],
1114        _AgnosticContextManager[LangfuseRetriever],
1115        _AgnosticContextManager[LangfuseEvaluator],
1116        _AgnosticContextManager[LangfuseEmbedding],
1117        _AgnosticContextManager[LangfuseGuardrail],
1118    ]:
1119        """Create a new observation and set it as the current span in a context manager.
1120
1121        This method creates a new observation of the specified type and sets it as the
1122        current span within a context manager. Use this method with a 'with' statement to
1123        automatically handle the observation lifecycle within a code block.
1124
1125        The created observation will be the child of the current span in the context.
1126
1127        Args:
1128            trace_context: Optional context for connecting to an existing trace
1129            name: Name of the observation (e.g., function or operation name)
1130            as_type: Type of observation to create (defaults to "span")
1131            input: Input data for the operation (can be any JSON-serializable object)
1132            output: Output data from the operation (can be any JSON-serializable object)
1133            metadata: Additional metadata to associate with the observation
1134            version: Version identifier for the code or component
1135            level: Importance level of the observation (info, warning, error)
1136            status_message: Optional status message for the observation
1137            end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
1138
1139            The following parameters are available when as_type is: "generation" or "embedding".
1140            completion_start_time: When the model started generating the response
1141            model: Name/identifier of the AI model used (e.g., "gpt-4")
1142            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1143            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1144            cost_details: Cost information for the model call
1145            prompt: Associated prompt template from Langfuse prompt management
1146
1147        Returns:
1148            A context manager that yields the appropriate observation type based on as_type
1149
1150        Example:
1151            ```python
1152            # Create a span
1153            with langfuse.start_as_current_observation(name="process-query", as_type="span") as span:
1154                # Do work
1155                result = process_data()
1156                span.update(output=result)
1157
1158                # Create a child span automatically
1159                with span.start_as_current_span(name="sub-operation") as child_span:
1160                    # Do sub-operation work
1161                    child_span.update(output="sub-result")
1162
1163            # Create a tool observation
1164            with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool:
1165                # Do tool work
1166                results = search_web(query)
1167                tool.update(output=results)
1168
1169            # Create a generation observation
1170            with langfuse.start_as_current_observation(
1171                name="answer-generation",
1172                as_type="generation",
1173                model="gpt-4"
1174            ) as generation:
1175                # Generate answer
1176                response = llm.generate(...)
1177                generation.update(output=response)
1178            ```
1179        """
1180        if as_type in get_observation_types_list(ObservationTypeGenerationLike):
1181            if trace_context:
1182                trace_id = trace_context.get("trace_id", None)
1183                parent_span_id = trace_context.get("parent_span_id", None)
1184
1185                if trace_id:
1186                    remote_parent_span = self._create_remote_parent_span(
1187                        trace_id=trace_id, parent_span_id=parent_span_id
1188                    )
1189
1190                    return cast(
1191                        Union[
1192                            _AgnosticContextManager[LangfuseGeneration],
1193                            _AgnosticContextManager[LangfuseEmbedding],
1194                        ],
1195                        self._create_span_with_parent_context(
1196                            as_type=as_type,
1197                            name=name,
1198                            remote_parent_span=remote_parent_span,
1199                            parent=None,
1200                            end_on_exit=end_on_exit,
1201                            input=input,
1202                            output=output,
1203                            metadata=metadata,
1204                            version=version,
1205                            level=level,
1206                            status_message=status_message,
1207                            completion_start_time=completion_start_time,
1208                            model=model,
1209                            model_parameters=model_parameters,
1210                            usage_details=usage_details,
1211                            cost_details=cost_details,
1212                            prompt=prompt,
1213                        ),
1214                    )
1215
1216            return cast(
1217                Union[
1218                    _AgnosticContextManager[LangfuseGeneration],
1219                    _AgnosticContextManager[LangfuseEmbedding],
1220                ],
1221                self._start_as_current_otel_span_with_processed_media(
1222                    as_type=as_type,
1223                    name=name,
1224                    end_on_exit=end_on_exit,
1225                    input=input,
1226                    output=output,
1227                    metadata=metadata,
1228                    version=version,
1229                    level=level,
1230                    status_message=status_message,
1231                    completion_start_time=completion_start_time,
1232                    model=model,
1233                    model_parameters=model_parameters,
1234                    usage_details=usage_details,
1235                    cost_details=cost_details,
1236                    prompt=prompt,
1237                ),
1238            )
1239
1240        if as_type in get_observation_types_list(ObservationTypeSpanLike):
1241            if trace_context:
1242                trace_id = trace_context.get("trace_id", None)
1243                parent_span_id = trace_context.get("parent_span_id", None)
1244
1245                if trace_id:
1246                    remote_parent_span = self._create_remote_parent_span(
1247                        trace_id=trace_id, parent_span_id=parent_span_id
1248                    )
1249
1250                    return cast(
1251                        Union[
1252                            _AgnosticContextManager[LangfuseSpan],
1253                            _AgnosticContextManager[LangfuseAgent],
1254                            _AgnosticContextManager[LangfuseTool],
1255                            _AgnosticContextManager[LangfuseChain],
1256                            _AgnosticContextManager[LangfuseRetriever],
1257                            _AgnosticContextManager[LangfuseEvaluator],
1258                            _AgnosticContextManager[LangfuseGuardrail],
1259                        ],
1260                        self._create_span_with_parent_context(
1261                            as_type=as_type,
1262                            name=name,
1263                            remote_parent_span=remote_parent_span,
1264                            parent=None,
1265                            end_on_exit=end_on_exit,
1266                            input=input,
1267                            output=output,
1268                            metadata=metadata,
1269                            version=version,
1270                            level=level,
1271                            status_message=status_message,
1272                        ),
1273                    )
1274
1275            return cast(
1276                Union[
1277                    _AgnosticContextManager[LangfuseSpan],
1278                    _AgnosticContextManager[LangfuseAgent],
1279                    _AgnosticContextManager[LangfuseTool],
1280                    _AgnosticContextManager[LangfuseChain],
1281                    _AgnosticContextManager[LangfuseRetriever],
1282                    _AgnosticContextManager[LangfuseEvaluator],
1283                    _AgnosticContextManager[LangfuseGuardrail],
1284                ],
1285                self._start_as_current_otel_span_with_processed_media(
1286                    as_type=as_type,
1287                    name=name,
1288                    end_on_exit=end_on_exit,
1289                    input=input,
1290                    output=output,
1291                    metadata=metadata,
1292                    version=version,
1293                    level=level,
1294                    status_message=status_message,
1295                ),
1296            )
1297
1298        # This should never be reached since all valid types are handled above
1299        langfuse_logger.warning(
1300            f"Unknown observation type: {as_type}, falling back to span"
1301        )
1302        return self._start_as_current_otel_span_with_processed_media(
1303            as_type="span",
1304            name=name,
1305            end_on_exit=end_on_exit,
1306            input=input,
1307            output=output,
1308            metadata=metadata,
1309            version=version,
1310            level=level,
1311            status_message=status_message,
1312        )

Create a new observation and set it as the current span in a context manager.

This method creates a new observation of the specified type and sets it as the current span within a context manager. Use this method with a 'with' statement to automatically handle the observation lifecycle within a code block.

The created observation will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the observation (e.g., function or operation name)
  • as_type: Type of observation to create (defaults to "span")
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the observation
  • version: Version identifier for the code or component
  • level: Importance level of the observation (info, warning, error)
  • status_message: Optional status message for the observation
  • end_on_exit (default: True): Whether to end the span automatically when leaving the context manager. If False, the span must be manually ended to avoid memory leaks.
  • The following parameters are available when as_type is: "generation" or "embedding".
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A context manager that yields the appropriate observation type based on as_type

Example:
# Create a span
with langfuse.start_as_current_observation(name="process-query", as_type="span") as span:
    # Do work
    result = process_data()
    span.update(output=result)

    # Create a child span automatically
    with span.start_as_current_span(name="sub-operation") as child_span:
        # Do sub-operation work
        child_span.update(output="sub-result")

# Create a tool observation
with langfuse.start_as_current_observation(name="web-search", as_type="tool") as tool:
    # Do tool work
    results = search_web(query)
    tool.update(output=results)

# Create a generation observation
with langfuse.start_as_current_observation(
    name="answer-generation",
    as_type="generation",
    model="gpt-4"
) as generation:
    # Generate answer
    response = llm.generate(...)
    generation.update(output=response)
def update_current_generation( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> None:
1473    def update_current_generation(
1474        self,
1475        *,
1476        name: Optional[str] = None,
1477        input: Optional[Any] = None,
1478        output: Optional[Any] = None,
1479        metadata: Optional[Any] = None,
1480        version: Optional[str] = None,
1481        level: Optional[SpanLevel] = None,
1482        status_message: Optional[str] = None,
1483        completion_start_time: Optional[datetime] = None,
1484        model: Optional[str] = None,
1485        model_parameters: Optional[Dict[str, MapValue]] = None,
1486        usage_details: Optional[Dict[str, int]] = None,
1487        cost_details: Optional[Dict[str, float]] = None,
1488        prompt: Optional[PromptClient] = None,
1489    ) -> None:
1490        """Update the current active generation span with new information.
1491
1492        This method updates the current generation span in the active context with
1493        additional information. It's useful for adding output, usage stats, or other
1494        details that become available during or after model generation.
1495
1496        Args:
1497            name: The generation name
1498            input: Updated input data for the model
1499            output: Output from the model (e.g., completions)
1500            metadata: Additional metadata to associate with the generation
1501            version: Version identifier for the model or component
1502            level: Importance level of the generation (info, warning, error)
1503            status_message: Optional status message for the generation
1504            completion_start_time: When the model started generating the response
1505            model: Name/identifier of the AI model used (e.g., "gpt-4")
1506            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1507            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1508            cost_details: Cost information for the model call
1509            prompt: Associated prompt template from Langfuse prompt management
1510
1511        Example:
1512            ```python
1513            with langfuse.start_as_current_generation(name="answer-query") as generation:
1514                # Initial setup and API call
1515                response = llm.generate(...)
1516
1517                # Update with results that weren't available at creation time
1518                langfuse.update_current_generation(
1519                    output=response.text,
1520                    usage_details={
1521                        "prompt_tokens": response.usage.prompt_tokens,
1522                        "completion_tokens": response.usage.completion_tokens
1523                    }
1524                )
1525            ```
1526        """
1527        if not self._tracing_enabled:
1528            langfuse_logger.debug(
1529                "Operation skipped: update_current_generation - Tracing is disabled or client is in no-op mode."
1530            )
1531            return
1532
1533        current_otel_span = self._get_current_otel_span()
1534
1535        if current_otel_span is not None:
1536            generation = LangfuseGeneration(
1537                otel_span=current_otel_span, langfuse_client=self
1538            )
1539
1540            if name:
1541                current_otel_span.update_name(name)
1542
1543            generation.update(
1544                input=input,
1545                output=output,
1546                metadata=metadata,
1547                version=version,
1548                level=level,
1549                status_message=status_message,
1550                completion_start_time=completion_start_time,
1551                model=model,
1552                model_parameters=model_parameters,
1553                usage_details=usage_details,
1554                cost_details=cost_details,
1555                prompt=prompt,
1556            )

Update the current active generation span with new information.

This method updates the current generation span in the active context with additional information. It's useful for adding output, usage stats, or other details that become available during or after model generation.

Arguments:
  • name: The generation name
  • input: Updated input data for the model
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation:
    # Initial setup and API call
    response = llm.generate(...)

    # Update with results that weren't available at creation time
    langfuse.update_current_generation(
        output=response.text,
        usage_details={
            "prompt_tokens": response.usage.prompt_tokens,
            "completion_tokens": response.usage.completion_tokens
        }
    )
def update_current_span( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> None:
1558    def update_current_span(
1559        self,
1560        *,
1561        name: Optional[str] = None,
1562        input: Optional[Any] = None,
1563        output: Optional[Any] = None,
1564        metadata: Optional[Any] = None,
1565        version: Optional[str] = None,
1566        level: Optional[SpanLevel] = None,
1567        status_message: Optional[str] = None,
1568    ) -> None:
1569        """Update the current active span with new information.
1570
1571        This method updates the current span in the active context with
1572        additional information. It's useful for adding outputs or metadata
1573        that become available during execution.
1574
1575        Args:
1576            name: The span name
1577            input: Updated input data for the operation
1578            output: Output data from the operation
1579            metadata: Additional metadata to associate with the span
1580            version: Version identifier for the code or component
1581            level: Importance level of the span (info, warning, error)
1582            status_message: Optional status message for the span
1583
1584        Example:
1585            ```python
1586            with langfuse.start_as_current_span(name="process-data") as span:
1587                # Initial processing
1588                result = process_first_part()
1589
1590                # Update with intermediate results
1591                langfuse.update_current_span(metadata={"intermediate_result": result})
1592
1593                # Continue processing
1594                final_result = process_second_part(result)
1595
1596                # Final update
1597                langfuse.update_current_span(output=final_result)
1598            ```
1599        """
1600        if not self._tracing_enabled:
1601            langfuse_logger.debug(
1602                "Operation skipped: update_current_span - Tracing is disabled or client is in no-op mode."
1603            )
1604            return
1605
1606        current_otel_span = self._get_current_otel_span()
1607
1608        if current_otel_span is not None:
1609            span = LangfuseSpan(
1610                otel_span=current_otel_span,
1611                langfuse_client=self,
1612                environment=self._environment,
1613            )
1614
1615            if name:
1616                current_otel_span.update_name(name)
1617
1618            span.update(
1619                input=input,
1620                output=output,
1621                metadata=metadata,
1622                version=version,
1623                level=level,
1624                status_message=status_message,
1625            )

Update the current active span with new information.

This method updates the current span in the active context with additional information. It's useful for adding outputs or metadata that become available during execution.

Arguments:
  • name: The span name
  • input: Updated input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Example:
with langfuse.start_as_current_span(name="process-data") as span:
    # Initial processing
    result = process_first_part()

    # Update with intermediate results
    langfuse.update_current_span(metadata={"intermediate_result": result})

    # Continue processing
    final_result = process_second_part(result)

    # Final update
    langfuse.update_current_span(output=final_result)
def update_current_trace( self, *, name: Optional[str] = None, user_id: Optional[str] = None, session_id: Optional[str] = None, version: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, tags: Optional[List[str]] = None, public: Optional[bool] = None) -> None:
1627    def update_current_trace(
1628        self,
1629        *,
1630        name: Optional[str] = None,
1631        user_id: Optional[str] = None,
1632        session_id: Optional[str] = None,
1633        version: Optional[str] = None,
1634        input: Optional[Any] = None,
1635        output: Optional[Any] = None,
1636        metadata: Optional[Any] = None,
1637        tags: Optional[List[str]] = None,
1638        public: Optional[bool] = None,
1639    ) -> None:
1640        """Update the current trace with additional information.
1641
1642        This method updates the Langfuse trace that the current span belongs to. It's useful for
1643        adding trace-level metadata like user ID, session ID, or tags that apply to
1644        the entire Langfuse trace rather than just a single observation.
1645
1646        Args:
1647            name: Updated name for the Langfuse trace
1648            user_id: ID of the user who initiated the Langfuse trace
1649            session_id: Session identifier for grouping related Langfuse traces
1650            version: Version identifier for the application or service
1651            input: Input data for the overall Langfuse trace
1652            output: Output data from the overall Langfuse trace
1653            metadata: Additional metadata to associate with the Langfuse trace
1654            tags: List of tags to categorize the Langfuse trace
1655            public: Whether the Langfuse trace should be publicly accessible
1656
1657        Example:
1658            ```python
1659            with langfuse.start_as_current_span(name="handle-request") as span:
1660                # Get user information
1661                user = authenticate_user(request)
1662
1663                # Update trace with user context
1664                langfuse.update_current_trace(
1665                    user_id=user.id,
1666                    session_id=request.session_id,
1667                    tags=["production", "web-app"]
1668                )
1669
1670                # Continue processing
1671                response = process_request(request)
1672
1673                # Update span with results
1674                span.update(output=response)
1675            ```
1676        """
1677        if not self._tracing_enabled:
1678            langfuse_logger.debug(
1679                "Operation skipped: update_current_trace - Tracing is disabled or client is in no-op mode."
1680            )
1681            return
1682
1683        current_otel_span = self._get_current_otel_span()
1684
1685        if current_otel_span is not None:
1686            existing_observation_type = current_otel_span.attributes.get(  # type: ignore[attr-defined]
1687                LangfuseOtelSpanAttributes.OBSERVATION_TYPE, "span"
1688            )
1689            # We need to preserve the class to keep the correct observation type
1690            span_class = self._get_span_class(existing_observation_type)
1691            span = span_class(
1692                otel_span=current_otel_span,
1693                langfuse_client=self,
1694                environment=self._environment,
1695            )
1696
1697            span.update_trace(
1698                name=name,
1699                user_id=user_id,
1700                session_id=session_id,
1701                version=version,
1702                input=input,
1703                output=output,
1704                metadata=metadata,
1705                tags=tags,
1706                public=public,
1707            )

Update the current trace with additional information.

This method updates the Langfuse trace that the current span belongs to. It's useful for adding trace-level metadata like user ID, session ID, or tags that apply to the entire Langfuse trace rather than just a single observation.

