langfuse.client
1import datetime as dt 2import logging 3import os 4import re 5import time 6import tracemalloc 7import typing 8import urllib.parse 9import uuid 10import warnings 11from contextlib import contextmanager 12from dataclasses import dataclass 13from enum import Enum 14from typing import Any, Dict, List, Literal, Optional, Sequence, Union, overload 15 16import backoff 17import httpx 18 19from langfuse.api.resources.commons.types.dataset_run_with_items import ( 20 DatasetRunWithItems, 21) 22from langfuse.api.resources.commons.types.observations_view import ObservationsView 23from langfuse.api.resources.commons.types.session import Session 24from langfuse.api.resources.commons.types.trace_with_details import TraceWithDetails 25from langfuse.api.resources.datasets.types.paginated_dataset_runs import ( 26 PaginatedDatasetRuns, 27) 28from langfuse.api.resources.ingestion.types.create_event_body import CreateEventBody 29from langfuse.api.resources.ingestion.types.create_generation_body import ( 30 CreateGenerationBody, 31) 32from langfuse.api.resources.ingestion.types.create_span_body import CreateSpanBody 33from langfuse.api.resources.ingestion.types.score_body import ScoreBody 34from langfuse.api.resources.ingestion.types.sdk_log_body import SdkLogBody 35from langfuse.api.resources.ingestion.types.trace_body import TraceBody 36from langfuse.api.resources.ingestion.types.update_generation_body import ( 37 UpdateGenerationBody, 38) 39from langfuse.api.resources.ingestion.types.update_span_body import UpdateSpanBody 40from langfuse.api.resources.media import GetMediaResponse 41from langfuse.api.resources.observations.types.observations_views import ( 42 ObservationsViews, 43) 44from langfuse.api.resources.prompts.types import ( 45 CreatePromptRequest_Chat, 46 CreatePromptRequest_Text, 47 Prompt_Chat, 48 Prompt_Text, 49) 50from langfuse.api.resources.trace.types.traces import Traces 51from langfuse.api.resources.utils.resources.pagination.types.meta_response import ( 52 MetaResponse, 53) 54from langfuse.model import ( 55 ChatMessageDict, 56 ChatPromptClient, 57 CreateDatasetItemRequest, 58 CreateDatasetRequest, 59 CreateDatasetRunItemRequest, 60 DatasetItem, 61 DatasetStatus, 62 ModelUsage, 63 PromptClient, 64 TextPromptClient, 65) 66from langfuse.parse_error import handle_fern_exception 67from langfuse.prompt_cache import PromptCache 68 69try: 70 import pydantic.v1 as pydantic # type: ignore 71except ImportError: 72 import pydantic # type: ignore 73 74from langfuse._task_manager.task_manager import TaskManager 75from langfuse.api.client import AsyncFernLangfuse, FernLangfuse 76from langfuse.environment import get_common_release_envs 77from langfuse.logging import clean_logger 78from langfuse.media import LangfuseMedia 79from langfuse.model import Dataset, MapValue, Observation, TraceWithFullDetails 80from langfuse.request import LangfuseClient 81from langfuse.types import MaskFunction, ScoreDataType, SpanLevel 82from langfuse.utils import ( 83 _convert_usage_input, 84 _create_prompt_context, 85 _get_timestamp, 86) 87 88from .version import __version__ as version 89 90ENVIRONMENT_PATTERN = r"^(?!langfuse)[a-z0-9-_]+$" 91 92 93@dataclass 94class FetchTracesResponse: 95 """Response object for fetch_traces method.""" 96 97 data: typing.List[TraceWithDetails] 98 meta: MetaResponse 99 100 101@dataclass 102class FetchTraceResponse: 103 """Response object for fetch_trace method.""" 104 105 data: TraceWithFullDetails 106 107 108@dataclass 109class FetchObservationsResponse: 110 """Response object for fetch_observations method.""" 111 112 data: typing.List[ObservationsView] 113 meta: MetaResponse 114 115 116@dataclass 117class FetchObservationResponse: 118 """Response object for fetch_observation method.""" 119 120 data: Observation 121 122 123@dataclass 124class FetchMediaResponse: 125 """Response object for fetch_media method.""" 126 127 data: GetMediaResponse 128 129 130@dataclass 131class FetchSessionsResponse: 132 """Response object for fetch_sessions method.""" 133 134 data: typing.List[Session] 135 meta: MetaResponse 136 137 138class Langfuse(object): 139 """Langfuse Python client. 140 141 Attributes: 142 log (logging.Logger): Logger for the Langfuse client. 143 base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction. 144 httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API. 145 client (FernLangfuse): Core interface for Langfuse API interaction. 146 task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks. 147 release (str): Identifies the release number or hash of the application. 148 prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances. 149 150 Example: 151 Initiating the Langfuse client should always be first step to use Langfuse. 152 ```python 153 import os 154 from langfuse import Langfuse 155 156 # Set the public and secret keys as environment variables 157 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 158 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 159 160 # Initialize the Langfuse client using the credentials 161 langfuse = Langfuse() 162 ``` 163 """ 164 165 log = logging.getLogger("langfuse") 166 """Logger for the Langfuse client.""" 167 168 host: str 169 """Host of Langfuse API.""" 170 171 project_id: Optional[str] 172 """Project ID of the Langfuse project associated with the API keys provided.""" 173 174 def __init__( 175 self, 176 public_key: Optional[str] = None, 177 secret_key: Optional[str] = None, 178 host: Optional[str] = None, 179 release: Optional[str] = None, 180 debug: bool = False, 181 threads: Optional[int] = None, 182 flush_at: Optional[int] = None, 183 flush_interval: Optional[float] = None, 184 max_retries: Optional[int] = None, 185 timeout: Optional[int] = None, # seconds 186 sdk_integration: Optional[str] = "default", 187 httpx_client: Optional[httpx.Client] = None, 188 enabled: Optional[bool] = True, 189 sample_rate: Optional[float] = None, 190 mask: Optional[MaskFunction] = None, 191 environment: Optional[str] = None, 192 ): 193 """Initialize the Langfuse client. 