Arguments:
  • name: Updated name for the Langfuse trace
  • user_id: ID of the user who initiated the Langfuse trace
  • session_id: Session identifier for grouping related Langfuse traces
  • version: Version identifier for the application or service
  • input: Input data for the overall Langfuse trace
  • output: Output data from the overall Langfuse trace
  • metadata: Additional metadata to associate with the Langfuse trace
  • tags: List of tags to categorize the Langfuse trace
  • public: Whether the Langfuse trace should be publicly accessible
Example:
with langfuse.start_as_current_span(name="handle-request") as span:
    # Get user information
    user = authenticate_user(request)

    # Update trace with user context
    langfuse.update_current_trace(
        user_id=user.id,
        session_id=request.session_id,
        tags=["production", "web-app"]
    )

    # Continue processing
    response = process_request(request)

    # Update span with results
    span.update(output=response)
def create_event( self, *, trace_context: Optional[langfuse.types.TraceContext] = None, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseEvent:
1709    def create_event(
1710        self,
1711        *,
1712        trace_context: Optional[TraceContext] = None,
1713        name: str,
1714        input: Optional[Any] = None,
1715        output: Optional[Any] = None,
1716        metadata: Optional[Any] = None,
1717        version: Optional[str] = None,
1718        level: Optional[SpanLevel] = None,
1719        status_message: Optional[str] = None,
1720    ) -> LangfuseEvent:
1721        """Create a new Langfuse observation of type 'EVENT'.
1722
1723        The created Langfuse Event observation will be the child of the current span in the context.
1724
1725        Args:
1726            trace_context: Optional context for connecting to an existing trace
1727            name: Name of the span (e.g., function or operation name)
1728            input: Input data for the operation (can be any JSON-serializable object)
1729            output: Output data from the operation (can be any JSON-serializable object)
1730            metadata: Additional metadata to associate with the span
1731            version: Version identifier for the code or component
1732            level: Importance level of the span (info, warning, error)
1733            status_message: Optional status message for the span
1734
1735        Returns:
1736            The Langfuse Event object
1737
1738        Example:
1739            ```python
1740            event = langfuse.create_event(name="process-event")
1741            ```
1742        """
1743        timestamp = time_ns()
1744
1745        if trace_context:
1746            trace_id = trace_context.get("trace_id", None)
1747            parent_span_id = trace_context.get("parent_span_id", None)
1748
1749            if trace_id:
1750                remote_parent_span = self._create_remote_parent_span(
1751                    trace_id=trace_id, parent_span_id=parent_span_id
1752                )
1753
1754                with otel_trace_api.use_span(
1755                    cast(otel_trace_api.Span, remote_parent_span)
1756                ):
1757                    otel_span = self._otel_tracer.start_span(
1758                        name=name, start_time=timestamp
1759                    )
1760                    otel_span.set_attribute(LangfuseOtelSpanAttributes.AS_ROOT, True)
1761
1762                    return cast(
1763                        LangfuseEvent,
1764                        LangfuseEvent(
1765                            otel_span=otel_span,
1766                            langfuse_client=self,
1767                            environment=self._environment,
1768                            input=input,
1769                            output=output,
1770                            metadata=metadata,
1771                            version=version,
1772                            level=level,
1773                            status_message=status_message,
1774                        ).end(end_time=timestamp),
1775                    )
1776
1777        otel_span = self._otel_tracer.start_span(name=name, start_time=timestamp)
1778
1779        return cast(
1780            LangfuseEvent,
1781            LangfuseEvent(
1782                otel_span=otel_span,
1783                langfuse_client=self,
1784                environment=self._environment,
1785                input=input,
1786                output=output,
1787                metadata=metadata,
1788                version=version,
1789                level=level,
1790                status_message=status_message,
1791            ).end(end_time=timestamp),
1792        )

Create a new Langfuse observation of type 'EVENT'.

The created Langfuse Event observation will be the child of the current span in the context.

Arguments:
  • trace_context: Optional context for connecting to an existing trace
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

The Langfuse Event object

Example:
event = langfuse.create_event(name="process-event")
@staticmethod
def create_trace_id(*, seed: Optional[str] = None) -> str:
1881    @staticmethod
1882    def create_trace_id(*, seed: Optional[str] = None) -> str:
1883        """Create a unique trace ID for use with Langfuse.
1884
1885        This method generates a unique trace ID for use with various Langfuse APIs.
1886        It can either generate a random ID or create a deterministic ID based on
1887        a seed string.
1888
1889        Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes.
1890        This method ensures the generated ID meets this requirement. If you need to
1891        correlate an external ID with a Langfuse trace ID, use the external ID as the
1892        seed to get a valid, deterministic Langfuse trace ID.
1893
1894        Args:
1895            seed: Optional string to use as a seed for deterministic ID generation.
1896                 If provided, the same seed will always produce the same ID.
1897                 If not provided, a random ID will be generated.
1898
1899        Returns:
1900            A 32-character lowercase hexadecimal string representing the Langfuse trace ID.
1901
1902        Example:
1903            ```python
1904            # Generate a random trace ID
1905            trace_id = langfuse.create_trace_id()
1906
1907            # Generate a deterministic ID based on a seed
1908            session_trace_id = langfuse.create_trace_id(seed="session-456")
1909
1910            # Correlate an external ID with a Langfuse trace ID
1911            external_id = "external-system-123456"
1912            correlated_trace_id = langfuse.create_trace_id(seed=external_id)
1913
1914            # Use the ID with trace context
1915            with langfuse.start_as_current_span(
1916                name="process-request",
1917                trace_context={"trace_id": trace_id}
1918            ) as span:
1919                # Operation will be part of the specific trace
1920                pass
1921            ```
1922        """
1923        if not seed:
1924            trace_id_int = RandomIdGenerator().generate_trace_id()
1925
1926            return Langfuse._format_otel_trace_id(trace_id_int)
1927
1928        return sha256(seed.encode("utf-8")).digest()[:16].hex()

Create a unique trace ID for use with Langfuse.

This method generates a unique trace ID for use with various Langfuse APIs. It can either generate a random ID or create a deterministic ID based on a seed string.

Trace IDs must be 32 lowercase hexadecimal characters, representing 16 bytes. This method ensures the generated ID meets this requirement. If you need to correlate an external ID with a Langfuse trace ID, use the external ID as the seed to get a valid, deterministic Langfuse trace ID.

Arguments:
  • seed: Optional string to use as a seed for deterministic ID generation. If provided, the same seed will always produce the same ID. If not provided, a random ID will be generated.
Returns:

A 32-character lowercase hexadecimal string representing the Langfuse trace ID.

Example:
# Generate a random trace ID
trace_id = langfuse.create_trace_id()

# Generate a deterministic ID based on a seed
session_trace_id = langfuse.create_trace_id(seed="session-456")

# Correlate an external ID with a Langfuse trace ID
external_id = "external-system-123456"
correlated_trace_id = langfuse.create_trace_id(seed=external_id)

# Use the ID with trace context
with langfuse.start_as_current_span(
    name="process-request",
    trace_context={"trace_id": trace_id}
) as span:
    # Operation will be part of the specific trace
    pass
def create_score( self, *, name: str, value: Union[float, str], session_id: Optional[str] = None, dataset_run_id: Optional[str] = None, trace_id: Optional[str] = None, observation_id: Optional[str] = None, score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None, metadata: Optional[Any] = None) -> None:
2004    def create_score(
2005        self,
2006        *,
2007        name: str,
2008        value: Union[float, str],
2009        session_id: Optional[str] = None,
2010        dataset_run_id: Optional[str] = None,
2011        trace_id: Optional[str] = None,
2012        observation_id: Optional[str] = None,
2013        score_id: Optional[str] = None,
2014        data_type: Optional[ScoreDataType] = None,
2015        comment: Optional[str] = None,
2016        config_id: Optional[str] = None,
2017        metadata: Optional[Any] = None,
2018    ) -> None:
2019        """Create a score for a specific trace or observation.
2020
2021        This method creates a score for evaluating a Langfuse trace or observation. Scores can be
2022        used to track quality metrics, user feedback, or automated evaluations.
2023
2024        Args:
2025            name: Name of the score (e.g., "relevance", "accuracy")
2026            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2027            session_id: ID of the Langfuse session to associate the score with
2028            dataset_run_id: ID of the Langfuse dataset run to associate the score with
2029            trace_id: ID of the Langfuse trace to associate the score with
2030            observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
2031            score_id: Optional custom ID for the score (auto-generated if not provided)
2032            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2033            comment: Optional comment or explanation for the score
2034            config_id: Optional ID of a score config defined in Langfuse
2035            metadata: Optional metadata to be attached to the score
2036
2037        Example:
2038            ```python
2039            # Create a numeric score for accuracy
2040            langfuse.create_score(
2041                name="accuracy",
2042                value=0.92,
2043                trace_id="abcdef1234567890abcdef1234567890",
2044                data_type="NUMERIC",
2045                comment="High accuracy with minor irrelevant details"
2046            )
2047
2048            # Create a categorical score for sentiment
2049            langfuse.create_score(
2050                name="sentiment",
2051                value="positive",
2052                trace_id="abcdef1234567890abcdef1234567890",
2053                observation_id="abcdef1234567890",
2054                data_type="CATEGORICAL"
2055            )
2056            ```
2057        """
2058        if not self._tracing_enabled:
2059            return
2060
2061        score_id = score_id or self._create_observation_id()
2062
2063        try:
2064            new_body = ScoreBody(
2065                id=score_id,
2066                sessionId=session_id,
2067                datasetRunId=dataset_run_id,
2068                traceId=trace_id,
2069                observationId=observation_id,
2070                name=name,
2071                value=value,
2072                dataType=data_type,  # type: ignore
2073                comment=comment,
2074                configId=config_id,
2075                environment=self._environment,
2076                metadata=metadata,
2077            )
2078
2079            event = {
2080                "id": self.create_trace_id(),
2081                "type": "score-create",
2082                "timestamp": _get_timestamp(),
2083                "body": new_body,
2084            }
2085
2086            if self._resources is not None:
2087                # Force the score to be in sample if it was for a legacy trace ID, i.e. non-32 hexchar
2088                force_sample = (
2089                    not self._is_valid_trace_id(trace_id) if trace_id else True
2090                )
2091
2092                self._resources.add_score_task(
2093                    event,
2094                    force_sample=force_sample,
2095                )
2096
2097        except Exception as e:
2098            langfuse_logger.exception(
2099                f"Error creating score: Failed to process score event for trace_id={trace_id}, name={name}. Error: {e}"
2100            )

Create a score for a specific trace or observation.

This method creates a score for evaluating a Langfuse trace or observation. Scores can be used to track quality metrics, user feedback, or automated evaluations.

Arguments:
  • name: Name of the score (e.g., "relevance", "accuracy")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • session_id: ID of the Langfuse session to associate the score with
  • dataset_run_id: ID of the Langfuse dataset run to associate the score with
  • trace_id: ID of the Langfuse trace to associate the score with
  • observation_id: Optional ID of the specific observation to score. Trace ID must be provided too.
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
  • metadata: Optional metadata to be attached to the score
Example:
# Create a numeric score for accuracy
langfuse.create_score(
    name="accuracy",
    value=0.92,
    trace_id="abcdef1234567890abcdef1234567890",
    data_type="NUMERIC",
    comment="High accuracy with minor irrelevant details"
)

# Create a categorical score for sentiment
langfuse.create_score(
    name="sentiment",
    value="positive",
    trace_id="abcdef1234567890abcdef1234567890",
    observation_id="abcdef1234567890",
    data_type="CATEGORICAL"
)
def score_current_span( self, *, name: str, value: Union[float, str], score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None) -> None:
2126    def score_current_span(
2127        self,
2128        *,
2129        name: str,
2130        value: Union[float, str],
2131        score_id: Optional[str] = None,
2132        data_type: Optional[ScoreDataType] = None,
2133        comment: Optional[str] = None,
2134        config_id: Optional[str] = None,
2135    ) -> None:
2136        """Create a score for the current active span.
2137
2138        This method scores the currently active span in the context. It's a convenient
2139        way to score the current operation without needing to know its trace and span IDs.
2140
2141        Args:
2142            name: Name of the score (e.g., "relevance", "accuracy")
2143            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2144            score_id: Optional custom ID for the score (auto-generated if not provided)
2145            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2146            comment: Optional comment or explanation for the score
2147            config_id: Optional ID of a score config defined in Langfuse
2148
2149        Example:
2150            ```python
2151            with langfuse.start_as_current_generation(name="answer-query") as generation:
2152                # Generate answer
2153                response = generate_answer(...)
2154                generation.update(output=response)
2155
2156                # Score the generation
2157                langfuse.score_current_span(
2158                    name="relevance",
2159                    value=0.85,
2160                    data_type="NUMERIC",
2161                    comment="Mostly relevant but contains some tangential information"
2162                )
2163            ```
2164        """
2165        current_span = self._get_current_otel_span()
2166
2167        if current_span is not None:
2168            trace_id = self._get_otel_trace_id(current_span)
2169            observation_id = self._get_otel_span_id(current_span)
2170
2171            langfuse_logger.info(
2172                f"Score: Creating score name='{name}' value={value} for current span ({observation_id}) in trace {trace_id}"
2173            )
2174
2175            self.create_score(
2176                trace_id=trace_id,
2177                observation_id=observation_id,
2178                name=name,
2179                value=cast(str, value),
2180                score_id=score_id,
2181                data_type=cast(Literal["CATEGORICAL"], data_type),
2182                comment=comment,
2183                config_id=config_id,
2184            )

Create a score for the current active span.

This method scores the currently active span in the context. It's a convenient way to score the current operation without needing to know its trace and span IDs.

Arguments:
  • name: Name of the score (e.g., "relevance", "accuracy")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_generation(name="answer-query") as generation:
    # Generate answer
    response = generate_answer(...)
    generation.update(output=response)

    # Score the generation
    langfuse.score_current_span(
        name="relevance",
        value=0.85,
        data_type="NUMERIC",
        comment="Mostly relevant but contains some tangential information"
    )
def score_current_trace( self, *, name: str, value: Union[float, str], score_id: Optional[str] = None, data_type: Optional[Literal['NUMERIC', 'CATEGORICAL', 'BOOLEAN']] = None, comment: Optional[str] = None, config_id: Optional[str] = None) -> None:
2210    def score_current_trace(
2211        self,
2212        *,
2213        name: str,
2214        value: Union[float, str],
2215        score_id: Optional[str] = None,
2216        data_type: Optional[ScoreDataType] = None,
2217        comment: Optional[str] = None,
2218        config_id: Optional[str] = None,
2219    ) -> None:
2220        """Create a score for the current trace.
2221
2222        This method scores the trace of the currently active span. Unlike score_current_span,
2223        this method associates the score with the entire trace rather than a specific span.
2224        It's useful for scoring overall performance or quality of the entire operation.
2225
2226        Args:
2227            name: Name of the score (e.g., "user_satisfaction", "overall_quality")
2228            value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
2229            score_id: Optional custom ID for the score (auto-generated if not provided)
2230            data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
2231            comment: Optional comment or explanation for the score
2232            config_id: Optional ID of a score config defined in Langfuse
2233
2234        Example:
2235            ```python
2236            with langfuse.start_as_current_span(name="process-user-request") as span:
2237                # Process request
2238                result = process_complete_request()
2239                span.update(output=result)
2240
2241                # Score the overall trace
2242                langfuse.score_current_trace(
2243                    name="overall_quality",
2244                    value=0.95,
2245                    data_type="NUMERIC",
2246                    comment="High quality end-to-end response"
2247                )
2248            ```
2249        """
2250        current_span = self._get_current_otel_span()
2251
2252        if current_span is not None:
2253            trace_id = self._get_otel_trace_id(current_span)
2254
2255            langfuse_logger.info(
2256                f"Score: Creating score name='{name}' value={value} for entire trace {trace_id}"
2257            )
2258
2259            self.create_score(
2260                trace_id=trace_id,
2261                name=name,
2262                value=cast(str, value),
2263                score_id=score_id,
2264                data_type=cast(Literal["CATEGORICAL"], data_type),
2265                comment=comment,
2266                config_id=config_id,
2267            )

Create a score for the current trace.

This method scores the trace of the currently active span. Unlike score_current_span, this method associates the score with the entire trace rather than a specific span. It's useful for scoring overall performance or quality of the entire operation.

Arguments:
  • name: Name of the score (e.g., "user_satisfaction", "overall_quality")
  • value: Score value (can be numeric for NUMERIC/BOOLEAN types or string for CATEGORICAL)
  • score_id: Optional custom ID for the score (auto-generated if not provided)
  • data_type: Type of score (NUMERIC, BOOLEAN, or CATEGORICAL)
  • comment: Optional comment or explanation for the score
  • config_id: Optional ID of a score config defined in Langfuse
Example:
with langfuse.start_as_current_span(name="process-user-request") as span:
    # Process request
    result = process_complete_request()
    span.update(output=result)

    # Score the overall trace
    langfuse.score_current_trace(
        name="overall_quality",
        value=0.95,
        data_type="NUMERIC",
        comment="High quality end-to-end response"
    )
def flush(self) -> None:
2269    def flush(self) -> None:
2270        """Force flush all pending spans and events to the Langfuse API.
2271
2272        This method manually flushes any pending spans, scores, and other events to the
2273        Langfuse API. It's useful in scenarios where you want to ensure all data is sent
2274        before proceeding, without waiting for the automatic flush interval.
2275
2276        Example:
2277            ```python
2278            # Record some spans and scores
2279            with langfuse.start_as_current_span(name="operation") as span:
2280                # Do work...
2281                pass
2282
2283            # Ensure all data is sent to Langfuse before proceeding
2284            langfuse.flush()
2285
2286            # Continue with other work
2287            ```
2288        """
2289        if self._resources is not None:
2290            self._resources.flush()

Force flush all pending spans and events to the Langfuse API.

This method manually flushes any pending spans, scores, and other events to the Langfuse API. It's useful in scenarios where you want to ensure all data is sent before proceeding, without waiting for the automatic flush interval.

Example:
# Record some spans and scores
with langfuse.start_as_current_span(name="operation") as span:
    # Do work...
    pass

# Ensure all data is sent to Langfuse before proceeding
langfuse.flush()

# Continue with other work
def shutdown(self) -> None:
2292    def shutdown(self) -> None:
2293        """Shut down the Langfuse client and flush all pending data.
2294
2295        This method cleanly shuts down the Langfuse client, ensuring all pending data
2296        is flushed to the API and all background threads are properly terminated.
2297
2298        It's important to call this method when your application is shutting down to
2299        prevent data loss and resource leaks. For most applications, using the client
2300        as a context manager or relying on the automatic shutdown via atexit is sufficient.
2301
2302        Example:
2303            ```python
2304            # Initialize Langfuse
2305            langfuse = Langfuse(public_key="...", secret_key="...")
2306
2307            # Use Langfuse throughout your application
2308            # ...
2309
2310            # When application is shutting down
2311            langfuse.shutdown()
2312            ```
2313        """
2314        if self._resources is not None:
2315            self._resources.shutdown()

Shut down the Langfuse client and flush all pending data.

This method cleanly shuts down the Langfuse client, ensuring all pending data is flushed to the API and all background threads are properly terminated.

It's important to call this method when your application is shutting down to prevent data loss and resource leaks. For most applications, using the client as a context manager or relying on the automatic shutdown via atexit is sufficient.

Example:
# Initialize Langfuse
langfuse = Langfuse(public_key="...", secret_key="...")

# Use Langfuse throughout your application
# ...

# When application is shutting down
langfuse.shutdown()
def get_current_trace_id(self) -> Optional[str]:
2317    def get_current_trace_id(self) -> Optional[str]:
2318        """Get the trace ID of the current active span.
2319
2320        This method retrieves the trace ID from the currently active span in the context.
2321        It can be used to get the trace ID for referencing in logs, external systems,
2322        or for creating related operations.
2323
2324        Returns:
2325            The current trace ID as a 32-character lowercase hexadecimal string,
2326            or None if there is no active span.
2327
2328        Example:
2329            ```python
2330            with langfuse.start_as_current_span(name="process-request") as span:
2331                # Get the current trace ID for reference
2332                trace_id = langfuse.get_current_trace_id()
2333
2334                # Use it for external correlation
2335                log.info(f"Processing request with trace_id: {trace_id}")
2336
2337                # Or pass to another system
2338                external_system.process(data, trace_id=trace_id)
2339            ```
2340        """
2341        if not self._tracing_enabled:
2342            langfuse_logger.debug(
2343                "Operation skipped: get_current_trace_id - Tracing is disabled or client is in no-op mode."
2344            )
2345            return None
2346
2347        current_otel_span = self._get_current_otel_span()
2348
2349        return self._get_otel_trace_id(current_otel_span) if current_otel_span else None

Get the trace ID of the current active span.

This method retrieves the trace ID from the currently active span in the context. It can be used to get the trace ID for referencing in logs, external systems, or for creating related operations.

Returns:

The current trace ID as a 32-character lowercase hexadecimal string, or None if there is no active span.

Example:
with langfuse.start_as_current_span(name="process-request") as span:
    # Get the current trace ID for reference
    trace_id = langfuse.get_current_trace_id()

    # Use it for external correlation
    log.info(f"Processing request with trace_id: {trace_id}")

    # Or pass to another system
    external_system.process(data, trace_id=trace_id)
def get_current_observation_id(self) -> Optional[str]:
2351    def get_current_observation_id(self) -> Optional[str]:
2352        """Get the observation ID (span ID) of the current active span.
2353
2354        This method retrieves the observation ID from the currently active span in the context.
2355        It can be used to get the observation ID for referencing in logs, external systems,
2356        or for creating scores or other related operations.
2357
2358        Returns:
2359            The current observation ID as a 16-character lowercase hexadecimal string,
2360            or None if there is no active span.
2361
2362        Example:
2363            ```python
2364            with langfuse.start_as_current_span(name="process-user-query") as span:
2365                # Get the current observation ID
2366                observation_id = langfuse.get_current_observation_id()
2367
2368                # Store it for later reference
2369                cache.set(f"query_{query_id}_observation", observation_id)
2370
2371                # Process the query...
2372            ```
2373        """
2374        if not self._tracing_enabled:
2375            langfuse_logger.debug(
2376                "Operation skipped: get_current_observation_id - Tracing is disabled or client is in no-op mode."
2377            )
2378            return None
2379
2380        current_otel_span = self._get_current_otel_span()
2381
2382        return self._get_otel_span_id(current_otel_span) if current_otel_span else None

Get the observation ID (span ID) of the current active span.

This method retrieves the observation ID from the currently active span in the context. It can be used to get the observation ID for referencing in logs, external systems, or for creating scores or other related operations.

Returns:

The current observation ID as a 16-character lowercase hexadecimal string, or None if there is no active span.

Example:
with langfuse.start_as_current_span(name="process-user-query") as span:
    # Get the current observation ID
    observation_id = langfuse.get_current_observation_id()

    # Store it for later reference
    cache.set(f"query_{query_id}_observation", observation_id)

    # Process the query...
def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
2395    def get_trace_url(self, *, trace_id: Optional[str] = None) -> Optional[str]:
2396        """Get the URL to view a trace in the Langfuse UI.
2397
2398        This method generates a URL that links directly to a trace in the Langfuse UI.
2399        It's useful for providing links in logs, notifications, or debugging tools.
2400
2401        Args:
2402            trace_id: Optional trace ID to generate a URL for. If not provided,
2403                     the trace ID of the current active span will be used.
2404
2405        Returns:
2406            A URL string pointing to the trace in the Langfuse UI,
2407            or None if the project ID couldn't be retrieved or no trace ID is available.
2408
2409        Example:
2410            ```python
2411            # Get URL for the current trace
2412            with langfuse.start_as_current_span(name="process-request") as span:
2413                trace_url = langfuse.get_trace_url()
2414                log.info(f"Processing trace: {trace_url}")
2415
2416            # Get URL for a specific trace
2417            specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
2418            send_notification(f"Review needed for trace: {specific_trace_url}")
2419            ```
2420        """
2421        project_id = self._get_project_id()
2422        final_trace_id = trace_id or self.get_current_trace_id()
2423
2424        return (
2425            f"{self._base_url}/project/{project_id}/traces/{final_trace_id}"
2426            if project_id and final_trace_id
2427            else None
2428        )

Get the URL to view a trace in the Langfuse UI.

This method generates a URL that links directly to a trace in the Langfuse UI. It's useful for providing links in logs, notifications, or debugging tools.

Arguments:
  • trace_id: Optional trace ID to generate a URL for. If not provided, the trace ID of the current active span will be used.
Returns:

A URL string pointing to the trace in the Langfuse UI, or None if the project ID couldn't be retrieved or no trace ID is available.

Example:
# Get URL for the current trace
with langfuse.start_as_current_span(name="process-request") as span:
    trace_url = langfuse.get_trace_url()
    log.info(f"Processing trace: {trace_url}")

# Get URL for a specific trace
specific_trace_url = langfuse.get_trace_url(trace_id="1234567890abcdef1234567890abcdef")
send_notification(f"Review needed for trace: {specific_trace_url}")
def get_dataset( self, name: str, *, fetch_items_page_size: Optional[int] = 50) -> langfuse._client.datasets.DatasetClient:
2430    def get_dataset(
2431        self, name: str, *, fetch_items_page_size: Optional[int] = 50
2432    ) -> "DatasetClient":
2433        """Fetch a dataset by its name.
2434
2435        Args:
2436            name (str): The name of the dataset to fetch.
2437            fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
2438
2439        Returns:
2440            DatasetClient: The dataset with the given name.
2441        """
2442        try:
2443            langfuse_logger.debug(f"Getting datasets {name}")
2444            dataset = self.api.datasets.get(dataset_name=name)
2445
2446            dataset_items = []
2447            page = 1
2448
2449            while True:
2450                new_items = self.api.dataset_items.list(
2451                    dataset_name=self._url_encode(name, is_url_param=True),
2452                    page=page,
2453                    limit=fetch_items_page_size,
2454                )
2455                dataset_items.extend(new_items.data)
2456
2457                if new_items.meta.total_pages <= page:
2458                    break
2459
2460                page += 1
2461
2462            items = [DatasetItemClient(i, langfuse=self) for i in dataset_items]
2463
2464            return DatasetClient(dataset, items=items)
2465
2466        except Error as e:
2467            handle_fern_exception(e)
2468            raise e

Fetch a dataset by its name.

Arguments:
  • name (str): The name of the dataset to fetch.
  • fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:

DatasetClient: The dataset with the given name.

def run_experiment( self, *, name: str, run_name: Optional[str] = None, description: Optional[str] = None, data: Union[List[langfuse.experiment.LocalExperimentItem], List[langfuse._client.datasets.DatasetItemClient]], task: langfuse.experiment.TaskFunction, evaluators: List[langfuse.experiment.EvaluatorFunction] = [], run_evaluators: List[langfuse.experiment.RunEvaluatorFunction] = [], max_concurrency: int = 50, metadata: Optional[Dict[str, Any]] = None) -> langfuse.experiment.ExperimentResult:
2470    def run_experiment(
2471        self,
2472        *,
2473        name: str,
2474        run_name: Optional[str] = None,
2475        description: Optional[str] = None,
2476        data: ExperimentData,
2477        task: TaskFunction,
2478        evaluators: List[EvaluatorFunction] = [],
2479        run_evaluators: List[RunEvaluatorFunction] = [],
2480        max_concurrency: int = 50,
2481        metadata: Optional[Dict[str, Any]] = None,
2482    ) -> ExperimentResult:
2483        """Run an experiment on a dataset with automatic tracing and evaluation.
2484
2485        This method executes a task function on each item in the provided dataset,
2486        automatically traces all executions with Langfuse for observability, runs
2487        item-level and run-level evaluators on the outputs, and returns comprehensive
2488        results with evaluation metrics.
2489
2490        The experiment system provides:
2491        - Automatic tracing of all task executions
2492        - Concurrent processing with configurable limits
2493        - Comprehensive error handling that isolates failures
2494        - Integration with Langfuse datasets for experiment tracking
2495        - Flexible evaluation framework supporting both sync and async evaluators
2496
2497        Args:
2498            name: Human-readable name for the experiment. Used for identification
2499                in the Langfuse UI.
2500            run_name: Optional exact name for the experiment run. If provided, this will be
2501                used as the exact dataset run name if the `data` contains Langfuse dataset items.
2502                If not provided, this will default to the experiment name appended with an ISO timestamp.
2503            description: Optional description explaining the experiment's purpose,
2504                methodology, or expected outcomes.
2505            data: Array of data items to process. Can be either:
2506                - List of dict-like items with 'input', 'expected_output', 'metadata' keys
2507                - List of Langfuse DatasetItem objects from dataset.items
2508            task: Function that processes each data item and returns output.
2509                Must accept 'item' as keyword argument and can return sync or async results.
2510                The task function signature should be: task(*, item, **kwargs) -> Any
2511            evaluators: List of functions to evaluate each item's output individually.
2512                Each evaluator receives input, output, expected_output, and metadata.
2513                Can return single Evaluation dict or list of Evaluation dicts.
2514            run_evaluators: List of functions to evaluate the entire experiment run.
2515                Each run evaluator receives all item_results and can compute aggregate metrics.
2516                Useful for calculating averages, distributions, or cross-item comparisons.
2517            max_concurrency: Maximum number of concurrent task executions (default: 50).
2518                Controls the number of items processed simultaneously. Adjust based on
2519                API rate limits and system resources.
2520            metadata: Optional metadata dictionary to attach to all experiment traces.
2521                This metadata will be included in every trace created during the experiment.
2522                If `data` are Langfuse dataset items, the metadata will be attached to the dataset run, too.
2523
2524        Returns:
2525            ExperimentResult containing:
2526            - run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset.
2527            - item_results: List of results for each processed item with outputs and evaluations
2528            - run_evaluations: List of aggregate evaluation results for the entire run
2529            - dataset_run_id: ID of the dataset run (if using Langfuse datasets)
2530            - dataset_run_url: Direct URL to view results in Langfuse UI (if applicable)
2531
2532        Raises:
2533            ValueError: If required parameters are missing or invalid
2534            Exception: If experiment setup fails (individual item failures are handled gracefully)
2535
2536        Examples:
2537            Basic experiment with local data:
2538            ```python
2539            def summarize_text(*, item, **kwargs):
2540                return f"Summary: {item['input'][:50]}..."
2541
2542            def length_evaluator(*, input, output, expected_output=None, **kwargs):
2543                return {
2544                    "name": "output_length",
2545                    "value": len(output),
2546                    "comment": f"Output contains {len(output)} characters"
2547                }
2548
2549            result = langfuse.run_experiment(
2550                name="Text Summarization Test",
2551                description="Evaluate summarization quality and length",
2552                data=[
2553                    {"input": "Long article text...", "expected_output": "Expected summary"},
2554                    {"input": "Another article...", "expected_output": "Another summary"}
2555                ],
2556                task=summarize_text,
2557                evaluators=[length_evaluator]
2558            )
2559
2560            print(f"Processed {len(result.item_results)} items")
2561            for item_result in result.item_results:
2562                print(f"Input: {item_result.item['input']}")
2563                print(f"Output: {item_result.output}")
2564                print(f"Evaluations: {item_result.evaluations}")
2565            ```
2566
2567            Advanced experiment with async task and multiple evaluators:
2568            ```python
2569            async def llm_task(*, item, **kwargs):
2570                # Simulate async LLM call
2571                response = await openai_client.chat.completions.create(
2572                    model="gpt-4",
2573                    messages=[{"role": "user", "content": item["input"]}]
2574                )
2575                return response.choices[0].message.content
2576
2577            def accuracy_evaluator(*, input, output, expected_output=None, **kwargs):
2578                if expected_output and expected_output.lower() in output.lower():
2579                    return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"}
2580                return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"}
2581
2582            def toxicity_evaluator(*, input, output, expected_output=None, **kwargs):
2583                # Simulate toxicity check
2584                toxicity_score = check_toxicity(output)  # Your toxicity checker
2585                return {
2586                    "name": "toxicity",
2587                    "value": toxicity_score,
2588                    "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}"
2589                }
2590
2591            def average_accuracy(*, item_results, **kwargs):
2592                accuracies = [
2593                    eval.value for result in item_results
2594                    for eval in result.evaluations
2595                    if eval.name == "accuracy"
2596                ]
2597                return {
2598                    "name": "average_accuracy",
2599                    "value": sum(accuracies) / len(accuracies) if accuracies else 0,
2600                    "comment": f"Average accuracy across {len(accuracies)} items"
2601                }
2602
2603            result = langfuse.run_experiment(
2604                name="LLM Safety and Accuracy Test",
2605                description="Evaluate model accuracy and safety across diverse prompts",
2606                data=test_dataset,  # Your dataset items
2607                task=llm_task,
2608                evaluators=[accuracy_evaluator, toxicity_evaluator],
2609                run_evaluators=[average_accuracy],
2610                max_concurrency=5,  # Limit concurrent API calls
2611                metadata={"model": "gpt-4", "temperature": 0.7}
2612            )
2613            ```
2614
2615            Using with Langfuse datasets:
2616            ```python
2617            # Get dataset from Langfuse
2618            dataset = langfuse.get_dataset("my-eval-dataset")
2619
2620            result = dataset.run_experiment(
2621                name="Production Model Evaluation",
2622                description="Monthly evaluation of production model performance",
2623                task=my_production_task,
2624                evaluators=[accuracy_evaluator, latency_evaluator]
2625            )
2626
2627            # Results automatically linked to dataset in Langfuse UI
2628            print(f"View results: {result['dataset_run_url']}")
2629            ```
2630
2631        Note:
2632            - Task and evaluator functions can be either synchronous or asynchronous
2633            - Individual item failures are logged but don't stop the experiment
2634            - All executions are automatically traced and visible in Langfuse UI
2635            - When using Langfuse datasets, results are automatically linked for easy comparison
2636            - This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.)
2637            - Async execution is handled automatically with smart event loop detection
2638        """
2639        return cast(
2640            ExperimentResult,
2641            run_async_safely(
2642                self._run_experiment_async(
2643                    name=name,
2644                    run_name=self._create_experiment_run_name(
2645                        name=name, run_name=run_name
2646                    ),
2647                    description=description,
2648                    data=data,
2649                    task=task,
2650                    evaluators=evaluators or [],
2651                    run_evaluators=run_evaluators or [],
2652                    max_concurrency=max_concurrency,
2653                    metadata=metadata or {},
2654                ),
2655            ),
2656        )

Run an experiment on a dataset with automatic tracing and evaluation.

This method executes a task function on each item in the provided dataset, automatically traces all executions with Langfuse for observability, runs item-level and run-level evaluators on the outputs, and returns comprehensive results with evaluation metrics.

The experiment system provides:

  • Automatic tracing of all task executions
  • Concurrent processing with configurable limits
  • Comprehensive error handling that isolates failures
  • Integration with Langfuse datasets for experiment tracking
  • Flexible evaluation framework supporting both sync and async evaluators
Arguments:
  • name: Human-readable name for the experiment. Used for identification in the Langfuse UI.
  • run_name: Optional exact name for the experiment run. If provided, this will be used as the exact dataset run name if the data contains Langfuse dataset items. If not provided, this will default to the experiment name appended with an ISO timestamp.
  • description: Optional description explaining the experiment's purpose, methodology, or expected outcomes.
  • data: Array of data items to process. Can be either:
    • List of dict-like items with 'input', 'expected_output', 'metadata' keys
    • List of Langfuse DatasetItem objects from dataset.items
  • task: Function that processes each data item and returns output. Must accept 'item' as keyword argument and can return sync or async results. The task function signature should be: task(, item, *kwargs) -> Any
  • evaluators: List of functions to evaluate each item's output individually. Each evaluator receives input, output, expected_output, and metadata. Can return single Evaluation dict or list of Evaluation dicts.
  • run_evaluators: List of functions to evaluate the entire experiment run. Each run evaluator receives all item_results and can compute aggregate metrics. Useful for calculating averages, distributions, or cross-item comparisons.
  • max_concurrency: Maximum number of concurrent task executions (default: 50). Controls the number of items processed simultaneously. Adjust based on API rate limits and system resources.
  • metadata: Optional metadata dictionary to attach to all experiment traces. This metadata will be included in every trace created during the experiment. If data are Langfuse dataset items, the metadata will be attached to the dataset run, too.
Returns:

ExperimentResult containing:

  • run_name: The experiment run name. This is equal to the dataset run name if experiment was on Langfuse dataset.
  • item_results: List of results for each processed item with outputs and evaluations
  • run_evaluations: List of aggregate evaluation results for the entire run
  • dataset_run_id: ID of the dataset run (if using Langfuse datasets)
  • dataset_run_url: Direct URL to view results in Langfuse UI (if applicable)
Raises:
  • ValueError: If required parameters are missing or invalid
  • Exception: If experiment setup fails (individual item failures are handled gracefully)
Examples:

Basic experiment with local data:

def summarize_text(*, item, **kwargs):
    return f"Summary: {item['input'][:50]}..."

def length_evaluator(*, input, output, expected_output=None, **kwargs):
    return {
        "name": "output_length",
        "value": len(output),
        "comment": f"Output contains {len(output)} characters"
    }

result = langfuse.run_experiment(
    name="Text Summarization Test",
    description="Evaluate summarization quality and length",
    data=[
        {"input": "Long article text...", "expected_output": "Expected summary"},
        {"input": "Another article...", "expected_output": "Another summary"}
    ],
    task=summarize_text,
    evaluators=[length_evaluator]
)

print(f"Processed {len(result.item_results)} items")
for item_result in result.item_results:
    print(f"Input: {item_result.item['input']}")
    print(f"Output: {item_result.output}")
    print(f"Evaluations: {item_result.evaluations}")