194 195 Args: 196 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 197 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 198 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 199 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 200 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 201 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 202 flush_at: Max batch size that's sent to the API. 203 flush_interval: Max delay until a new batch is sent to the API. 204 max_retries: Max number of retries in case of API/network errors. 205 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 206 httpx_client: Pass your own httpx client for more customizability of requests. 207 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 208 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 209 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 210 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 211 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 212 213 Raises: 214 ValueError: If public_key or secret_key are not set and not found in environment variables. 215 216 Example: 217 Initiating the Langfuse client should always be first step to use Langfuse. 218 ```python 219 import os 220 from langfuse import Langfuse 221 222 # Set the public and secret keys as environment variables 223 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 224 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 225 226 # Initialize the Langfuse client using the credentials 227 langfuse = Langfuse() 228 ``` 229 """ 230 self.enabled = enabled 231 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 232 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 233 sample_rate = ( 234 sample_rate 235 if sample_rate 236 is not None # needs explicit None check, as 0 is a valid value 237 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 238 ) 239 240 if sample_rate is not None and ( 241 sample_rate > 1 or sample_rate < 0 242 ): # default value 1 will be set in the taskmanager 243 self.enabled = False 244 self.log.warning( 245 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 246 ) 247 248 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 249 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 250 flush_interval = flush_interval or float( 251 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 252 ) 253 254 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 255 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 256 257 if not self.enabled: 258 self.log.warning( 259 "Langfuse client is disabled. No observability data will be sent." 260 ) 261 262 elif not public_key: 263 self.enabled = False 264 self.log.warning( 265 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 266 ) 267 268 elif not secret_key: 269 self.enabled = False 270 self.log.warning( 271 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 272 ) 273 274 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 275 276 if set_debug is True: 277 # Ensures that debug level messages are logged when debug mode is on. 278 # Otherwise, defaults to WARNING level. 279 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 280 logging.basicConfig() 281 # Set level for all loggers under langfuse package 282 logging.getLogger("langfuse").setLevel(logging.DEBUG) 283 284 clean_logger() 285 else: 286 logging.getLogger("langfuse").setLevel(logging.WARNING) 287 clean_logger() 288 289 self.base_url = ( 290 host 291 if host 292 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 293 ) 294 295 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 296 297 if self.environment and not bool( 298 re.match(ENVIRONMENT_PATTERN, self.environment) 299 ): 300 self.log.error( 301 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 302 ) 303 304 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 305 306 public_api_client = FernLangfuse( 307 base_url=self.base_url, 308 username=public_key, 309 password=secret_key, 310 x_langfuse_sdk_name="python", 311 x_langfuse_sdk_version=version, 312 x_langfuse_public_key=public_key, 313 httpx_client=self.httpx_client, 314 timeout=timeout, 315 ) 316 async_public_api_client = AsyncFernLangfuse( 317 base_url=self.base_url, 318 username=public_key, 319 password=secret_key, 320 x_langfuse_sdk_name="python", 321 x_langfuse_sdk_version=version, 322 x_langfuse_public_key=public_key, 323 timeout=timeout, 324 ) 325 326 self.api = public_api_client 327 self.client = public_api_client # legacy, to be removed in next major release 328 self.async_api = async_public_api_client 329 330 langfuse_client = LangfuseClient( 331 public_key=public_key, 332 secret_key=secret_key, 333 base_url=self.base_url, 334 version=version, 335 timeout=timeout, 336 session=self.httpx_client, 337 ) 338 339 args = { 340 "threads": threads, 341 "flush_at": flush_at, 342 "flush_interval": flush_interval, 343 "max_retries": max_retries, 344 "client": langfuse_client, 345 "api_client": self.client, 346 "public_key": public_key, 347 "sdk_name": "python", 348 "sdk_version": version, 349 "sdk_integration": sdk_integration, 350 "enabled": self.enabled, 351 "sample_rate": sample_rate, 352 "mask": mask, 353 } 354 355 self.task_manager = TaskManager(**args) 356 357 self.trace_id = None 358 self.project_id = None 359 360 self.release = self._get_release_value(release) 361 362 self.prompt_cache = PromptCache() 363 364 def _get_release_value(self, release: Optional[str] = None) -> Optional[str]: 365 if release: 366 return release 367 elif "LANGFUSE_RELEASE" in os.environ: 368 return os.environ["LANGFUSE_RELEASE"] 