Advanced experiment with async task and multiple evaluators:

async def llm_task(*, item, **kwargs):
    # Simulate async LLM call
    response = await openai_client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": item["input"]}]
    )
    return response.choices[0].message.content

def accuracy_evaluator(*, input, output, expected_output=None, **kwargs):
    if expected_output and expected_output.lower() in output.lower():
        return {"name": "accuracy", "value": 1.0, "comment": "Correct answer"}
    return {"name": "accuracy", "value": 0.0, "comment": "Incorrect answer"}

def toxicity_evaluator(*, input, output, expected_output=None, **kwargs):
    # Simulate toxicity check
    toxicity_score = check_toxicity(output)  # Your toxicity checker
    return {
        "name": "toxicity",
        "value": toxicity_score,
        "comment": f"Toxicity level: {'high' if toxicity_score > 0.7 else 'low'}"
    }

def average_accuracy(*, item_results, **kwargs):
    accuracies = [
        eval.value for result in item_results
        for eval in result.evaluations
        if eval.name == "accuracy"
    ]
    return {
        "name": "average_accuracy",
        "value": sum(accuracies) / len(accuracies) if accuracies else 0,
        "comment": f"Average accuracy across {len(accuracies)} items"
    }

result = langfuse.run_experiment(
    name="LLM Safety and Accuracy Test",
    description="Evaluate model accuracy and safety across diverse prompts",
    data=test_dataset,  # Your dataset items
    task=llm_task,
    evaluators=[accuracy_evaluator, toxicity_evaluator],
    run_evaluators=[average_accuracy],
    max_concurrency=5,  # Limit concurrent API calls
    metadata={"model": "gpt-4", "temperature": 0.7}
)

Using with Langfuse datasets:

# Get dataset from Langfuse
dataset = langfuse.get_dataset("my-eval-dataset")

result = dataset.run_experiment(
    name="Production Model Evaluation",
    description="Monthly evaluation of production model performance",
    task=my_production_task,
    evaluators=[accuracy_evaluator, latency_evaluator]
)

# Results automatically linked to dataset in Langfuse UI
print(f"View results: {result['dataset_run_url']}")
Note:
  • Task and evaluator functions can be either synchronous or asynchronous
  • Individual item failures are logged but don't stop the experiment
  • All executions are automatically traced and visible in Langfuse UI
  • When using Langfuse datasets, results are automatically linked for easy comparison
  • This method works in both sync and async contexts (Jupyter notebooks, web apps, etc.)
  • Async execution is handled automatically with smart event loop detection
def auth_check(self) -> bool:
2901    def auth_check(self) -> bool:
2902        """Check if the provided credentials (public and secret key) are valid.
2903
2904        Raises:
2905            Exception: If no projects were found for the provided credentials.
2906
2907        Note:
2908            This method is blocking. It is discouraged to use it in production code.
2909        """
2910        try:
2911            projects = self.api.projects.get()
2912            langfuse_logger.debug(
2913                f"Auth check successful, found {len(projects.data)} projects"
2914            )
2915            if len(projects.data) == 0:
2916                raise Exception(
2917                    "Auth check failed, no project found for the keys provided."
2918                )
2919            return True
2920
2921        except AttributeError as e:
2922            langfuse_logger.warning(
2923                f"Auth check failed: Client not properly initialized. Error: {e}"
2924            )
2925            return False
2926
2927        except Error as e:
2928            handle_fern_exception(e)
2929            raise e

Check if the provided credentials (public and secret key) are valid.

Raises:
  • Exception: If no projects were found for the provided credentials.
Note:

This method is blocking. It is discouraged to use it in production code.

def create_dataset( self, *, name: str, description: Optional[str] = None, metadata: Optional[Any] = None) -> langfuse.api.Dataset:
2931    def create_dataset(
2932        self,
2933        *,
2934        name: str,
2935        description: Optional[str] = None,
2936        metadata: Optional[Any] = None,
2937    ) -> Dataset:
2938        """Create a dataset with the given name on Langfuse.
2939
2940        Args:
2941            name: Name of the dataset to create.
2942            description: Description of the dataset. Defaults to None.
2943            metadata: Additional metadata. Defaults to None.
2944
2945        Returns:
2946            Dataset: The created dataset as returned by the Langfuse API.
2947        """
2948        try:
2949            body = CreateDatasetRequest(
2950                name=name, description=description, metadata=metadata
2951            )
2952            langfuse_logger.debug(f"Creating datasets {body}")
2953
2954            return self.api.datasets.create(request=body)
2955
2956        except Error as e:
2957            handle_fern_exception(e)
2958            raise e

Create a dataset with the given name on Langfuse.

Arguments:
  • name: Name of the dataset to create.
  • description: Description of the dataset. Defaults to None.
  • metadata: Additional metadata. Defaults to None.
Returns:

Dataset: The created dataset as returned by the Langfuse API.

def create_dataset_item( self, *, dataset_name: str, input: Optional[Any] = None, expected_output: Optional[Any] = None, metadata: Optional[Any] = None, source_trace_id: Optional[str] = None, source_observation_id: Optional[str] = None, status: Optional[langfuse.api.DatasetStatus] = None, id: Optional[str] = None) -> langfuse.api.DatasetItem:
2960    def create_dataset_item(
2961        self,
2962        *,
2963        dataset_name: str,
2964        input: Optional[Any] = None,
2965        expected_output: Optional[Any] = None,
2966        metadata: Optional[Any] = None,
2967        source_trace_id: Optional[str] = None,
2968        source_observation_id: Optional[str] = None,
2969        status: Optional[DatasetStatus] = None,
2970        id: Optional[str] = None,
2971    ) -> DatasetItem:
2972        """Create a dataset item.
2973
2974        Upserts if an item with id already exists.
2975
2976        Args:
2977            dataset_name: Name of the dataset in which the dataset item should be created.
2978            input: Input data. Defaults to None. Can contain any dict, list or scalar.
2979            expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
2980            metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
2981            source_trace_id: Id of the source trace. Defaults to None.
2982            source_observation_id: Id of the source observation. Defaults to None.
2983            status: Status of the dataset item. Defaults to ACTIVE for newly created items.
2984            id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
2985
2986        Returns:
2987            DatasetItem: The created dataset item as returned by the Langfuse API.
2988
2989        Example:
2990            ```python
2991            from langfuse import Langfuse
2992
2993            langfuse = Langfuse()
2994
2995            # Uploading items to the Langfuse dataset named "capital_cities"
2996            langfuse.create_dataset_item(
2997                dataset_name="capital_cities",
2998                input={"input": {"country": "Italy"}},
2999                expected_output={"expected_output": "Rome"},
3000                metadata={"foo": "bar"}
3001            )
3002            ```
3003        """
3004        try:
3005            body = CreateDatasetItemRequest(
3006                datasetName=dataset_name,
3007                input=input,
3008                expectedOutput=expected_output,
3009                metadata=metadata,
3010                sourceTraceId=source_trace_id,
3011                sourceObservationId=source_observation_id,
3012                status=status,
3013                id=id,
3014            )
3015            langfuse_logger.debug(f"Creating dataset item {body}")
3016            return self.api.dataset_items.create(request=body)
3017        except Error as e:
3018            handle_fern_exception(e)
3019            raise e

Create a dataset item.

Upserts if an item with id already exists.

Arguments:
  • dataset_name: Name of the dataset in which the dataset item should be created.
  • input: Input data. Defaults to None. Can contain any dict, list or scalar.
  • expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
  • metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
  • source_trace_id: Id of the source trace. Defaults to None.
  • source_observation_id: Id of the source observation. Defaults to None.
  • status: Status of the dataset item. Defaults to ACTIVE for newly created items.
  • id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:

DatasetItem: The created dataset item as returned by the Langfuse API.

Example:
from langfuse import Langfuse

langfuse = Langfuse()

# Uploading items to the Langfuse dataset named "capital_cities"
langfuse.create_dataset_item(
    dataset_name="capital_cities",
    input={"input": {"country": "Italy"}},
    expected_output={"expected_output": "Rome"},
    metadata={"foo": "bar"}
)
def resolve_media_references( self, *, obj: Any, resolve_with: Literal['base64_data_uri'], max_depth: int = 10, content_fetch_timeout_seconds: int = 5) -> Any:
3021    def resolve_media_references(
3022        self,
3023        *,
3024        obj: Any,
3025        resolve_with: Literal["base64_data_uri"],
3026        max_depth: int = 10,
3027        content_fetch_timeout_seconds: int = 5,
3028    ) -> Any:
3029        """Replace media reference strings in an object with base64 data URIs.
3030
3031        This method recursively traverses an object (up to max_depth) looking for media reference strings
3032        in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using
3033        the provided Langfuse client and replaces the reference string with a base64 data URI.
3034
3035        If fetching media content fails for a reference string, a warning is logged and the reference
3036        string is left unchanged.
3037
3038        Args:
3039            obj: The object to process. Can be a primitive value, array, or nested object.
3040                If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
3041            resolve_with: The representation of the media content to replace the media reference string with.
3042                Currently only "base64_data_uri" is supported.
3043            max_depth: int: The maximum depth to traverse the object. Default is 10.
3044            content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
3045
3046        Returns:
3047            A deep copy of the input object with all media references replaced with base64 data URIs where possible.
3048            If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
3049
3050        Example:
3051            obj = {
3052                "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@",
3053                "nested": {
3054                    "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@"
3055                }
3056            }
3057
3058            result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
3059
3060            # Result:
3061            # {
3062            #     "image": "...",
3063            #     "nested": {
3064            #         "pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
3065            #     }
3066            # }
3067        """
3068        return LangfuseMedia.resolve_media_references(
3069            langfuse_client=self,
3070            obj=obj,
3071            resolve_with=resolve_with,
3072            max_depth=max_depth,
3073            content_fetch_timeout_seconds=content_fetch_timeout_seconds,
3074        )

Replace media reference strings in an object with base64 data URIs.

This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.

If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.

Arguments:
  • obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
  • resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
  • max_depth: int: The maximum depth to traverse the object. Default is 10.
  • content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 5.
Returns:

A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.

Example:

obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }

result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)

Result:

{

"image": "...",

"nested": {

"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."

}

}

def get_prompt( self, name: str, *, version: Optional[int] = None, label: Optional[str] = None, type: Literal['chat', 'text'] = 'text', cache_ttl_seconds: Optional[int] = None, fallback: Union[List[langfuse.model.ChatMessageDict], NoneType, str] = None, max_retries: Optional[int] = None, fetch_timeout_seconds: Optional[int] = None) -> Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient]:
3104    def get_prompt(
3105        self,
3106        name: str,
3107        *,
3108        version: Optional[int] = None,
3109        label: Optional[str] = None,
3110        type: Literal["chat", "text"] = "text",
3111        cache_ttl_seconds: Optional[int] = None,
3112        fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None,
3113        max_retries: Optional[int] = None,
3114        fetch_timeout_seconds: Optional[int] = None,
3115    ) -> PromptClient:
3116        """Get a prompt.
3117
3118        This method attempts to fetch the requested prompt from the local cache. If the prompt is not found
3119        in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again
3120        and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will
3121        return the expired prompt as a fallback.
3122
3123        Args:
3124            name (str): The name of the prompt to retrieve.
3125
3126        Keyword Args:
3127            version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
3128            label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both.
3129            cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a
3130            keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0.
3131            type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text".
3132            fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None.
3133            max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds.
3134            fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.
3135
3136        Returns:
3137            The prompt object retrieved from the cache or directly fetched if not cached or expired of type
3138            - TextPromptClient, if type argument is 'text'.
3139            - ChatPromptClient, if type argument is 'chat'.
3140
3141        Raises:
3142            Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
3143            expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
3144        """
3145        if self._resources is None:
3146            raise Error(
3147                "SDK is not correctly initialized. Check the init logs for more details."
3148            )
3149        if version is not None and label is not None:
3150            raise ValueError("Cannot specify both version and label at the same time.")
3151
3152        if not name:
3153            raise ValueError("Prompt name cannot be empty.")
3154
3155        cache_key = PromptCache.generate_cache_key(name, version=version, label=label)
3156        bounded_max_retries = self._get_bounded_max_retries(
3157            max_retries, default_max_retries=2, max_retries_upper_bound=4
3158        )
3159
3160        langfuse_logger.debug(f"Getting prompt '{cache_key}'")
3161        cached_prompt = self._resources.prompt_cache.get(cache_key)
3162
3163        if cached_prompt is None or cache_ttl_seconds == 0:
3164            langfuse_logger.debug(
3165                f"Prompt '{cache_key}' not found in cache or caching disabled."
3166            )
3167            try:
3168                return self._fetch_prompt_and_update_cache(
3169                    name,
3170                    version=version,
3171                    label=label,
3172                    ttl_seconds=cache_ttl_seconds,
3173                    max_retries=bounded_max_retries,
3174                    fetch_timeout_seconds=fetch_timeout_seconds,
3175                )
3176            except Exception as e:
3177                if fallback:
3178                    langfuse_logger.warning(
3179                        f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}"
3180                    )
3181
3182                    fallback_client_args: Dict[str, Any] = {
3183                        "name": name,
3184                        "prompt": fallback,
3185                        "type": type,
3186                        "version": version or 0,
3187                        "config": {},
3188                        "labels": [label] if label else [],
3189                        "tags": [],
3190                    }
3191
3192                    if type == "text":
3193                        return TextPromptClient(
3194                            prompt=Prompt_Text(**fallback_client_args),
3195                            is_fallback=True,
3196                        )
3197
3198                    if type == "chat":
3199                        return ChatPromptClient(
3200                            prompt=Prompt_Chat(**fallback_client_args),
3201                            is_fallback=True,
3202                        )
3203
3204                raise e
3205
3206        if cached_prompt.is_expired():
3207            langfuse_logger.debug(f"Stale prompt '{cache_key}' found in cache.")
3208            try:
3209                # refresh prompt in background thread, refresh_prompt deduplicates tasks
3210                langfuse_logger.debug(f"Refreshing prompt '{cache_key}' in background.")
3211
3212                def refresh_task() -> None:
3213                    self._fetch_prompt_and_update_cache(
3214                        name,
3215                        version=version,
3216                        label=label,
3217                        ttl_seconds=cache_ttl_seconds,
3218                        max_retries=bounded_max_retries,
3219                        fetch_timeout_seconds=fetch_timeout_seconds,
3220                    )
3221
3222                self._resources.prompt_cache.add_refresh_prompt_task(
3223                    cache_key,
3224                    refresh_task,
3225                )
3226                langfuse_logger.debug(
3227                    f"Returning stale prompt '{cache_key}' from cache."
3228                )
3229                # return stale prompt
3230                return cached_prompt.value
3231
3232            except Exception as e:
3233                langfuse_logger.warning(
3234                    f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}"
3235                )
3236                # creation of refresh prompt task failed, return stale prompt
3237                return cached_prompt.value
3238
3239        return cached_prompt.value

Get a prompt.

This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.

Arguments:
  • name (str): The name of the prompt to retrieve.
Keyword Args:

version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the production label is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the production label is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 5 seconds per default.

Returns:

The prompt object retrieved from the cache or directly fetched if not cached or expired of type

  • TextPromptClient, if type argument is 'text'.
  • ChatPromptClient, if type argument is 'chat'.
Raises:
  • Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
  • expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
def create_prompt( self, *, name: str, prompt: Union[str, List[Union[langfuse.model.ChatMessageDict, langfuse.model.ChatMessageWithPlaceholdersDict_Message, langfuse.model.ChatMessageWithPlaceholdersDict_Placeholder]]], labels: List[str] = [], tags: Optional[List[str]] = None, type: Optional[Literal['chat', 'text']] = 'text', config: Optional[Any] = None, commit_message: Optional[str] = None) -> Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient]:
3333    def create_prompt(
3334        self,
3335        *,
3336        name: str,
3337        prompt: Union[
3338            str, List[Union[ChatMessageDict, ChatMessageWithPlaceholdersDict]]
3339        ],
3340        labels: List[str] = [],
3341        tags: Optional[List[str]] = None,
3342        type: Optional[Literal["chat", "text"]] = "text",
3343        config: Optional[Any] = None,
3344        commit_message: Optional[str] = None,
3345    ) -> PromptClient:
3346        """Create a new prompt in Langfuse.
3347
3348        Keyword Args:
3349            name : The name of the prompt to be created.
3350            prompt : The content of the prompt to be created.
3351            is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead.
3352            labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label.
3353            tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt.
3354            config: Additional structured data to be saved with the prompt. Defaults to None.
3355            type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text".
3356            commit_message: Optional string describing the change.
3357
3358        Returns:
3359            TextPromptClient: The prompt if type argument is 'text'.
3360            ChatPromptClient: The prompt if type argument is 'chat'.
3361        """
3362        try:
3363            langfuse_logger.debug(f"Creating prompt {name=}, {labels=}")
3364
3365            if type == "chat":
3366                if not isinstance(prompt, list):
3367                    raise ValueError(
3368                        "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes."
3369                    )
3370                request: Union[CreatePromptRequest_Chat, CreatePromptRequest_Text] = (
3371                    CreatePromptRequest_Chat(
3372                        name=name,
3373                        prompt=cast(Any, prompt),
3374                        labels=labels,
3375                        tags=tags,
3376                        config=config or {},
3377                        commitMessage=commit_message,
3378                        type="chat",
3379                    )
3380                )
3381                server_prompt = self.api.prompts.create(request=request)
3382
3383                if self._resources is not None:
3384                    self._resources.prompt_cache.invalidate(name)
3385
3386                return ChatPromptClient(prompt=cast(Prompt_Chat, server_prompt))
3387
3388            if not isinstance(prompt, str):
3389                raise ValueError("For 'text' type, 'prompt' must be a string.")
3390
3391            request = CreatePromptRequest_Text(
3392                name=name,
3393                prompt=prompt,
3394                labels=labels,
3395                tags=tags,
3396                config=config or {},
3397                commitMessage=commit_message,
3398                type="text",
3399            )
3400
3401            server_prompt = self.api.prompts.create(request=request)
3402
3403            if self._resources is not None:
3404                self._resources.prompt_cache.invalidate(name)
3405
3406            return TextPromptClient(prompt=cast(Prompt_Text, server_prompt))
3407
3408        except Error as e:
3409            handle_fern_exception(e)
3410            raise e

Create a new prompt in Langfuse.

Keyword Args:

name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.

Returns:

TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.

def update_prompt(self, *, name: str, version: int, new_labels: List[str] = []) -> Any:
3412    def update_prompt(
3413        self,
3414        *,
3415        name: str,
3416        version: int,
3417        new_labels: List[str] = [],
3418    ) -> Any:
3419        """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
3420
3421        Args:
3422            name (str): The name of the prompt to update.
3423            version (int): The version number of the prompt to update.
3424            new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
3425
3426        Returns:
3427            Prompt: The updated prompt from the Langfuse API.
3428
3429        """
3430        updated_prompt = self.api.prompt_version.update(
3431            name=self._url_encode(name),
3432            version=version,
3433            new_labels=new_labels,
3434        )
3435
3436        if self._resources is not None:
3437            self._resources.prompt_cache.invalidate(name)
3438
3439        return updated_prompt

Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.

Arguments:
  • name (str): The name of the prompt to update.
  • version (int): The version number of the prompt to update.
  • new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:

Prompt: The updated prompt from the Langfuse API.

def clear_prompt_cache(self) -> None:
3454    def clear_prompt_cache(self) -> None:
3455        """Clear the entire prompt cache, removing all cached prompts.
3456
3457        This method is useful when you want to force a complete refresh of all
3458        cached prompts, for example after major updates or when you need to
3459        ensure the latest versions are fetched from the server.
3460        """
3461        if self._resources is not None:
3462            self._resources.prompt_cache.clear()

Clear the entire prompt cache, removing all cached prompts.

This method is useful when you want to force a complete refresh of all cached prompts, for example after major updates or when you need to ensure the latest versions are fetched from the server.

def get_client(*, public_key: Optional[str] = None) -> Langfuse:
 59def get_client(*, public_key: Optional[str] = None) -> Langfuse:
 60    """Get or create a Langfuse client instance.
 61
 62    Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups,
 63    providing a public_key is required. Multi-project support is experimental - see Langfuse docs.
 64
 65    Behavior:
 66    - Single project: Returns existing client or creates new one
 67    - Multi-project: Requires public_key to return specific client
 68    - No public_key in multi-project: Returns disabled client to prevent data leakage
 69
 70    The function uses a singleton pattern per public_key to conserve resources and maintain state.
 71
 72    Args:
 73        public_key (Optional[str]): Project identifier
 74            - With key: Returns client for that project
 75            - Without key: Returns single client or disabled client if multiple exist
 76
 77    Returns:
 78        Langfuse: Client instance in one of three states:
 79            1. Client for specified public_key
 80            2. Default client for single-project setup
 81            3. Disabled client when multiple projects exist without key
 82
 83    Security:
 84        Disables tracing when multiple projects exist without explicit key to prevent
 85        cross-project data leakage. Multi-project setups are experimental.
 86
 87    Example:
 88        ```python
 89        # Single project
 90        client = get_client()  # Default client
 91
 92        # In multi-project usage:
 93        client_a = get_client(public_key="project_a_key")  # Returns project A's client
 94        client_b = get_client(public_key="project_b_key")  # Returns project B's client
 95
 96        # Without specific key in multi-project setup:
 97        client = get_client()  # Returns disabled client for safety
 98        ```
 99    """
100    with LangfuseResourceManager._lock:
101        active_instances = LangfuseResourceManager._instances
102
103        # If no explicit public_key provided, check execution context
104        if not public_key:
105            public_key = _current_public_key.get(None)
106
107        if not public_key:
108            if len(active_instances) == 0:
109                # No clients initialized yet, create default instance
110                return Langfuse()
111
112            if len(active_instances) == 1:
113                # Only one client exists, safe to use without specifying key
114                instance = list(active_instances.values())[0]
115
116                # Initialize with the credentials bound to the instance
117                # This is important if the original instance was instantiated
118                # via constructor arguments
119                return _create_client_from_instance(instance)
120
121            else:
122                # Multiple clients exist but no key specified - disable tracing
123                # to prevent cross-project data leakage
124                langfuse_logger.warning(
125                    "No 'langfuse_public_key' passed to decorated function, but multiple langfuse clients are instantiated in current process. Skipping tracing for this function to avoid cross-project leakage."
126                )
127                return Langfuse(
128                    tracing_enabled=False, public_key="fake", secret_key="fake"
129                )
130
131        else:
132            # Specific key provided, look up existing instance
133            target_instance: Optional[LangfuseResourceManager] = active_instances.get(
134                public_key, None
135            )
136
137            if target_instance is None:
138                # No instance found with this key - client not initialized properly
139                langfuse_logger.warning(
140                    f"No Langfuse client with public key {public_key} has been initialized. Skipping tracing for decorated function."
141                )
142                return Langfuse(
143                    tracing_enabled=False, public_key="fake", secret_key="fake"
144                )
145
146            # target_instance is guaranteed to be not None at this point
147            return _create_client_from_instance(target_instance, public_key)

Get or create a Langfuse client instance.

Returns an existing Langfuse client or creates a new one if none exists. In multi-project setups, providing a public_key is required. Multi-project support is experimental - see Langfuse docs.

Behavior:

  • Single project: Returns existing client or creates new one
  • Multi-project: Requires public_key to return specific client
  • No public_key in multi-project: Returns disabled client to prevent data leakage

The function uses a singleton pattern per public_key to conserve resources and maintain state.

Arguments:
  • public_key (Optional[str]): Project identifier
    • With key: Returns client for that project
    • Without key: Returns single client or disabled client if multiple exist
Returns:

Langfuse: Client instance in one of three states: 1. Client for specified public_key 2. Default client for single-project setup 3. Disabled client when multiple projects exist without key

Security:

Disables tracing when multiple projects exist without explicit key to prevent cross-project data leakage. Multi-project setups are experimental.

Example:
# Single project
client = get_client()  # Default client

# In multi-project usage:
client_a = get_client(public_key="project_a_key")  # Returns project A's client
client_b = get_client(public_key="project_b_key")  # Returns project B's client

# Without specific key in multi-project setup:
client = get_client()  # Returns disabled client for safety
def observe( func: Optional[~F] = None, *, name: Optional[str] = None, as_type: Union[Literal['generation', 'embedding'], Literal['span', 'agent', 'tool', 'chain', 'retriever', 'evaluator', 'guardrail'], NoneType] = None, capture_input: Optional[bool] = None, capture_output: Optional[bool] = None, transform_to_string: Optional[Callable[[Iterable], str]] = None) -> Union[~F, Callable[[~F], ~F]]:
 90    def observe(
 91        self,
 92        func: Optional[F] = None,
 93        *,
 94        name: Optional[str] = None,
 95        as_type: Optional[ObservationTypeLiteralNoEvent] = None,
 96        capture_input: Optional[bool] = None,
 97        capture_output: Optional[bool] = None,
 98        transform_to_string: Optional[Callable[[Iterable], str]] = None,
 99    ) -> Union[F, Callable[[F], F]]:
100        """Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.
101
102        This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates
103        spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator
104        intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.
105
106        Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application,
107        enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.
108
109        Args:
110            func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
111            name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
112            as_type (Optional[Literal]): Set the observation type. Supported values:
113                    "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail".
114                    Observation types are highlighted in the Langfuse UI for filtering and visualization.
115                    The types "generation" and "embedding" create a span on which additional attributes such as model metrics
116                    can be set.
117
118        Returns:
119            Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.
120
121        Example:
122            For general function tracing with automatic naming:
123            ```python
124            @observe()
125            def process_user_request(user_id, query):
126                # Function is automatically traced with name "process_user_request"
127                return get_response(query)
128            ```
129
130            For language model generation tracking:
131            ```python
132            @observe(name="answer-generation", as_type="generation")
133            async def generate_answer(query):
134                # Creates a generation-type span with extended LLM metrics
135                response = await openai.chat.completions.create(
136                    model="gpt-4",
137                    messages=[{"role": "user", "content": query}]
138                )
139                return response.choices[0].message.content
140            ```
141
142            For trace context propagation between functions:
143            ```python
144            @observe()
145            def main_process():
146                # Parent span is created
147                return sub_process()  # Child span automatically connected to parent
148
149            @observe()
150            def sub_process():
151                # Automatically becomes a child span of main_process
152                return "result"
153            ```
154
155        Raises:
156            Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
157
158        Notes:
159            - The decorator preserves the original function's signature, docstring, and return type.
160            - Proper parent-child relationships between spans are automatically maintained.
161            - Special keyword arguments can be passed to control tracing:
162              - langfuse_trace_id: Explicitly set the trace ID for this function call
163              - langfuse_parent_observation_id: Explicitly set the parent span ID
164              - langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
165            - For async functions, the decorator returns an async function wrapper.
166            - For sync functions, the decorator returns a synchronous wrapper.
167        """
168        valid_types = set(get_observation_types_list(ObservationTypeLiteralNoEvent))
169        if as_type is not None and as_type not in valid_types:
170            self._log.warning(
171                f"Invalid as_type '{as_type}'. Valid types are: {', '.join(sorted(valid_types))}. Defaulting to 'span'."
172            )
173            as_type = "span"
174
175        function_io_capture_enabled = os.environ.get(
176            LANGFUSE_OBSERVE_DECORATOR_IO_CAPTURE_ENABLED, "True"
177        ).lower() not in ("false", "0")
178
179        should_capture_input = (
180            capture_input if capture_input is not None else function_io_capture_enabled
181        )
182
183        should_capture_output = (
184            capture_output
185            if capture_output is not None
186            else function_io_capture_enabled
187        )
188
189        def decorator(func: F) -> F:
190            return (
191                self._async_observe(
192                    func,
193                    name=name,
194                    as_type=as_type,
195                    capture_input=should_capture_input,
196                    capture_output=should_capture_output,
197                    transform_to_string=transform_to_string,
198                )
199                if asyncio.iscoroutinefunction(func)
200                else self._sync_observe(
201                    func,
202                    name=name,
203                    as_type=as_type,
204                    capture_input=should_capture_input,
205                    capture_output=should_capture_output,
206                    transform_to_string=transform_to_string,
207                )
208            )
209
210        """Handle decorator with or without parentheses.
211
212        This logic enables the decorator to work both with and without parentheses:
213        - @observe - Python passes the function directly to the decorator
214        - @observe() - Python calls the decorator first, which must return a function decorator
215
216        When called without arguments (@observe), the func parameter contains the function to decorate,
217        so we directly apply the decorator to it. When called with parentheses (@observe()),
218        func is None, so we return the decorator function itself for Python to apply in the next step.
219        """
220        if func is None:
221            return decorator
222        else:
223            return decorator(func)

Wrap a function to create and manage Langfuse tracing around its execution, supporting both synchronous and asynchronous functions.

This decorator provides seamless integration of Langfuse observability into your codebase. It automatically creates spans or generations around function execution, capturing timing, inputs/outputs, and error states. The decorator intelligently handles both synchronous and asynchronous functions, preserving function signatures and type hints.

Using OpenTelemetry's distributed tracing system, it maintains proper trace context propagation throughout your application, enabling you to see hierarchical traces of function calls with detailed performance metrics and function-specific details.

Arguments:
  • func (Optional[Callable]): The function to decorate. When used with parentheses @observe(), this will be None.
  • name (Optional[str]): Custom name for the created trace or span. If not provided, the function name is used.
  • as_type (Optional[Literal]): Set the observation type. Supported values: "generation", "span", "agent", "tool", "chain", "retriever", "embedding", "evaluator", "guardrail". Observation types are highlighted in the Langfuse UI for filtering and visualization. The types "generation" and "embedding" create a span on which additional attributes such as model metrics can be set.
Returns:

Callable: A wrapped version of the original function that automatically creates and manages Langfuse spans.

Example:

For general function tracing with automatic naming:

@observe()
def process_user_request(user_id, query):
    # Function is automatically traced with name "process_user_request"
    return get_response(query)

For language model generation tracking:

@observe(name="answer-generation", as_type="generation")
async def generate_answer(query):
    # Creates a generation-type span with extended LLM metrics
    response = await openai.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": query}]
    )
    return response.choices[0].message.content

For trace context propagation between functions:

@observe()
def main_process():
    # Parent span is created
    return sub_process()  # Child span automatically connected to parent