369 else: 370 return get_common_release_envs() 371 372 def _get_project_id(self) -> Optional[str]: 373 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 374 if not self.project_id: 375 proj = self.client.projects.get() 376 if not proj.data or not proj.data[0].id: 377 return None 378 379 self.project_id = proj.data[0].id 380 381 return self.project_id 382 383 def get_trace_id(self) -> str: 384 """Get the current trace id.""" 385 return self.trace_id 386 387 def get_trace_url(self) -> str: 388 """Get the URL of the current trace to view it in the Langfuse UI.""" 389 project_id = self._get_project_id() 390 if not project_id: 391 return f"{self.base_url}/trace/{self.trace_id}" 392 393 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}" 394 395 def get_dataset( 396 self, name: str, *, fetch_items_page_size: Optional[int] = 50 397 ) -> "DatasetClient": 398 """Fetch a dataset by its name. 399 400 Args: 401 name (str): The name of the dataset to fetch. 402 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 403 404 Returns: 405 DatasetClient: The dataset with the given name. 406 """ 407 try: 408 self.log.debug(f"Getting datasets {name}") 409 dataset = self.client.datasets.get(dataset_name=name) 410 411 dataset_items = [] 412 page = 1 413 while True: 414 new_items = self.client.dataset_items.list( 415 dataset_name=self._url_encode(name), 416 page=page, 417 limit=fetch_items_page_size, 418 ) 419 dataset_items.extend(new_items.data) 420 if new_items.meta.total_pages <= page: 421 break 422 page += 1 423 424 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 425 426 return DatasetClient(dataset, items=items) 427 except Exception as e: 428 handle_fern_exception(e) 429 raise e 430 431 def get_dataset_item(self, id: str) -> "DatasetItemClient": 432 """Get the dataset item with the given id.""" 433 try: 434 self.log.debug(f"Getting dataset item {id}") 435 dataset_item = self.client.dataset_items.get(id=id) 436 return DatasetItemClient(dataset_item, langfuse=self) 437 except Exception as e: 438 handle_fern_exception(e) 439 raise e 440 441 def auth_check(self) -> bool: 442 """Check if the provided credentials (public and secret key) are valid. 443 444 Raises: 445 Exception: If no projects were found for the provided credentials. 446 447 Note: 448 This method is blocking. It is discouraged to use it in production code. 449 """ 450 try: 451 projects = self.client.projects.get() 452 self.log.debug( 453 f"Auth check successful, found {len(projects.data)} projects" 454 ) 455 if len(projects.data) == 0: 456 raise Exception( 457 "Auth check failed, no project found for the keys provided." 458 ) 459 return True 460 461 except Exception as e: 462 handle_fern_exception(e) 463 raise e 464 465 def get_dataset_runs( 466 self, 467 dataset_name: str, 468 *, 469 page: typing.Optional[int] = None, 470 limit: typing.Optional[int] = None, 471 ) -> PaginatedDatasetRuns: 472 """Get all dataset runs. 473 474 Args: 475 dataset_name (str): Name of the dataset. 476 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 477 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 478 479 Returns: 480 PaginatedDatasetRuns: The dataset runs. 481 """ 482 try: 483 self.log.debug("Getting dataset runs") 484 return self.client.datasets.get_runs( 485 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 486 ) 487 except Exception as e: 488 handle_fern_exception(e) 489 raise e 490 491 def get_dataset_run( 492 self, 493 dataset_name: str, 494 dataset_run_name: str, 495 ) -> DatasetRunWithItems: 496 """Get a dataset run. 497 498 Args: 499 dataset_name: Name of the dataset. 500 dataset_run_name: Name of the dataset run. 501 502 Returns: 503 DatasetRunWithItems: The dataset run. 504 """ 505 try: 506 self.log.debug( 507 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 508 ) 509 return self.client.datasets.get_run( 510 dataset_name=self._url_encode(dataset_name), 511 run_name=self._url_encode(dataset_run_name), 512 ) 513 except Exception as e: 514 handle_fern_exception(e) 515 raise e 516 517 def create_dataset( 518 self, 519 name: str, 520 description: Optional[str] = None, 521 metadata: Optional[Any] = None, 522 ) -> Dataset: 523 """Create a dataset with the given name on Langfuse. 524 525 Args: 526 name: Name of the dataset to create. 527 description: Description of the dataset. Defaults to None. 528 metadata: Additional metadata. Defaults to None. 529 530 Returns: 531 Dataset: The created dataset as returned by the Langfuse API. 532 """ 533 try: 534 body = CreateDatasetRequest( 535 name=name, description=description, metadata=metadata 536 ) 537 self.log.debug(f"Creating datasets {body}") 538 return self.client.datasets.create(request=body) 539 except Exception as e: 540 handle_fern_exception(e) 541 raise e 542 543 def create_dataset_item( 544 self, 545 dataset_name: str, 546 input: Optional[Any] = None, 547 expected_output: Optional[Any] = None, 548 metadata: Optional[Any] = None, 549 source_trace_id: Optional[str] = None, 550 source_observation_id: Optional[str] = None, 551 status: Optional[DatasetStatus] = None, 552 id: Optional[str] = None, 553 ) -> DatasetItem: 554 """Create a dataset item. 555 556 Upserts if an item with id already exists. 557 558 Args: 559 dataset_name: Name of the dataset in which the dataset item should be created. 560 input: Input data. Defaults to None. Can contain any dict, list or scalar. 