@observe()
def sub_process():
    # Automatically becomes a child span of main_process
    return "result"
Raises:
  • Exception: Propagates any exceptions from the wrapped function after logging them in the trace.
Notes:
  • The decorator preserves the original function's signature, docstring, and return type.
  • Proper parent-child relationships between spans are automatically maintained.
  • Special keyword arguments can be passed to control tracing:
    • langfuse_trace_id: Explicitly set the trace ID for this function call
    • langfuse_parent_observation_id: Explicitly set the parent span ID
    • langfuse_public_key: Use a specific Langfuse project (when multiple clients exist)
  • For async functions, the decorator returns an async function wrapper.
  • For sync functions, the decorator returns a synchronous wrapper.
ObservationTypeLiteral = typing.Union[typing.Literal['generation', 'embedding'], typing.Literal['span', 'agent', 'tool', 'chain', 'retriever', 'evaluator', 'guardrail'], typing.Literal['event']]
class LangfuseSpan(langfuse._client.span.LangfuseObservationWrapper):
1147class LangfuseSpan(LangfuseObservationWrapper):
1148    """Standard span implementation for general operations in Langfuse.
1149
1150    This class represents a general-purpose span that can be used to trace
1151    any operation in your application. It extends the base LangfuseObservationWrapper
1152    with specific methods for creating child spans, generations, and updating
1153    span-specific attributes. If possible, use a more specific type for
1154    better observability and insights.
1155    """
1156
1157    def __init__(
1158        self,
1159        *,
1160        otel_span: otel_trace_api.Span,
1161        langfuse_client: "Langfuse",
1162        input: Optional[Any] = None,
1163        output: Optional[Any] = None,
1164        metadata: Optional[Any] = None,
1165        environment: Optional[str] = None,
1166        version: Optional[str] = None,
1167        level: Optional[SpanLevel] = None,
1168        status_message: Optional[str] = None,
1169    ):
1170        """Initialize a new LangfuseSpan.
1171
1172        Args:
1173            otel_span: The OpenTelemetry span to wrap
1174            langfuse_client: Reference to the parent Langfuse client
1175            input: Input data for the span (any JSON-serializable object)
1176            output: Output data from the span (any JSON-serializable object)
1177            metadata: Additional metadata to associate with the span
1178            environment: The tracing environment
1179            version: Version identifier for the code or component
1180            level: Importance level of the span (info, warning, error)
1181            status_message: Optional status message for the span
1182        """
1183        super().__init__(
1184            otel_span=otel_span,
1185            as_type="span",
1186            langfuse_client=langfuse_client,
1187            input=input,
1188            output=output,
1189            metadata=metadata,
1190            environment=environment,
1191            version=version,
1192            level=level,
1193            status_message=status_message,
1194        )
1195
1196    def start_span(
1197        self,
1198        name: str,
1199        input: Optional[Any] = None,
1200        output: Optional[Any] = None,
1201        metadata: Optional[Any] = None,
1202        version: Optional[str] = None,
1203        level: Optional[SpanLevel] = None,
1204        status_message: Optional[str] = None,
1205    ) -> "LangfuseSpan":
1206        """Create a new child span.
1207
1208        This method creates a new child span with this span as the parent.
1209        Unlike start_as_current_span(), this method does not set the new span
1210        as the current span in the context.
1211
1212        Args:
1213            name: Name of the span (e.g., function or operation name)
1214            input: Input data for the operation
1215            output: Output data from the operation
1216            metadata: Additional metadata to associate with the span
1217            version: Version identifier for the code or component
1218            level: Importance level of the span (info, warning, error)
1219            status_message: Optional status message for the span
1220
1221        Returns:
1222            A new LangfuseSpan that must be ended with .end() when complete
1223
1224        Example:
1225            ```python
1226            parent_span = langfuse.start_span(name="process-request")
1227            try:
1228                # Create a child span
1229                child_span = parent_span.start_span(name="validate-input")
1230                try:
1231                    # Do validation work
1232                    validation_result = validate(request_data)
1233                    child_span.update(output=validation_result)
1234                finally:
1235                    child_span.end()
1236
1237                # Continue with parent span
1238                result = process_validated_data(validation_result)
1239                parent_span.update(output=result)
1240            finally:
1241                parent_span.end()
1242            ```
1243        """
1244        return self.start_observation(
1245            name=name,
1246            as_type="span",
1247            input=input,
1248            output=output,
1249            metadata=metadata,
1250            version=version,
1251            level=level,
1252            status_message=status_message,
1253        )
1254
1255    def start_as_current_span(
1256        self,
1257        *,
1258        name: str,
1259        input: Optional[Any] = None,
1260        output: Optional[Any] = None,
1261        metadata: Optional[Any] = None,
1262        version: Optional[str] = None,
1263        level: Optional[SpanLevel] = None,
1264        status_message: Optional[str] = None,
1265    ) -> _AgnosticContextManager["LangfuseSpan"]:
1266        """[DEPRECATED] Create a new child span and set it as the current span in a context manager.
1267
1268        DEPRECATED: This method is deprecated and will be removed in a future version.
1269        Use start_as_current_observation(as_type='span') instead.
1270
1271        This method creates a new child span and sets it as the current span within
1272        a context manager. It should be used with a 'with' statement to automatically
1273        manage the span's lifecycle.
1274
1275        Args:
1276            name: Name of the span (e.g., function or operation name)
1277            input: Input data for the operation
1278            output: Output data from the operation
1279            metadata: Additional metadata to associate with the span
1280            version: Version identifier for the code or component
1281            level: Importance level of the span (info, warning, error)
1282            status_message: Optional status message for the span
1283
1284        Returns:
1285            A context manager that yields a new LangfuseSpan
1286
1287        Example:
1288            ```python
1289            with langfuse.start_as_current_span(name="process-request") as parent_span:
1290                # Parent span is active here
1291
1292                # Create a child span with context management
1293                with parent_span.start_as_current_span(name="validate-input") as child_span:
1294                    # Child span is active here
1295                    validation_result = validate(request_data)
1296                    child_span.update(output=validation_result)
1297
1298                # Back to parent span context
1299                result = process_validated_data(validation_result)
1300                parent_span.update(output=result)
1301            ```
1302        """
1303        warnings.warn(
1304            "start_as_current_span is deprecated and will be removed in a future version. "
1305            "Use start_as_current_observation(as_type='span') instead.",
1306            DeprecationWarning,
1307            stacklevel=2,
1308        )
1309        return self.start_as_current_observation(
1310            name=name,
1311            as_type="span",
1312            input=input,
1313            output=output,
1314            metadata=metadata,
1315            version=version,
1316            level=level,
1317            status_message=status_message,
1318        )
1319
1320    def start_generation(
1321        self,
1322        *,
1323        name: str,
1324        input: Optional[Any] = None,
1325        output: Optional[Any] = None,
1326        metadata: Optional[Any] = None,
1327        version: Optional[str] = None,
1328        level: Optional[SpanLevel] = None,
1329        status_message: Optional[str] = None,
1330        completion_start_time: Optional[datetime] = None,
1331        model: Optional[str] = None,
1332        model_parameters: Optional[Dict[str, MapValue]] = None,
1333        usage_details: Optional[Dict[str, int]] = None,
1334        cost_details: Optional[Dict[str, float]] = None,
1335        prompt: Optional[PromptClient] = None,
1336    ) -> "LangfuseGeneration":
1337        """[DEPRECATED] Create a new child generation span.
1338
1339        DEPRECATED: This method is deprecated and will be removed in a future version.
1340        Use start_observation(as_type='generation') instead.
1341
1342        This method creates a new child generation span with this span as the parent.
1343        Generation spans are specialized for AI/LLM operations and include additional
1344        fields for model information, usage stats, and costs.
1345
1346        Unlike start_as_current_generation(), this method does not set the new span
1347        as the current span in the context.
1348
1349        Args:
1350            name: Name of the generation operation
1351            input: Input data for the model (e.g., prompts)
1352            output: Output from the model (e.g., completions)
1353            metadata: Additional metadata to associate with the generation
1354            version: Version identifier for the model or component
1355            level: Importance level of the generation (info, warning, error)
1356            status_message: Optional status message for the generation
1357            completion_start_time: When the model started generating the response
1358            model: Name/identifier of the AI model used (e.g., "gpt-4")
1359            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1360            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1361            cost_details: Cost information for the model call
1362            prompt: Associated prompt template from Langfuse prompt management
1363
1364        Returns:
1365            A new LangfuseGeneration that must be ended with .end() when complete
1366
1367        Example:
1368            ```python
1369            span = langfuse.start_span(name="process-query")
1370            try:
1371                # Create a generation child span
1372                generation = span.start_generation(
1373                    name="generate-answer",
1374                    model="gpt-4",
1375                    input={"prompt": "Explain quantum computing"}
1376                )
1377                try:
1378                    # Call model API
1379                    response = llm.generate(...)
1380
1381                    generation.update(
1382                        output=response.text,
1383                        usage_details={
1384                            "prompt_tokens": response.usage.prompt_tokens,
1385                            "completion_tokens": response.usage.completion_tokens
1386                        }
1387                    )
1388                finally:
1389                    generation.end()
1390
1391                # Continue with parent span
1392                span.update(output={"answer": response.text, "source": "gpt-4"})
1393            finally:
1394                span.end()
1395            ```
1396        """
1397        warnings.warn(
1398            "start_generation is deprecated and will be removed in a future version. "
1399            "Use start_observation(as_type='generation') instead.",
1400            DeprecationWarning,
1401            stacklevel=2,
1402        )
1403        return self.start_observation(
1404            name=name,
1405            as_type="generation",
1406            input=input,
1407            output=output,
1408            metadata=metadata,
1409            version=version,
1410            level=level,
1411            status_message=status_message,
1412            completion_start_time=completion_start_time,
1413            model=model,
1414            model_parameters=model_parameters,
1415            usage_details=usage_details,
1416            cost_details=cost_details,
1417            prompt=prompt,
1418        )
1419
1420    def start_as_current_generation(
1421        self,
1422        *,
1423        name: str,
1424        input: Optional[Any] = None,
1425        output: Optional[Any] = None,
1426        metadata: Optional[Any] = None,
1427        version: Optional[str] = None,
1428        level: Optional[SpanLevel] = None,
1429        status_message: Optional[str] = None,
1430        completion_start_time: Optional[datetime] = None,
1431        model: Optional[str] = None,
1432        model_parameters: Optional[Dict[str, MapValue]] = None,
1433        usage_details: Optional[Dict[str, int]] = None,
1434        cost_details: Optional[Dict[str, float]] = None,
1435        prompt: Optional[PromptClient] = None,
1436    ) -> _AgnosticContextManager["LangfuseGeneration"]:
1437        """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager.
1438
1439        DEPRECATED: This method is deprecated and will be removed in a future version.
1440        Use start_as_current_observation(as_type='generation') instead.
1441
1442        This method creates a new child generation span and sets it as the current span
1443        within a context manager. Generation spans are specialized for AI/LLM operations
1444        and include additional fields for model information, usage stats, and costs.
1445
1446        Args:
1447            name: Name of the generation operation
1448            input: Input data for the model (e.g., prompts)
1449            output: Output from the model (e.g., completions)
1450            metadata: Additional metadata to associate with the generation
1451            version: Version identifier for the model or component
1452            level: Importance level of the generation (info, warning, error)
1453            status_message: Optional status message for the generation
1454            completion_start_time: When the model started generating the response
1455            model: Name/identifier of the AI model used (e.g., "gpt-4")
1456            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1457            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1458            cost_details: Cost information for the model call
1459            prompt: Associated prompt template from Langfuse prompt management
1460
1461        Returns:
1462            A context manager that yields a new LangfuseGeneration
1463
1464        Example:
1465            ```python
1466            with langfuse.start_as_current_span(name="process-request") as span:
1467                # Prepare data
1468                query = preprocess_user_query(user_input)
1469
1470                # Create a generation span with context management
1471                with span.start_as_current_generation(
1472                    name="generate-answer",
1473                    model="gpt-4",
1474                    input={"query": query}
1475                ) as generation:
1476                    # Generation span is active here
1477                    response = llm.generate(query)
1478
1479                    # Update with results
1480                    generation.update(
1481                        output=response.text,
1482                        usage_details={
1483                            "prompt_tokens": response.usage.prompt_tokens,
1484                            "completion_tokens": response.usage.completion_tokens
1485                        }
1486                    )
1487
1488                # Back to parent span context
1489                span.update(output={"answer": response.text, "source": "gpt-4"})
1490            ```
1491        """
1492        warnings.warn(
1493            "start_as_current_generation is deprecated and will be removed in a future version. "
1494            "Use start_as_current_observation(as_type='generation') instead.",
1495            DeprecationWarning,
1496            stacklevel=2,
1497        )
1498        return self.start_as_current_observation(
1499            name=name,
1500            as_type="generation",
1501            input=input,
1502            output=output,
1503            metadata=metadata,
1504            version=version,
1505            level=level,
1506            status_message=status_message,
1507            completion_start_time=completion_start_time,
1508            model=model,
1509            model_parameters=model_parameters,
1510            usage_details=usage_details,
1511            cost_details=cost_details,
1512            prompt=prompt,
1513        )
1514
1515    def create_event(
1516        self,
1517        *,
1518        name: str,
1519        input: Optional[Any] = None,
1520        output: Optional[Any] = None,
1521        metadata: Optional[Any] = None,
1522        version: Optional[str] = None,
1523        level: Optional[SpanLevel] = None,
1524        status_message: Optional[str] = None,
1525    ) -> "LangfuseEvent":
1526        """Create a new Langfuse observation of type 'EVENT'.
1527
1528        Args:
1529            name: Name of the span (e.g., function or operation name)
1530            input: Input data for the operation (can be any JSON-serializable object)
1531            output: Output data from the operation (can be any JSON-serializable object)
1532            metadata: Additional metadata to associate with the span
1533            version: Version identifier for the code or component
1534            level: Importance level of the span (info, warning, error)
1535            status_message: Optional status message for the span
1536
1537        Returns:
1538            The LangfuseEvent object
1539
1540        Example:
1541            ```python
1542            event = langfuse.create_event(name="process-event")
1543            ```
1544        """
1545        timestamp = time_ns()
1546
1547        with otel_trace_api.use_span(self._otel_span):
1548            new_otel_span = self._langfuse_client._otel_tracer.start_span(
1549                name=name, start_time=timestamp
1550            )
1551
1552        return cast(
1553            "LangfuseEvent",
1554            LangfuseEvent(
1555                otel_span=new_otel_span,
1556                langfuse_client=self._langfuse_client,
1557                input=input,
1558                output=output,
1559                metadata=metadata,
1560                environment=self._environment,
1561                version=version,
1562                level=level,
1563                status_message=status_message,
1564            ).end(end_time=timestamp),
1565        )

Standard span implementation for general operations in Langfuse.

This class represents a general-purpose span that can be used to trace any operation in your application. It extends the base LangfuseObservationWrapper with specific methods for creating child spans, generations, and updating span-specific attributes. If possible, use a more specific type for better observability and insights.

LangfuseSpan( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None)
1157    def __init__(
1158        self,
1159        *,
1160        otel_span: otel_trace_api.Span,
1161        langfuse_client: "Langfuse",
1162        input: Optional[Any] = None,
1163        output: Optional[Any] = None,
1164        metadata: Optional[Any] = None,
1165        environment: Optional[str] = None,
1166        version: Optional[str] = None,
1167        level: Optional[SpanLevel] = None,
1168        status_message: Optional[str] = None,
1169    ):
1170        """Initialize a new LangfuseSpan.
1171
1172        Args:
1173            otel_span: The OpenTelemetry span to wrap
1174            langfuse_client: Reference to the parent Langfuse client
1175            input: Input data for the span (any JSON-serializable object)
1176            output: Output data from the span (any JSON-serializable object)
1177            metadata: Additional metadata to associate with the span
1178            environment: The tracing environment
1179            version: Version identifier for the code or component
1180            level: Importance level of the span (info, warning, error)
1181            status_message: Optional status message for the span
1182        """
1183        super().__init__(
1184            otel_span=otel_span,
1185            as_type="span",
1186            langfuse_client=langfuse_client,
1187            input=input,
1188            output=output,
1189            metadata=metadata,
1190            environment=environment,
1191            version=version,
1192            level=level,
1193            status_message=status_message,
1194        )

Initialize a new LangfuseSpan.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the span (any JSON-serializable object)
  • output: Output data from the span (any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • environment: The tracing environment
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
def start_span( self, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseSpan:
1196    def start_span(
1197        self,
1198        name: str,
1199        input: Optional[Any] = None,
1200        output: Optional[Any] = None,
1201        metadata: Optional[Any] = None,
1202        version: Optional[str] = None,
1203        level: Optional[SpanLevel] = None,
1204        status_message: Optional[str] = None,
1205    ) -> "LangfuseSpan":
1206        """Create a new child span.
1207
1208        This method creates a new child span with this span as the parent.
1209        Unlike start_as_current_span(), this method does not set the new span
1210        as the current span in the context.
1211
1212        Args:
1213            name: Name of the span (e.g., function or operation name)
1214            input: Input data for the operation
1215            output: Output data from the operation
1216            metadata: Additional metadata to associate with the span
1217            version: Version identifier for the code or component
1218            level: Importance level of the span (info, warning, error)
1219            status_message: Optional status message for the span
1220
1221        Returns:
1222            A new LangfuseSpan that must be ended with .end() when complete
1223
1224        Example:
1225            ```python
1226            parent_span = langfuse.start_span(name="process-request")
1227            try:
1228                # Create a child span
1229                child_span = parent_span.start_span(name="validate-input")
1230                try:
1231                    # Do validation work
1232                    validation_result = validate(request_data)
1233                    child_span.update(output=validation_result)
1234                finally:
1235                    child_span.end()
1236
1237                # Continue with parent span
1238                result = process_validated_data(validation_result)
1239                parent_span.update(output=result)
1240            finally:
1241                parent_span.end()
1242            ```
1243        """
1244        return self.start_observation(
1245            name=name,
1246            as_type="span",
1247            input=input,
1248            output=output,
1249            metadata=metadata,
1250            version=version,
1251            level=level,
1252            status_message=status_message,
1253        )

Create a new child span.

This method creates a new child span with this span as the parent. Unlike start_as_current_span(), this method does not set the new span as the current span in the context.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A new LangfuseSpan that must be ended with .end() when complete

Example:
parent_span = langfuse.start_span(name="process-request")
try:
    # Create a child span
    child_span = parent_span.start_span(name="validate-input")
    try:
        # Do validation work
        validation_result = validate(request_data)
        child_span.update(output=validation_result)
    finally:
        child_span.end()

    # Continue with parent span
    result = process_validated_data(validation_result)
    parent_span.update(output=result)
finally:
    parent_span.end()
def start_as_current_span( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseSpan]:
1255    def start_as_current_span(
1256        self,
1257        *,
1258        name: str,
1259        input: Optional[Any] = None,
1260        output: Optional[Any] = None,
1261        metadata: Optional[Any] = None,
1262        version: Optional[str] = None,
1263        level: Optional[SpanLevel] = None,
1264        status_message: Optional[str] = None,
1265    ) -> _AgnosticContextManager["LangfuseSpan"]:
1266        """[DEPRECATED] Create a new child span and set it as the current span in a context manager.
1267
1268        DEPRECATED: This method is deprecated and will be removed in a future version.
1269        Use start_as_current_observation(as_type='span') instead.
1270
1271        This method creates a new child span and sets it as the current span within
1272        a context manager. It should be used with a 'with' statement to automatically
1273        manage the span's lifecycle.
1274
1275        Args:
1276            name: Name of the span (e.g., function or operation name)
1277            input: Input data for the operation
1278            output: Output data from the operation
1279            metadata: Additional metadata to associate with the span
1280            version: Version identifier for the code or component
1281            level: Importance level of the span (info, warning, error)
1282            status_message: Optional status message for the span
1283
1284        Returns:
1285            A context manager that yields a new LangfuseSpan
1286
1287        Example:
1288            ```python
1289            with langfuse.start_as_current_span(name="process-request") as parent_span:
1290                # Parent span is active here
1291
1292                # Create a child span with context management
1293                with parent_span.start_as_current_span(name="validate-input") as child_span:
1294                    # Child span is active here
1295                    validation_result = validate(request_data)
1296                    child_span.update(output=validation_result)
1297
1298                # Back to parent span context
1299                result = process_validated_data(validation_result)
1300                parent_span.update(output=result)
1301            ```
1302        """
1303        warnings.warn(
1304            "start_as_current_span is deprecated and will be removed in a future version. "
1305            "Use start_as_current_observation(as_type='span') instead.",
1306            DeprecationWarning,
1307            stacklevel=2,
1308        )
1309        return self.start_as_current_observation(
1310            name=name,
1311            as_type="span",
1312            input=input,
1313            output=output,
1314            metadata=metadata,
1315            version=version,
1316            level=level,
1317            status_message=status_message,
1318        )

[DEPRECATED] Create a new child span and set it as the current span in a context manager.

DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='span') instead.

This method creates a new child span and sets it as the current span within a context manager. It should be used with a 'with' statement to automatically manage the span's lifecycle.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation
  • output: Output data from the operation
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

A context manager that yields a new LangfuseSpan

Example:
with langfuse.start_as_current_span(name="process-request") as parent_span:
    # Parent span is active here

    # Create a child span with context management
    with parent_span.start_as_current_span(name="validate-input") as child_span:
        # Child span is active here
        validation_result = validate(request_data)
        child_span.update(output=validation_result)

    # Back to parent span context
    result = process_validated_data(validation_result)
    parent_span.update(output=result)
def start_generation( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> LangfuseGeneration:
1320    def start_generation(
1321        self,
1322        *,
1323        name: str,
1324        input: Optional[Any] = None,
1325        output: Optional[Any] = None,
1326        metadata: Optional[Any] = None,
1327        version: Optional[str] = None,
1328        level: Optional[SpanLevel] = None,
1329        status_message: Optional[str] = None,
1330        completion_start_time: Optional[datetime] = None,
1331        model: Optional[str] = None,
1332        model_parameters: Optional[Dict[str, MapValue]] = None,
1333        usage_details: Optional[Dict[str, int]] = None,
1334        cost_details: Optional[Dict[str, float]] = None,
1335        prompt: Optional[PromptClient] = None,
1336    ) -> "LangfuseGeneration":
1337        """[DEPRECATED] Create a new child generation span.
1338
1339        DEPRECATED: This method is deprecated and will be removed in a future version.
1340        Use start_observation(as_type='generation') instead.
1341
1342        This method creates a new child generation span with this span as the parent.
1343        Generation spans are specialized for AI/LLM operations and include additional
1344        fields for model information, usage stats, and costs.
1345
1346        Unlike start_as_current_generation(), this method does not set the new span
1347        as the current span in the context.
1348
1349        Args:
1350            name: Name of the generation operation
1351            input: Input data for the model (e.g., prompts)
1352            output: Output from the model (e.g., completions)
1353            metadata: Additional metadata to associate with the generation
1354            version: Version identifier for the model or component
1355            level: Importance level of the generation (info, warning, error)
1356            status_message: Optional status message for the generation
1357            completion_start_time: When the model started generating the response
1358            model: Name/identifier of the AI model used (e.g., "gpt-4")
1359            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1360            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1361            cost_details: Cost information for the model call
1362            prompt: Associated prompt template from Langfuse prompt management
1363
1364        Returns:
1365            A new LangfuseGeneration that must be ended with .end() when complete
1366
1367        Example:
1368            ```python
1369            span = langfuse.start_span(name="process-query")
1370            try:
1371                # Create a generation child span
1372                generation = span.start_generation(
1373                    name="generate-answer",
1374                    model="gpt-4",
1375                    input={"prompt": "Explain quantum computing"}
1376                )
1377                try:
1378                    # Call model API
1379                    response = llm.generate(...)
1380
1381                    generation.update(
1382                        output=response.text,
1383                        usage_details={
1384                            "prompt_tokens": response.usage.prompt_tokens,
1385                            "completion_tokens": response.usage.completion_tokens
1386                        }
1387                    )
1388                finally:
1389                    generation.end()
1390
1391                # Continue with parent span
1392                span.update(output={"answer": response.text, "source": "gpt-4"})
1393            finally:
1394                span.end()
1395            ```
1396        """
1397        warnings.warn(
1398            "start_generation is deprecated and will be removed in a future version. "
1399            "Use start_observation(as_type='generation') instead.",
1400            DeprecationWarning,
1401            stacklevel=2,
1402        )
1403        return self.start_observation(
1404            name=name,
1405            as_type="generation",
1406            input=input,
1407            output=output,
1408            metadata=metadata,
1409            version=version,
1410            level=level,
1411            status_message=status_message,
1412            completion_start_time=completion_start_time,
1413            model=model,
1414            model_parameters=model_parameters,
1415            usage_details=usage_details,
1416            cost_details=cost_details,
1417            prompt=prompt,
1418        )

[DEPRECATED] Create a new child generation span.

DEPRECATED: This method is deprecated and will be removed in a future version. Use start_observation(as_type='generation') instead.

This method creates a new child generation span with this span as the parent. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.

Unlike start_as_current_generation(), this method does not set the new span as the current span in the context.