561 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 562 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 563 source_trace_id: Id of the source trace. Defaults to None. 564 source_observation_id: Id of the source observation. Defaults to None. 565 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 566 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 567 568 Returns: 569 DatasetItem: The created dataset item as returned by the Langfuse API. 570 571 Example: 572 ```python 573 from langfuse import Langfuse 574 575 langfuse = Langfuse() 576 577 # Uploading items to the Langfuse dataset named "capital_cities" 578 langfuse.create_dataset_item( 579 dataset_name="capital_cities", 580 input={"input": {"country": "Italy"}}, 581 expected_output={"expected_output": "Rome"}, 582 metadata={"foo": "bar"} 583 ) 584 ``` 585 """ 586 try: 587 body = CreateDatasetItemRequest( 588 datasetName=dataset_name, 589 input=input, 590 expectedOutput=expected_output, 591 metadata=metadata, 592 sourceTraceId=source_trace_id, 593 sourceObservationId=source_observation_id, 594 status=status, 595 id=id, 596 ) 597 self.log.debug(f"Creating dataset item {body}") 598 return self.client.dataset_items.create(request=body) 599 except Exception as e: 600 handle_fern_exception(e) 601 raise e 602 603 def fetch_trace( 604 self, 605 id: str, 606 ) -> FetchTraceResponse: 607 """Fetch a trace via the Langfuse API by its id. 608 609 Args: 610 id: The id of the trace to fetch. 611 612 Returns: 613 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 614 615 Raises: 616 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 617 """ 618 try: 619 self.log.debug(f"Getting trace {id}") 620 trace = self.client.trace.get(id) 621 return FetchTraceResponse(data=trace) 622 except Exception as e: 623 handle_fern_exception(e) 624 raise e 625 626 def get_trace( 627 self, 628 id: str, 629 ) -> TraceWithFullDetails: 630 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 631 632 Args: 633 id: The id of the trace to fetch. 634 635 Returns: 636 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 637 638 Raises: 639 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 640 """ 641 warnings.warn( 642 "get_trace is deprecated, use fetch_trace instead.", 643 DeprecationWarning, 644 ) 645 646 try: 647 self.log.debug(f"Getting trace {id}") 648 return self.client.trace.get(id) 649 except Exception as e: 650 handle_fern_exception(e) 651 raise e 652 653 def fetch_traces( 654 self, 655 *, 656 page: Optional[int] = None, 657 limit: Optional[int] = None, 658 user_id: Optional[str] = None, 659 name: Optional[str] = None, 660 session_id: Optional[str] = None, 661 from_timestamp: Optional[dt.datetime] = None, 662 to_timestamp: Optional[dt.datetime] = None, 663 order_by: Optional[str] = None, 664 tags: Optional[Union[str, Sequence[str]]] = None, 665 ) -> FetchTracesResponse: 666 """Fetch a list of traces in the current project matching the given parameters. 667 668 Args: 669 page (Optional[int]): Page number, starts at 1. Defaults to None. 670 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 671 name (Optional[str]): Filter by name of traces. Defaults to None. 672 user_id (Optional[str]): Filter by user_id. Defaults to None. 673 session_id (Optional[str]): Filter by session_id. Defaults to None. 674 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 675 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 676 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 677 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 678 679 Returns: 680 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 681 682 Raises: 683 Exception: If an error occurred during the request. 684 """ 685 try: 686 self.log.debug( 687 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 688 ) 689 res = self.client.trace.list( 690 page=page, 691 limit=limit, 692 name=name, 693 user_id=user_id, 694 session_id=session_id, 695 from_timestamp=from_timestamp, 696 to_timestamp=to_timestamp, 697 order_by=order_by, 698 tags=tags, 699 ) 700 return FetchTracesResponse(data=res.data, meta=res.meta) 701 except Exception as e: 702 handle_fern_exception(e) 703 raise e 704 705 def get_traces( 706 self, 707 *, 708 page: Optional[int] = None, 709 limit: Optional[int] = None, 710 user_id: Optional[str] = None, 711 name: Optional[str] = None, 712 session_id: Optional[str] = None, 713 from_timestamp: Optional[dt.datetime] = None, 714 to_timestamp: Optional[dt.datetime] = None, 715 order_by: Optional[str] = None, 716 tags: Optional[Union[str, Sequence[str]]] = None, 717 ) -> Traces: 718 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 719 720 Args: 721 page (Optional[int]): Page number, starts at 1. Defaults to None. 722 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 723 name (Optional[str]): Filter by name of traces. Defaults to None. 724 user_id (Optional[str]): Filter by user_id. Defaults to None. 725 session_id (Optional[str]): Filter by session_id. Defaults to None. 726 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 727 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 728 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 729 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 730 731 Returns: 732 List of Traces 733 734 Raises: 735 Exception: If an error occurred during the request. 736 """ 737 warnings.warn( 738 "get_traces is deprecated, use fetch_traces instead.", 739 DeprecationWarning, 740 ) 741 try: 742 self.log.debug( 743 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 744 ) 745 return self.client.trace.list( 746 page=page, 747 limit=limit, 748 name=name, 749 user_id=user_id, 750 session_id=session_id, 751 from_timestamp=from_timestamp, 752 to_timestamp=to_timestamp, 753 order_by=order_by, 754 tags=tags, 755 ) 756 except Exception as e: 757 handle_fern_exception(e) 758 raise e 759 760 def fetch_observations( 761 self, 762 *, 763 page: typing.Optional[int] = None, 764 limit: typing.Optional[int] = None, 765 name: typing.Optional[str] = None, 766 user_id: typing.Optional[str] = None, 767 trace_id: typing.Optional[str] = None, 768 parent_observation_id: typing.Optional[str] = None, 769 from_start_time: typing.Optional[dt.datetime] = None, 770 to_start_time: typing.Optional[dt.datetime] = None, 771 type: typing.Optional[str] = None, 772 ) -> FetchObservationsResponse: 773 """Get a list of observations in the current project matching the given parameters. 