Arguments:
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A new LangfuseGeneration that must be ended with .end() when complete

Example:
span = langfuse.start_span(name="process-query")
try:
    # Create a generation child span
    generation = span.start_generation(
        name="generate-answer",
        model="gpt-4",
        input={"prompt": "Explain quantum computing"}
    )
    try:
        # Call model API
        response = llm.generate(...)

        generation.update(
            output=response.text,
            usage_details={
                "prompt_tokens": response.usage.prompt_tokens,
                "completion_tokens": response.usage.completion_tokens
            }
        )
    finally:
        generation.end()

    # Continue with parent span
    span.update(output={"answer": response.text, "source": "gpt-4"})
finally:
    span.end()
def start_as_current_generation( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None) -> opentelemetry.util._decorator._AgnosticContextManager[LangfuseGeneration]:
1420    def start_as_current_generation(
1421        self,
1422        *,
1423        name: str,
1424        input: Optional[Any] = None,
1425        output: Optional[Any] = None,
1426        metadata: Optional[Any] = None,
1427        version: Optional[str] = None,
1428        level: Optional[SpanLevel] = None,
1429        status_message: Optional[str] = None,
1430        completion_start_time: Optional[datetime] = None,
1431        model: Optional[str] = None,
1432        model_parameters: Optional[Dict[str, MapValue]] = None,
1433        usage_details: Optional[Dict[str, int]] = None,
1434        cost_details: Optional[Dict[str, float]] = None,
1435        prompt: Optional[PromptClient] = None,
1436    ) -> _AgnosticContextManager["LangfuseGeneration"]:
1437        """[DEPRECATED] Create a new child generation span and set it as the current span in a context manager.
1438
1439        DEPRECATED: This method is deprecated and will be removed in a future version.
1440        Use start_as_current_observation(as_type='generation') instead.
1441
1442        This method creates a new child generation span and sets it as the current span
1443        within a context manager. Generation spans are specialized for AI/LLM operations
1444        and include additional fields for model information, usage stats, and costs.
1445
1446        Args:
1447            name: Name of the generation operation
1448            input: Input data for the model (e.g., prompts)
1449            output: Output from the model (e.g., completions)
1450            metadata: Additional metadata to associate with the generation
1451            version: Version identifier for the model or component
1452            level: Importance level of the generation (info, warning, error)
1453            status_message: Optional status message for the generation
1454            completion_start_time: When the model started generating the response
1455            model: Name/identifier of the AI model used (e.g., "gpt-4")
1456            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1457            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1458            cost_details: Cost information for the model call
1459            prompt: Associated prompt template from Langfuse prompt management
1460
1461        Returns:
1462            A context manager that yields a new LangfuseGeneration
1463
1464        Example:
1465            ```python
1466            with langfuse.start_as_current_span(name="process-request") as span:
1467                # Prepare data
1468                query = preprocess_user_query(user_input)
1469
1470                # Create a generation span with context management
1471                with span.start_as_current_generation(
1472                    name="generate-answer",
1473                    model="gpt-4",
1474                    input={"query": query}
1475                ) as generation:
1476                    # Generation span is active here
1477                    response = llm.generate(query)
1478
1479                    # Update with results
1480                    generation.update(
1481                        output=response.text,
1482                        usage_details={
1483                            "prompt_tokens": response.usage.prompt_tokens,
1484                            "completion_tokens": response.usage.completion_tokens
1485                        }
1486                    )
1487
1488                # Back to parent span context
1489                span.update(output={"answer": response.text, "source": "gpt-4"})
1490            ```
1491        """
1492        warnings.warn(
1493            "start_as_current_generation is deprecated and will be removed in a future version. "
1494            "Use start_as_current_observation(as_type='generation') instead.",
1495            DeprecationWarning,
1496            stacklevel=2,
1497        )
1498        return self.start_as_current_observation(
1499            name=name,
1500            as_type="generation",
1501            input=input,
1502            output=output,
1503            metadata=metadata,
1504            version=version,
1505            level=level,
1506            status_message=status_message,
1507            completion_start_time=completion_start_time,
1508            model=model,
1509            model_parameters=model_parameters,
1510            usage_details=usage_details,
1511            cost_details=cost_details,
1512            prompt=prompt,
1513        )

[DEPRECATED] Create a new child generation span and set it as the current span in a context manager.

DEPRECATED: This method is deprecated and will be removed in a future version. Use start_as_current_observation(as_type='generation') instead.

This method creates a new child generation span and sets it as the current span within a context manager. Generation spans are specialized for AI/LLM operations and include additional fields for model information, usage stats, and costs.

Arguments:
  • name: Name of the generation operation
  • input: Input data for the model (e.g., prompts)
  • output: Output from the model (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
Returns:

A context manager that yields a new LangfuseGeneration

Example:
with langfuse.start_as_current_span(name="process-request") as span:
    # Prepare data
    query = preprocess_user_query(user_input)

    # Create a generation span with context management
    with span.start_as_current_generation(
        name="generate-answer",
        model="gpt-4",
        input={"query": query}
    ) as generation:
        # Generation span is active here
        response = llm.generate(query)

        # Update with results
        generation.update(
            output=response.text,
            usage_details={
                "prompt_tokens": response.usage.prompt_tokens,
                "completion_tokens": response.usage.completion_tokens
            }
        )

    # Back to parent span context
    span.update(output={"answer": response.text, "source": "gpt-4"})
def create_event( self, *, name: str, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None) -> LangfuseEvent:
1515    def create_event(
1516        self,
1517        *,
1518        name: str,
1519        input: Optional[Any] = None,
1520        output: Optional[Any] = None,
1521        metadata: Optional[Any] = None,
1522        version: Optional[str] = None,
1523        level: Optional[SpanLevel] = None,
1524        status_message: Optional[str] = None,
1525    ) -> "LangfuseEvent":
1526        """Create a new Langfuse observation of type 'EVENT'.
1527
1528        Args:
1529            name: Name of the span (e.g., function or operation name)
1530            input: Input data for the operation (can be any JSON-serializable object)
1531            output: Output data from the operation (can be any JSON-serializable object)
1532            metadata: Additional metadata to associate with the span
1533            version: Version identifier for the code or component
1534            level: Importance level of the span (info, warning, error)
1535            status_message: Optional status message for the span
1536
1537        Returns:
1538            The LangfuseEvent object
1539
1540        Example:
1541            ```python
1542            event = langfuse.create_event(name="process-event")
1543            ```
1544        """
1545        timestamp = time_ns()
1546
1547        with otel_trace_api.use_span(self._otel_span):
1548            new_otel_span = self._langfuse_client._otel_tracer.start_span(
1549                name=name, start_time=timestamp
1550            )
1551
1552        return cast(
1553            "LangfuseEvent",
1554            LangfuseEvent(
1555                otel_span=new_otel_span,
1556                langfuse_client=self._langfuse_client,
1557                input=input,
1558                output=output,
1559                metadata=metadata,
1560                environment=self._environment,
1561                version=version,
1562                level=level,
1563                status_message=status_message,
1564            ).end(end_time=timestamp),
1565        )

Create a new Langfuse observation of type 'EVENT'.

Arguments:
  • name: Name of the span (e.g., function or operation name)
  • input: Input data for the operation (can be any JSON-serializable object)
  • output: Output data from the operation (can be any JSON-serializable object)
  • metadata: Additional metadata to associate with the span
  • version: Version identifier for the code or component
  • level: Importance level of the span (info, warning, error)
  • status_message: Optional status message for the span
Returns:

The LangfuseEvent object

Example:
event = langfuse.create_event(name="process-event")
class LangfuseGeneration(langfuse._client.span.LangfuseObservationWrapper):
1568class LangfuseGeneration(LangfuseObservationWrapper):
1569    """Specialized span implementation for AI model generations in Langfuse.
1570
1571    This class represents a generation span specifically designed for tracking
1572    AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized
1573    attributes for model details, token usage, and costs.
1574    """
1575
1576    def __init__(
1577        self,
1578        *,
1579        otel_span: otel_trace_api.Span,
1580        langfuse_client: "Langfuse",
1581        input: Optional[Any] = None,
1582        output: Optional[Any] = None,
1583        metadata: Optional[Any] = None,
1584        environment: Optional[str] = None,
1585        version: Optional[str] = None,
1586        level: Optional[SpanLevel] = None,
1587        status_message: Optional[str] = None,
1588        completion_start_time: Optional[datetime] = None,
1589        model: Optional[str] = None,
1590        model_parameters: Optional[Dict[str, MapValue]] = None,
1591        usage_details: Optional[Dict[str, int]] = None,
1592        cost_details: Optional[Dict[str, float]] = None,
1593        prompt: Optional[PromptClient] = None,
1594    ):
1595        """Initialize a new LangfuseGeneration span.
1596
1597        Args:
1598            otel_span: The OpenTelemetry span to wrap
1599            langfuse_client: Reference to the parent Langfuse client
1600            input: Input data for the generation (e.g., prompts)
1601            output: Output from the generation (e.g., completions)
1602            metadata: Additional metadata to associate with the generation
1603            environment: The tracing environment
1604            version: Version identifier for the model or component
1605            level: Importance level of the generation (info, warning, error)
1606            status_message: Optional status message for the generation
1607            completion_start_time: When the model started generating the response
1608            model: Name/identifier of the AI model used (e.g., "gpt-4")
1609            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1610            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1611            cost_details: Cost information for the model call
1612            prompt: Associated prompt template from Langfuse prompt management
1613        """
1614        super().__init__(
1615            as_type="generation",
1616            otel_span=otel_span,
1617            langfuse_client=langfuse_client,
1618            input=input,
1619            output=output,
1620            metadata=metadata,
1621            environment=environment,
1622            version=version,
1623            level=level,
1624            status_message=status_message,
1625            completion_start_time=completion_start_time,
1626            model=model,
1627            model_parameters=model_parameters,
1628            usage_details=usage_details,
1629            cost_details=cost_details,
1630            prompt=prompt,
1631        )

Specialized span implementation for AI model generations in Langfuse.

This class represents a generation span specifically designed for tracking AI/LLM operations. It extends the base LangfuseObservationWrapper with specialized attributes for model details, token usage, and costs.

LangfuseGeneration( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None)
1576    def __init__(
1577        self,
1578        *,
1579        otel_span: otel_trace_api.Span,
1580        langfuse_client: "Langfuse",
1581        input: Optional[Any] = None,
1582        output: Optional[Any] = None,
1583        metadata: Optional[Any] = None,
1584        environment: Optional[str] = None,
1585        version: Optional[str] = None,
1586        level: Optional[SpanLevel] = None,
1587        status_message: Optional[str] = None,
1588        completion_start_time: Optional[datetime] = None,
1589        model: Optional[str] = None,
1590        model_parameters: Optional[Dict[str, MapValue]] = None,
1591        usage_details: Optional[Dict[str, int]] = None,
1592        cost_details: Optional[Dict[str, float]] = None,
1593        prompt: Optional[PromptClient] = None,
1594    ):
1595        """Initialize a new LangfuseGeneration span.
1596
1597        Args:
1598            otel_span: The OpenTelemetry span to wrap
1599            langfuse_client: Reference to the parent Langfuse client
1600            input: Input data for the generation (e.g., prompts)
1601            output: Output from the generation (e.g., completions)
1602            metadata: Additional metadata to associate with the generation
1603            environment: The tracing environment
1604            version: Version identifier for the model or component
1605            level: Importance level of the generation (info, warning, error)
1606            status_message: Optional status message for the generation
1607            completion_start_time: When the model started generating the response
1608            model: Name/identifier of the AI model used (e.g., "gpt-4")
1609            model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
1610            usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
1611            cost_details: Cost information for the model call
1612            prompt: Associated prompt template from Langfuse prompt management
1613        """
1614        super().__init__(
1615            as_type="generation",
1616            otel_span=otel_span,
1617            langfuse_client=langfuse_client,
1618            input=input,
1619            output=output,
1620            metadata=metadata,
1621            environment=environment,
1622            version=version,
1623            level=level,
1624            status_message=status_message,
1625            completion_start_time=completion_start_time,
1626            model=model,
1627            model_parameters=model_parameters,
1628            usage_details=usage_details,
1629            cost_details=cost_details,
1630            prompt=prompt,
1631        )

Initialize a new LangfuseGeneration span.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the generation (e.g., prompts)
  • output: Output from the generation (e.g., completions)
  • metadata: Additional metadata to associate with the generation
  • environment: The tracing environment
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
  • completion_start_time: When the model started generating the response
  • model: Name/identifier of the AI model used (e.g., "gpt-4")
  • model_parameters: Parameters used for the model (e.g., temperature, max_tokens)
  • usage_details: Token usage information (e.g., prompt_tokens, completion_tokens)
  • cost_details: Cost information for the model call
  • prompt: Associated prompt template from Langfuse prompt management
class LangfuseEvent(langfuse._client.span.LangfuseObservationWrapper):
1634class LangfuseEvent(LangfuseObservationWrapper):
1635    """Specialized span implementation for Langfuse Events."""
1636
1637    def __init__(
1638        self,
1639        *,
1640        otel_span: otel_trace_api.Span,
1641        langfuse_client: "Langfuse",
1642        input: Optional[Any] = None,
1643        output: Optional[Any] = None,
1644        metadata: Optional[Any] = None,
1645        environment: Optional[str] = None,
1646        version: Optional[str] = None,
1647        level: Optional[SpanLevel] = None,
1648        status_message: Optional[str] = None,
1649    ):
1650        """Initialize a new LangfuseEvent span.
1651
1652        Args:
1653            otel_span: The OpenTelemetry span to wrap
1654            langfuse_client: Reference to the parent Langfuse client
1655            input: Input data for the event
1656            output: Output from the event
1657            metadata: Additional metadata to associate with the generation
1658            environment: The tracing environment
1659            version: Version identifier for the model or component
1660            level: Importance level of the generation (info, warning, error)
1661            status_message: Optional status message for the generation
1662        """
1663        super().__init__(
1664            otel_span=otel_span,
1665            as_type="event",
1666            langfuse_client=langfuse_client,
1667            input=input,
1668            output=output,
1669            metadata=metadata,
1670            environment=environment,
1671            version=version,
1672            level=level,
1673            status_message=status_message,
1674        )
1675
1676    def update(
1677        self,
1678        *,
1679        name: Optional[str] = None,
1680        input: Optional[Any] = None,
1681        output: Optional[Any] = None,
1682        metadata: Optional[Any] = None,
1683        version: Optional[str] = None,
1684        level: Optional[SpanLevel] = None,
1685        status_message: Optional[str] = None,
1686        completion_start_time: Optional[datetime] = None,
1687        model: Optional[str] = None,
1688        model_parameters: Optional[Dict[str, MapValue]] = None,
1689        usage_details: Optional[Dict[str, int]] = None,
1690        cost_details: Optional[Dict[str, float]] = None,
1691        prompt: Optional[PromptClient] = None,
1692        **kwargs: Any,
1693    ) -> "LangfuseEvent":
1694        """Update is not allowed for LangfuseEvent because events cannot be updated.
1695
1696        This method logs a warning and returns self without making changes.
1697
1698        Returns:
1699            self: Returns the unchanged LangfuseEvent instance
1700        """
1701        langfuse_logger.warning(
1702            "Attempted to update LangfuseEvent observation. Events cannot be updated after creation."
1703        )
1704        return self

Specialized span implementation for Langfuse Events.

LangfuseEvent( *, otel_span: opentelemetry.trace.span.Span, langfuse_client: Langfuse, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, environment: Optional[str] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None)
1637    def __init__(
1638        self,
1639        *,
1640        otel_span: otel_trace_api.Span,
1641        langfuse_client: "Langfuse",
1642        input: Optional[Any] = None,
1643        output: Optional[Any] = None,
1644        metadata: Optional[Any] = None,
1645        environment: Optional[str] = None,
1646        version: Optional[str] = None,
1647        level: Optional[SpanLevel] = None,
1648        status_message: Optional[str] = None,
1649    ):
1650        """Initialize a new LangfuseEvent span.
1651
1652        Args:
1653            otel_span: The OpenTelemetry span to wrap
1654            langfuse_client: Reference to the parent Langfuse client
1655            input: Input data for the event
1656            output: Output from the event
1657            metadata: Additional metadata to associate with the generation
1658            environment: The tracing environment
1659            version: Version identifier for the model or component
1660            level: Importance level of the generation (info, warning, error)
1661            status_message: Optional status message for the generation
1662        """
1663        super().__init__(
1664            otel_span=otel_span,
1665            as_type="event",
1666            langfuse_client=langfuse_client,
1667            input=input,
1668            output=output,
1669            metadata=metadata,
1670            environment=environment,
1671            version=version,
1672            level=level,
1673            status_message=status_message,
1674        )

Initialize a new LangfuseEvent span.

Arguments:
  • otel_span: The OpenTelemetry span to wrap
  • langfuse_client: Reference to the parent Langfuse client
  • input: Input data for the event
  • output: Output from the event
  • metadata: Additional metadata to associate with the generation
  • environment: The tracing environment
  • version: Version identifier for the model or component
  • level: Importance level of the generation (info, warning, error)
  • status_message: Optional status message for the generation
def update( self, *, name: Optional[str] = None, input: Optional[Any] = None, output: Optional[Any] = None, metadata: Optional[Any] = None, version: Optional[str] = None, level: Optional[Literal['DEBUG', 'DEFAULT', 'WARNING', 'ERROR']] = None, status_message: Optional[str] = None, completion_start_time: Optional[datetime.datetime] = None, model: Optional[str] = None, model_parameters: Optional[Dict[str, Union[str, NoneType, int, bool, List[str]]]] = None, usage_details: Optional[Dict[str, int]] = None, cost_details: Optional[Dict[str, float]] = None, prompt: Union[langfuse.model.TextPromptClient, langfuse.model.ChatPromptClient, NoneType] = None, **kwargs: Any) -> LangfuseEvent:
1676    def update(
1677        self,
1678        *,
1679        name: Optional[str] = None,
1680        input: Optional[Any] = None,
1681        output: Optional[Any] = None,
1682        metadata: Optional[Any] = None,
1683        version: Optional[str] = None,
1684        level: Optional[SpanLevel] = None,
1685        status_message: Optional[str] = None,
1686        completion_start_time: Optional[datetime] = None,
1687        model: Optional[str] = None,
1688        model_parameters: Optional[Dict[str, MapValue]] = None,
1689        usage_details: Optional[Dict[str, int]] = None,
1690        cost_details: Optional[Dict[str, float]] = None,
1691        prompt: Optional[PromptClient] = None,
1692        **kwargs: Any,
1693    ) -> "LangfuseEvent":
1694        """Update is not allowed for LangfuseEvent because events cannot be updated.
1695
1696        This method logs a warning and returns self without making changes.
1697
1698        Returns:
1699            self: Returns the unchanged LangfuseEvent instance
1700        """
1701        langfuse_logger.warning(
1702            "Attempted to update LangfuseEvent observation. Events cannot be updated after creation."
1703        )
1704        return self

Update is not allowed for LangfuseEvent because events cannot be updated.