774 775 Args: 776 page (Optional[int]): Page number of the observations to return. Defaults to None. 777 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 778 name (Optional[str]): Name of the observations to return. Defaults to None. 779 user_id (Optional[str]): User identifier. Defaults to None. 780 trace_id (Optional[str]): Trace identifier. Defaults to None. 781 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 782 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 783 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 784 type (Optional[str]): Type of the observation. Defaults to None. 785 786 Returns: 787 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 788 789 Raises: 790 Exception: If an error occurred during the request. 791 """ 792 try: 793 self.log.debug( 794 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 795 ) 796 res = self.client.observations.get_many( 797 page=page, 798 limit=limit, 799 name=name, 800 user_id=user_id, 801 trace_id=trace_id, 802 parent_observation_id=parent_observation_id, 803 from_start_time=from_start_time, 804 to_start_time=to_start_time, 805 type=type, 806 ) 807 return FetchObservationsResponse(data=res.data, meta=res.meta) 808 except Exception as e: 809 self.log.exception(e) 810 raise e 811 812 def get_observations( 813 self, 814 *, 815 page: typing.Optional[int] = None, 816 limit: typing.Optional[int] = None, 817 name: typing.Optional[str] = None, 818 user_id: typing.Optional[str] = None, 819 trace_id: typing.Optional[str] = None, 820 parent_observation_id: typing.Optional[str] = None, 821 from_start_time: typing.Optional[dt.datetime] = None, 822 to_start_time: typing.Optional[dt.datetime] = None, 823 type: typing.Optional[str] = None, 824 ) -> ObservationsViews: 825 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 826 827 Args: 828 page (Optional[int]): Page number of the observations to return. Defaults to None. 829 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 830 name (Optional[str]): Name of the observations to return. Defaults to None. 831 user_id (Optional[str]): User identifier. Defaults to None. 832 trace_id (Optional[str]): Trace identifier. Defaults to None. 833 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 834 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 835 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 836 type (Optional[str]): Type of the observation. Defaults to None. 837 838 Returns: 839 List of ObservationsViews: List of observations in the project matching the given parameters. 840 841 Raises: 842 Exception: If an error occurred during the request. 843 """ 844 warnings.warn( 845 "get_observations is deprecated, use fetch_observations instead.", 846 DeprecationWarning, 847 ) 848 try: 849 self.log.debug( 850 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 851 ) 852 return self.client.observations.get_many( 853 page=page, 854 limit=limit, 855 name=name, 856 user_id=user_id, 857 trace_id=trace_id, 858 parent_observation_id=parent_observation_id, 859 from_start_time=from_start_time, 860 to_start_time=to_start_time, 861 type=type, 862 ) 863 except Exception as e: 864 handle_fern_exception(e) 865 raise e 866 867 def get_generations( 868 self, 869 *, 870 page: typing.Optional[int] = None, 871 limit: typing.Optional[int] = None, 872 name: typing.Optional[str] = None, 873 user_id: typing.Optional[str] = None, 874 trace_id: typing.Optional[str] = None, 875 from_start_time: typing.Optional[dt.datetime] = None, 876 to_start_time: typing.Optional[dt.datetime] = None, 877 parent_observation_id: typing.Optional[str] = None, 878 ) -> ObservationsViews: 879 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 880 881 Args: 882 page (Optional[int]): Page number of the generations to return. Defaults to None. 883 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 884 name (Optional[str]): Name of the generations to return. Defaults to None. 885 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 886 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 887 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 888 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 889 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 890 891 Returns: 892 List of ObservationsViews: List of generations in the project matching the given parameters. 893 894 Raises: 895 Exception: If an error occurred during the request. 896 """ 897 warnings.warn( 898 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 899 DeprecationWarning, 900 ) 901 return self.get_observations( 902 page=page, 903 limit=limit, 904 name=name, 905 user_id=user_id, 906 trace_id=trace_id, 907 parent_observation_id=parent_observation_id, 908 from_start_time=from_start_time, 909 to_start_time=to_start_time, 910 type="GENERATION", 911 ) 912 913 def fetch_observation( 914 self, 915 id: str, 916 ) -> FetchObservationResponse: 917 """Get an observation in the current project with the given identifier. 918 919 Args: 920 id: The identifier of the observation to fetch. 921 922 Returns: 923 FetchObservationResponse: The observation with the given id on `data`. 924 925 Raises: 926 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 927 """ 928 try: 929 self.log.debug(f"Getting observation {id}") 930 observation = self.client.observations.get(id) 931 return FetchObservationResponse(data=observation) 932 except Exception as e: 933 handle_fern_exception(e) 934 raise e 935 936 def fetch_media(self, id: str) -> FetchMediaResponse: 937 """Get media content by ID. 938 939 Args: 940 id: The identifier of the media content to fetch. 941 942 Returns: 943 FetchMediaResponse: The media data of the given id on `data`. 944 945 Raises: 946 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 947 """ 948 try: 949 return FetchMediaResponse(data=self.client.media.get(id)) 950 except Exception as e: 951 handle_fern_exception(e) 952 raise e 953 954 def resolve_media_references( 955 self, 956 *, 957 obj: Any, 958 resolve_with: Literal["base64_data_uri"], 959 max_depth: int = 10, 960 content_fetch_timeout_seconds: int = 10, 961 ): 962 """Replace media reference strings in an object with base64 data URIs. 963 964 This method recursively traverses an object (up to max_depth) looking for media reference strings 965 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 966 the provided Langfuse client and replaces the reference string with a base64 data URI. 967 968 If fetching media content fails for a reference string, a warning is logged and the reference 969 string is left unchanged. 970 971 Args: 972 obj: The object to process. Can be a primitive value, array, or nested object. 973 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 974 resolve_with: The representation of the media content to replace the media reference string with. 975 Currently only "base64_data_uri" is supported. 976 max_depth: int: The maximum depth to traverse the object. Default is 10. 977 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 978 979 Returns: 980 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 981 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 982 983 Example: 984 obj = { 985 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 986 "nested": { 987 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 988 } 989 } 990 991 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 992 993 # Result: 994 # { 995 # "image": "...", 996 # "nested": { 997 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 998 # } 999 # } 1000 """ 1001 return LangfuseMedia.resolve_media_references( 1002 langfuse_client=self, 1003 obj=obj, 1004 resolve_with=resolve_with, 1005 max_depth=max_depth, 1006 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1007 ) 1008 1009 def get_observation( 1010 self, 1011 id: str, 1012 ) -> Observation: 1013 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1014 1015 Args: 1016 id: The identifier of the observation to fetch. 1017 1018 Raises: 1019 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1020 """ 1021 warnings.warn( 1022 "get_observation is deprecated, use fetch_observation instead.", 1023 DeprecationWarning, 1024 ) 1025 try: 1026 self.log.debug(f"Getting observation {id}") 1027 return self.client.observations.get(id) 1028 except Exception as e: 1029 handle_fern_exception(e) 1030 raise e 1031 1032 def fetch_sessions( 1033 self, 1034 *, 1035 page: typing.Optional[int] = None, 1036 limit: typing.Optional[int] = None, 1037 from_timestamp: typing.Optional[dt.datetime] = None, 1038 to_timestamp: typing.Optional[dt.datetime] = None, 1039 ) -> FetchSessionsResponse: 1040 """Get a list of sessions in the current project. 1041 1042 Args: 1043 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1044 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1045 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1046 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1047 1048 Returns: 1049 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1050 1051 Raises: 1052 Exception: If an error occurred during the request. 1053 """ 1054 try: 1055 self.log.debug( 1056 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1057 ) 1058 res = self.client.sessions.list( 1059 page=page, 1060 limit=limit, 1061 from_timestamp=from_timestamp, 1062 to_timestamp=to_timestamp, 1063 ) 1064 return FetchSessionsResponse(data=res.data, meta=res.meta) 1065 except Exception as e: 1066 handle_fern_exception(e) 1067 raise e 1068 1069 @overload 1070 def get_prompt( 1071 self, 1072 name: str, 1073 version: Optional[int] = None, 1074 *, 1075 label: Optional[str] = None, 1076 type: Literal["chat"], 1077 cache_ttl_seconds: Optional[int] = None, 1078 fallback: Optional[List[ChatMessageDict]] = None, 1079 max_retries: Optional[int] = None, 1080 fetch_timeout_seconds: Optional[int] = None, 1081 ) -> ChatPromptClient: ... 1082 1083 @overload 1084 def get_prompt( 1085 self, 1086 name: str, 1087 version: Optional[int] = None, 1088 *, 1089 label: Optional[str] = None, 1090 type: Literal["text"] = "text", 1091 cache_ttl_seconds: Optional[int] = None, 1092 fallback: Optional[str] = None, 1093 max_retries: Optional[int] = None, 1094 fetch_timeout_seconds: Optional[int] = None, 1095 ) -> TextPromptClient: ... 1096 1097 def get_prompt( 1098 self, 1099 name: str, 1100 version: Optional[int] = None, 1101 *, 1102 label: Optional[str] = None, 1103 type: Literal["chat", "text"] = "text", 1104 cache_ttl_seconds: Optional[int] = None, 1105 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1106 max_retries: Optional[int] = None, 1107 fetch_timeout_seconds: Optional[int] = None, 1108 ) -> PromptClient: 1109 """Get a prompt. 1110 1111 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1112 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1113 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1114 return the expired prompt as a fallback. 1115 1116 Args: 1117 name (str): The name of the prompt to retrieve. 1118 1119 Keyword Args: 1120 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1121 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1122 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1123 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1124 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1125 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1126 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1127 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1128 1129 Returns: 1130 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1131 - TextPromptClient, if type argument is 'text'. 