This method logs a warning and returns self without making changes.

Returns:

self: Returns the unchanged LangfuseEvent instance

class LangfuseOtelSpanAttributes:
28class LangfuseOtelSpanAttributes:
29    # Langfuse-Trace attributes
30    TRACE_NAME = "langfuse.trace.name"
31    TRACE_USER_ID = "user.id"
32    TRACE_SESSION_ID = "session.id"
33    TRACE_TAGS = "langfuse.trace.tags"
34    TRACE_PUBLIC = "langfuse.trace.public"
35    TRACE_METADATA = "langfuse.trace.metadata"
36    TRACE_INPUT = "langfuse.trace.input"
37    TRACE_OUTPUT = "langfuse.trace.output"
38
39    # Langfuse-observation attributes
40    OBSERVATION_TYPE = "langfuse.observation.type"
41    OBSERVATION_METADATA = "langfuse.observation.metadata"
42    OBSERVATION_LEVEL = "langfuse.observation.level"
43    OBSERVATION_STATUS_MESSAGE = "langfuse.observation.status_message"
44    OBSERVATION_INPUT = "langfuse.observation.input"
45    OBSERVATION_OUTPUT = "langfuse.observation.output"
46
47    # Langfuse-observation of type Generation attributes
48    OBSERVATION_COMPLETION_START_TIME = "langfuse.observation.completion_start_time"
49    OBSERVATION_MODEL = "langfuse.observation.model.name"
50    OBSERVATION_MODEL_PARAMETERS = "langfuse.observation.model.parameters"
51    OBSERVATION_USAGE_DETAILS = "langfuse.observation.usage_details"
52    OBSERVATION_COST_DETAILS = "langfuse.observation.cost_details"
53    OBSERVATION_PROMPT_NAME = "langfuse.observation.prompt.name"
54    OBSERVATION_PROMPT_VERSION = "langfuse.observation.prompt.version"
55
56    # General
57    ENVIRONMENT = "langfuse.environment"
58    RELEASE = "langfuse.release"
59    VERSION = "langfuse.version"
60
61    # Internal
62    AS_ROOT = "langfuse.internal.as_root"
TRACE_NAME = 'langfuse.trace.name'
TRACE_USER_ID = 'user.id'
TRACE_SESSION_ID = 'session.id'
TRACE_TAGS = 'langfuse.trace.tags'
TRACE_PUBLIC = 'langfuse.trace.public'
TRACE_METADATA = 'langfuse.trace.metadata'
TRACE_INPUT = 'langfuse.trace.input'
TRACE_OUTPUT = 'langfuse.trace.output'
OBSERVATION_TYPE = 'langfuse.observation.type'
OBSERVATION_METADATA = 'langfuse.observation.metadata'
OBSERVATION_LEVEL = 'langfuse.observation.level'
OBSERVATION_STATUS_MESSAGE = 'langfuse.observation.status_message'
OBSERVATION_INPUT = 'langfuse.observation.input'
OBSERVATION_OUTPUT = 'langfuse.observation.output'
OBSERVATION_COMPLETION_START_TIME = 'langfuse.observation.completion_start_time'
OBSERVATION_MODEL = 'langfuse.observation.model.name'
OBSERVATION_MODEL_PARAMETERS = 'langfuse.observation.model.parameters'
OBSERVATION_USAGE_DETAILS = 'langfuse.observation.usage_details'
OBSERVATION_COST_DETAILS = 'langfuse.observation.cost_details'
OBSERVATION_PROMPT_NAME = 'langfuse.observation.prompt.name'
OBSERVATION_PROMPT_VERSION = 'langfuse.observation.prompt.version'
ENVIRONMENT = 'langfuse.environment'
RELEASE = 'langfuse.release'
VERSION = 'langfuse.version'
AS_ROOT = 'langfuse.internal.as_root'
class LangfuseAgent(langfuse._client.span.LangfuseObservationWrapper):
1707class LangfuseAgent(LangfuseObservationWrapper):
1708    """Agent observation for reasoning blocks that act on tools using LLM guidance."""
1709
1710    def __init__(self, **kwargs: Any) -> None:
1711        """Initialize a new LangfuseAgent span."""
1712        kwargs["as_type"] = "agent"
1713        super().__init__(**kwargs)

Agent observation for reasoning blocks that act on tools using LLM guidance.

LangfuseAgent(**kwargs: Any)
1710    def __init__(self, **kwargs: Any) -> None:
1711        """Initialize a new LangfuseAgent span."""
1712        kwargs["as_type"] = "agent"
1713        super().__init__(**kwargs)

Initialize a new LangfuseAgent span.

class LangfuseTool(langfuse._client.span.LangfuseObservationWrapper):
1716class LangfuseTool(LangfuseObservationWrapper):
1717    """Tool observation representing external tool calls, e.g., calling a weather API."""
1718
1719    def __init__(self, **kwargs: Any) -> None:
1720        """Initialize a new LangfuseTool span."""
1721        kwargs["as_type"] = "tool"
1722        super().__init__(**kwargs)

Tool observation representing external tool calls, e.g., calling a weather API.

LangfuseTool(**kwargs: Any)
1719    def __init__(self, **kwargs: Any) -> None:
1720        """Initialize a new LangfuseTool span."""
1721        kwargs["as_type"] = "tool"
1722        super().__init__(**kwargs)

Initialize a new LangfuseTool span.

class LangfuseChain(langfuse._client.span.LangfuseObservationWrapper):
1725class LangfuseChain(LangfuseObservationWrapper):
1726    """Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM."""
1727
1728    def __init__(self, **kwargs: Any) -> None:
1729        """Initialize a new LangfuseChain span."""
1730        kwargs["as_type"] = "chain"
1731        super().__init__(**kwargs)

Chain observation for connecting LLM application steps, e.g. passing context from retriever to LLM.

LangfuseChain(**kwargs: Any)
1728    def __init__(self, **kwargs: Any) -> None:
1729        """Initialize a new LangfuseChain span."""
1730        kwargs["as_type"] = "chain"
1731        super().__init__(**kwargs)

Initialize a new LangfuseChain span.

class LangfuseEmbedding(langfuse._client.span.LangfuseObservationWrapper):
1743class LangfuseEmbedding(LangfuseObservationWrapper):
1744    """Embedding observation for LLM embedding calls, typically used before retrieval."""
1745
1746    def __init__(self, **kwargs: Any) -> None:
1747        """Initialize a new LangfuseEmbedding span."""
1748        kwargs["as_type"] = "embedding"
1749        super().__init__(**kwargs)

Embedding observation for LLM embedding calls, typically used before retrieval.

LangfuseEmbedding(**kwargs: Any)
1746    def __init__(self, **kwargs: Any) -> None:
1747        """Initialize a new LangfuseEmbedding span."""
1748        kwargs["as_type"] = "embedding"
1749        super().__init__(**kwargs)

Initialize a new LangfuseEmbedding span.

class LangfuseEvaluator(langfuse._client.span.LangfuseObservationWrapper):
1752class LangfuseEvaluator(LangfuseObservationWrapper):
1753    """Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs."""
1754
1755    def __init__(self, **kwargs: Any) -> None:
1756        """Initialize a new LangfuseEvaluator span."""
1757        kwargs["as_type"] = "evaluator"
1758        super().__init__(**kwargs)

Evaluator observation for assessing relevance, correctness, or helpfulness of LLM outputs.

LangfuseEvaluator(**kwargs: Any)
1755    def __init__(self, **kwargs: Any) -> None:
1756        """Initialize a new LangfuseEvaluator span."""
1757        kwargs["as_type"] = "evaluator"
1758        super().__init__(**kwargs)

Initialize a new LangfuseEvaluator span.

class LangfuseRetriever(langfuse._client.span.LangfuseObservationWrapper):
1734class LangfuseRetriever(LangfuseObservationWrapper):
1735    """Retriever observation for data retrieval steps, e.g. vector store or database queries."""
1736
1737    def __init__(self, **kwargs: Any) -> None:
1738        """Initialize a new LangfuseRetriever span."""
1739        kwargs["as_type"] = "retriever"
1740        super().__init__(**kwargs)

Retriever observation for data retrieval steps, e.g. vector store or database queries.

LangfuseRetriever(**kwargs: Any)
1737    def __init__(self, **kwargs: Any) -> None:
1738        """Initialize a new LangfuseRetriever span."""
1739        kwargs["as_type"] = "retriever"
1740        super().__init__(**kwargs)

Initialize a new LangfuseRetriever span.

class LangfuseGuardrail(langfuse._client.span.LangfuseObservationWrapper):
1761class LangfuseGuardrail(LangfuseObservationWrapper):
1762    """Guardrail observation for protection e.g. against jailbreaks or offensive content."""
1763
1764    def __init__(self, **kwargs: Any) -> None:
1765        """Initialize a new LangfuseGuardrail span."""
1766        kwargs["as_type"] = "guardrail"
1767        super().__init__(**kwargs)

Guardrail observation for protection e.g. against jailbreaks or offensive content.

LangfuseGuardrail(**kwargs: Any)
1764    def __init__(self, **kwargs: Any) -> None:
1765        """Initialize a new LangfuseGuardrail span."""
1766        kwargs["as_type"] = "guardrail"
1767        super().__init__(**kwargs)

Initialize a new LangfuseGuardrail span.

class Evaluation:
 97class Evaluation:
 98    """Represents an evaluation result for an experiment item or an entire experiment run.
 99
100    This class provides a strongly-typed way to create evaluation results in evaluator functions.
101    Users must use keyword arguments when instantiating this class.
102
103    Attributes:
104        name: Unique identifier for the evaluation metric. Should be descriptive
105            and consistent across runs (e.g., "accuracy", "bleu_score", "toxicity").
106            Used for aggregation and comparison across experiment runs.
107        value: The evaluation score or result. Can be:
108            - Numeric (int/float): For quantitative metrics like accuracy (0.85), BLEU (0.42)
109            - String: For categorical results like "positive", "negative", "neutral"
110            - Boolean: For binary assessments like "passes_safety_check"
111            - None: When evaluation cannot be computed (missing data, API errors, etc.)
112        comment: Optional human-readable explanation of the evaluation result.
113            Useful for providing context, explaining scoring rationale, or noting
114            special conditions. Displayed in Langfuse UI for interpretability.
115        metadata: Optional structured metadata about the evaluation process.
116            Can include confidence scores, intermediate calculations, model versions,
117            or any other relevant technical details.
118        data_type: Optional score data type. Required if value is not NUMERIC.
119            One of NUMERIC, CATEGORICAL, or BOOLEAN. Defaults to NUMERIC.
120        config_id: Optional Langfuse score config ID.
121
122    Examples:
123        Basic accuracy evaluation:
124        ```python
125        from langfuse import Evaluation
126
127        def accuracy_evaluator(*, input, output, expected_output=None, **kwargs):
128            if not expected_output:
129                return Evaluation(name="accuracy", value=None, comment="No expected output")
130
131            is_correct = output.strip().lower() == expected_output.strip().lower()
132            return Evaluation(
133                name="accuracy",
134                value=1.0 if is_correct else 0.0,
135                comment="Correct answer" if is_correct else "Incorrect answer"
136            )
137        ```
138
139        Multi-metric evaluator:
140        ```python
141        def comprehensive_evaluator(*, input, output, expected_output=None, **kwargs):
142            return [
143                Evaluation(name="length", value=len(output), comment=f"Output length: {len(output)} chars"),
144                Evaluation(name="has_greeting", value="hello" in output.lower(), comment="Contains greeting"),
145                Evaluation(
146                    name="quality",
147                    value=0.85,
148                    comment="High quality response",
149                    metadata={"confidence": 0.92, "model": "gpt-4"}
150                )
151            ]
152        ```
153
154        Categorical evaluation:
155        ```python
156        def sentiment_evaluator(*, input, output, **kwargs):
157            sentiment = analyze_sentiment(output)  # Returns "positive", "negative", or "neutral"
158            return Evaluation(
159                name="sentiment",
160                value=sentiment,
161                comment=f"Response expresses {sentiment} sentiment",
162                data_type="CATEGORICAL"
163            )
164        ```
165
166        Failed evaluation with error handling:
167        ```python
168        def external_api_evaluator(*, input, output, **kwargs):
169            try:
170                score = external_api.evaluate(output)
171                return Evaluation(name="external_score", value=score)
172            except Exception as e:
173                return Evaluation(
174                    name="external_score",
175                    value=None,
176                    comment=f"API unavailable: {e}",
177                    metadata={"error": str(e), "retry_count": 3}
178                )
179        ```
180
181    Note:
182        All arguments must be passed as keywords. Positional arguments are not allowed
183        to ensure code clarity and prevent errors from argument reordering.
184    """
185
186    def __init__(
187        self,
188        *,
189        name: str,
190        value: Union[int, float, str, bool, None],
191        comment: Optional[str] = None,
192        metadata: Optional[Dict[str, Any]] = None,
193        data_type: Optional[ScoreDataType] = None,
194        config_id: Optional[str] = None,
195    ):
196        """Initialize an Evaluation with the provided data.
197
198        Args:
199            name: Unique identifier for the evaluation metric.
200            value: The evaluation score or result.
201            comment: Optional human-readable explanation of the result.
202            metadata: Optional structured metadata about the evaluation process.
203            data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN).
204            config_id: Optional Langfuse score config ID.
205
206        Note:
207            All arguments must be provided as keywords. Positional arguments will raise a TypeError.
208        """
209        self.name = name
210        self.value = value
211        self.comment = comment
212        self.metadata = metadata
213        self.data_type = data_type
214        self.config_id = config_id

Represents an evaluation result for an experiment item or an entire experiment run.

This class provides a strongly-typed way to create evaluation results in evaluator functions. Users must use keyword arguments when instantiating this class.

Attributes:
  • name: Unique identifier for the evaluation metric. Should be descriptive and consistent across runs (e.g., "accuracy", "bleu_score", "toxicity"). Used for aggregation and comparison across experiment runs.
  • value: The evaluation score or result. Can be:
    • Numeric (int/float): For quantitative metrics like accuracy (0.85), BLEU (0.42)
    • String: For categorical results like "positive", "negative", "neutral"
    • Boolean: For binary assessments like "passes_safety_check"
    • None: When evaluation cannot be computed (missing data, API errors, etc.)
  • comment: Optional human-readable explanation of the evaluation result. Useful for providing context, explaining scoring rationale, or noting special conditions. Displayed in Langfuse UI for interpretability.
  • metadata: Optional structured metadata about the evaluation process. Can include confidence scores, intermediate calculations, model versions, or any other relevant technical details.
  • data_type: Optional score data type. Required if value is not NUMERIC. One of NUMERIC, CATEGORICAL, or BOOLEAN. Defaults to NUMERIC.
  • config_id: Optional Langfuse score config ID.
Examples:

Basic accuracy evaluation:

from langfuse import Evaluation

def accuracy_evaluator(*, input, output, expected_output=None, **kwargs):
    if not expected_output:
        return Evaluation(name="accuracy", value=None, comment="No expected output")

    is_correct = output.strip().lower() == expected_output.strip().lower()
    return Evaluation(
        name="accuracy",
        value=1.0 if is_correct else 0.0,
        comment="Correct answer" if is_correct else "Incorrect answer"
    )

Multi-metric evaluator:

def comprehensive_evaluator(*, input, output, expected_output=None, **kwargs):
    return [
        Evaluation(name="length", value=len(output), comment=f"Output length: {len(output)} chars"),
        Evaluation(name="has_greeting", value="hello" in output.lower(), comment="Contains greeting"),
        Evaluation(
            name="quality",
            value=0.85,
            comment="High quality response",
            metadata={"confidence": 0.92, "model": "gpt-4"}
        )
    ]

Categorical evaluation:

def sentiment_evaluator(*, input, output, **kwargs):
    sentiment = analyze_sentiment(output)  # Returns "positive", "negative", or "neutral"
    return Evaluation(
        name="sentiment",
        value=sentiment,
        comment=f"Response expresses {sentiment} sentiment",
        data_type="CATEGORICAL"
    )

Failed evaluation with error handling:

def external_api_evaluator(*, input, output, **kwargs):
    try:
        score = external_api.evaluate(output)
        return Evaluation(name="external_score", value=score)
    except Exception as e:
        return Evaluation(
            name="external_score",
            value=None,
            comment=f"API unavailable: {e}",
            metadata={"error": str(e), "retry_count": 3}
        )
Note:

All arguments must be passed as keywords. Positional arguments are not allowed to ensure code clarity and prevent errors from argument reordering.

Evaluation( *, name: str, value: Union[int, float, str, bool, NoneType], comment: Optional[str] = None, metadata: Optional[Dict[str, Any]] = None, data_type: Optional[langfuse.api.ScoreDataType] = None, config_id: Optional[str] = None)
186    def __init__(
187        self,
188        *,
189        name: str,
190        value: Union[int, float, str, bool, None],
191        comment: Optional[str] = None,
192        metadata: Optional[Dict[str, Any]] = None,
193        data_type: Optional[ScoreDataType] = None,
194        config_id: Optional[str] = None,
195    ):
196        """Initialize an Evaluation with the provided data.
197
198        Args:
199            name: Unique identifier for the evaluation metric.
200            value: The evaluation score or result.
201            comment: Optional human-readable explanation of the result.
202            metadata: Optional structured metadata about the evaluation process.
203            data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN).
204            config_id: Optional Langfuse score config ID.
205
206        Note:
207            All arguments must be provided as keywords. Positional arguments will raise a TypeError.
208        """
209        self.name = name
210        self.value = value
211        self.comment = comment
212        self.metadata = metadata
213        self.data_type = data_type
214        self.config_id = config_id

Initialize an Evaluation with the provided data.

Arguments:
  • name: Unique identifier for the evaluation metric.
  • value: The evaluation score or result.
  • comment: Optional human-readable explanation of the result.
  • metadata: Optional structured metadata about the evaluation process.
  • data_type: Optional score data type (NUMERIC, CATEGORICAL, or BOOLEAN).
  • config_id: Optional Langfuse score config ID.
Note:

All arguments must be provided as keywords. Positional arguments will raise a TypeError.

name
value
comment
metadata
data_type
config_id