1132 - ChatPromptClient, if type argument is 'chat'. 1133 1134 Raises: 1135 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1136 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1137 """ 1138 if version is not None and label is not None: 1139 raise ValueError("Cannot specify both version and label at the same time.") 1140 1141 if not name: 1142 raise ValueError("Prompt name cannot be empty.") 1143 1144 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1145 bounded_max_retries = self._get_bounded_max_retries( 1146 max_retries, default_max_retries=2, max_retries_upper_bound=4 1147 ) 1148 1149 self.log.debug(f"Getting prompt '{cache_key}'") 1150 cached_prompt = self.prompt_cache.get(cache_key) 1151 1152 if cached_prompt is None or cache_ttl_seconds == 0: 1153 self.log.debug( 1154 f"Prompt '{cache_key}' not found in cache or caching disabled." 1155 ) 1156 try: 1157 return self._fetch_prompt_and_update_cache( 1158 name, 1159 version=version, 1160 label=label, 1161 ttl_seconds=cache_ttl_seconds, 1162 max_retries=bounded_max_retries, 1163 fetch_timeout_seconds=fetch_timeout_seconds, 1164 ) 1165 except Exception as e: 1166 if fallback: 1167 self.log.warning( 1168 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1169 ) 1170 1171 fallback_client_args = { 1172 "name": name, 1173 "prompt": fallback, 1174 "type": type, 1175 "version": version or 0, 1176 "config": {}, 1177 "labels": [label] if label else [], 1178 "tags": [], 1179 } 1180 1181 if type == "text": 1182 return TextPromptClient( 1183 prompt=Prompt_Text(**fallback_client_args), 1184 is_fallback=True, 1185 ) 1186 1187 if type == "chat": 1188 return ChatPromptClient( 1189 prompt=Prompt_Chat(**fallback_client_args), 1190 is_fallback=True, 1191 ) 1192 1193 raise e 1194 1195 if cached_prompt.is_expired(): 1196 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1197 try: 1198 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1199 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1200 self.prompt_cache.add_refresh_prompt_task( 1201 cache_key, 1202 lambda: self._fetch_prompt_and_update_cache( 1203 name, 1204 version=version, 1205 label=label, 1206 ttl_seconds=cache_ttl_seconds, 1207 max_retries=bounded_max_retries, 1208 fetch_timeout_seconds=fetch_timeout_seconds, 1209 ), 1210 ) 1211 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1212 # return stale prompt 1213 return cached_prompt.value 1214 1215 except Exception as e: 1216 self.log.warning( 1217 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1218 ) 1219 # creation of refresh prompt task failed, return stale prompt 1220 return cached_prompt.value 1221 1222 return cached_prompt.value 1223 1224 def _fetch_prompt_and_update_cache( 1225 self, 1226 name: str, 1227 *, 1228 version: Optional[int] = None, 1229 label: Optional[str] = None, 1230 ttl_seconds: Optional[int] = None, 1231 max_retries: int, 1232 fetch_timeout_seconds, 1233 ) -> PromptClient: 1234 try: 1235 cache_key = PromptCache.generate_cache_key( 1236 name, version=version, label=label 1237 ) 1238 1239 self.log.debug(f"Fetching prompt '{cache_key}' from server...") 1240 1241 @backoff.on_exception( 1242 backoff.constant, Exception, max_tries=max_retries, logger=None 1243 ) 1244 def fetch_prompts(): 1245 return self.client.prompts.get( 1246 self._url_encode(name), 1247 version=version, 1248 label=label, 1249 request_options={ 1250 "timeout_in_seconds": fetch_timeout_seconds, 1251 } 1252 if fetch_timeout_seconds is not None 1253 else None, 1254 ) 1255 1256 prompt_response = fetch_prompts() 1257 1258 if prompt_response.type == "chat": 1259 prompt = ChatPromptClient(prompt_response) 1260 else: 1261 prompt = TextPromptClient(prompt_response) 1262 1263 self.prompt_cache.set(cache_key, prompt, ttl_seconds) 1264 1265 return prompt 1266 1267 except Exception as e: 1268 self.log.error(f"Error while fetching prompt '{cache_key}': {str(e)}") 1269 raise e 1270 1271 def _get_bounded_max_retries( 1272 self, 1273 max_retries: Optional[int], 1274 *, 1275 default_max_retries: int = 2, 1276 max_retries_upper_bound: int = 4, 1277 ) -> int: 1278 if max_retries is None: 1279 return default_max_retries 1280 1281 bounded_max_retries = min( 1282 max(max_retries, 0), 1283 max_retries_upper_bound, 1284 ) 1285 1286 return bounded_max_retries 1287 1288 @overload 1289 def create_prompt( 1290 self, 1291 *, 1292 name: str, 1293 prompt: List[ChatMessageDict], 1294 is_active: Optional[bool] = None, # deprecated 1295 labels: List[str] = [], 1296 tags: Optional[List[str]] = None, 1297 type: Optional[Literal["chat"]], 1298 config: Optional[Any] = None, 1299 commit_message: Optional[str] = None, 1300 ) -> ChatPromptClient: ... 1301 1302 @overload 1303 def create_prompt( 1304 self, 1305 *, 1306 name: str, 1307 prompt: str, 1308 is_active: Optional[bool] = None, # deprecated 1309 labels: List[str] = [], 1310 tags: Optional[List[str]] = None, 1311 type: Optional[Literal["text"]] = "text", 1312 config: Optional[Any] = None, 1313 commit_message: Optional[str] = None, 1314 ) -> TextPromptClient: ... 1315 1316 def create_prompt( 1317 self, 1318 *, 1319 name: str, 1320 prompt: Union[str, List[ChatMessageDict]], 1321 is_active: Optional[bool] = None, # deprecated 1322 labels: List[str] = [], 1323 tags: Optional[List[str]] = None, 1324 type: Optional[Literal["chat", "text"]] = "text", 1325 config: Optional[Any] = None, 1326 commit_message: Optional[str] = None, 1327 ) -> PromptClient: 1328 """Create a new prompt in Langfuse. 1329 1330 Keyword Args: 1331 name : The name of the prompt to be created. 1332 prompt : The content of the prompt to be created. 1333 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1334 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1335 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1336 config: Additional structured data to be saved with the prompt. Defaults to None. 1337 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1338 commit_message: Optional string describing the change. 1339 1340 Returns: 1341 TextPromptClient: The prompt if type argument is 'text'. 1342 ChatPromptClient: The prompt if type argument is 'chat'. 1343 """ 1344 try: 1345 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1346 1347 # Handle deprecated is_active flag 1348 if is_active: 1349 self.log.warning( 1350 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1351 ) 1352 1353 labels = labels if "production" in labels else labels + ["production"] 1354 1355 if type == "chat": 1356 if not isinstance(prompt, list): 1357 raise ValueError( 1358 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1359 ) 1360 request = CreatePromptRequest_Chat( 1361 name=name, 1362 prompt=prompt, 1363 labels=labels, 1364 tags=tags, 1365 config=config or {}, 1366 commitMessage=commit_message, 1367 type="chat", 1368 ) 1369 server_prompt = self.client.prompts.create(request=request) 1370 1371 return ChatPromptClient(prompt=server_prompt) 1372 1373 if not isinstance(prompt, str): 1374 raise ValueError("For 'text' type, 'prompt' must be a string.") 1375 1376 request = CreatePromptRequest_Text( 1377 name=name, 1378 prompt=prompt, 1379 labels=labels, 1380 tags=tags, 1381 config=config or {}, 1382 commitMessage=commit_message, 1383 type="text", 1384 ) 1385 1386 server_prompt = self.client.prompts.create(request=request) 1387 return TextPromptClient(prompt=server_prompt) 1388 1389 except Exception as e: 1390 handle_fern_exception(e) 1391 raise e 1392 1393 def update_prompt( 1394 self, 1395 *, 1396 name: str, 1397 version: int, 1398 new_labels: List[str] = [], 1399 ): 1400 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1401 1402 Args: 1403 name (str): The name of the prompt to update. 1404 version (int): The version number of the prompt to update. 1405 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1406 1407 Returns: 1408 Prompt: The updated prompt from the Langfuse API. 1409 1410 """ 1411 updated_prompt = self.client.prompt_version.update( 1412 name=name, 1413 version=version, 1414 new_labels=new_labels, 1415 ) 1416 self.prompt_cache.invalidate(name) 1417 return updated_prompt 1418 1419 def _url_encode(self, url: str) -> str: 1420 return urllib.parse.quote(url) 1421 1422 def trace( 1423 self, 1424 *, 1425 id: typing.Optional[str] = None, 1426 name: typing.Optional[str] = None, 1427 user_id: typing.Optional[str] = None, 1428 session_id: typing.Optional[str] = None, 1429 version: typing.Optional[str] = None, 1430 input: typing.Optional[typing.Any] = None, 1431 output: typing.Optional[typing.Any] = None, 1432 metadata: typing.Optional[typing.Any] = None, 1433 tags: typing.Optional[typing.List[str]] = None, 1434 timestamp: typing.Optional[dt.datetime] = None, 1435 public: typing.Optional[bool] = None, 1436 **kwargs, 1437 ) -> "StatefulTraceClient": 1438 """Create a trace. 1439 1440 Args: 1441 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1442 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1443 input: The input of the trace. Can be any JSON object. 1444 output: The output of the trace. Can be any JSON object. 1445 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1446 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1447 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1448 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1449 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1450 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1451 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1452 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1453 **kwargs: Additional keyword arguments that can be included in the trace. 1454 1455 Returns: 1456 StatefulTraceClient: The created trace. 1457 1458 Example: 1459 ```python 1460 from langfuse import Langfuse 1461 1462 langfuse = Langfuse() 1463 1464 trace = langfuse.trace( 1465 name="example-application", 1466 user_id="user-1234") 1467 ) 1468 ``` 1469 """ 1470 new_id = id or str(uuid.uuid4()) 1471 self.trace_id = new_id 1472 try: 1473 new_dict = { 1474 "id": new_id, 1475 "name": name, 1476 "userId": user_id, 1477 "sessionId": session_id 1478 or kwargs.get("sessionId", None), # backward compatibility 1479 "release": self.release, 1480 "version": version, 1481 "metadata": metadata, 1482 "input": input, 1483 "output": output, 1484 "tags": tags, 1485 "timestamp": timestamp or _get_timestamp(), 1486 "public": public, 1487 "environment": self.environment, 1488 } 1489 if kwargs is not None: 1490 new_dict.update(kwargs) 1491 1492 new_body = TraceBody(**new_dict) 1493 1494 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1495 event = { 1496 "id": str(uuid.uuid4()), 1497 "type": "trace-create", 1498 "body": new_body, 1499 } 1500 1501 self.task_manager.add_task( 1502 event, 1503 ) 1504 1505 except Exception as e: 1506 self.log.exception(e) 1507 finally: 1508 self._log_memory_usage() 1509 1510 return StatefulTraceClient( 1511 self.client, 1512 new_id, 1513 StateType.TRACE, 1514 new_id, 1515 self.task_manager, 1516 self.environment, 1517 ) 1518 1519 def _log_memory_usage(self): 1520 try: 1521 is_malloc_tracing_enabled = bool(int(os.getenv("PYTHONTRACEMALLOC", 0))) 1522 report_interval = int(os.getenv("LANGFUSE_DEBUG_MEMORY_REPORT_INTERVAL", 0)) 1523 top_k_items = int(os.getenv("LANGFUSE_DEBUG_MEMORY_TOP_K", 10)) 1524 1525 if ( 1526 not is_malloc_tracing_enabled 1527 or report_interval <= 0 1528 or round(time.monotonic()) % report_interval != 0 1529 ): 1530 return 1531 1532 snapshot = tracemalloc.take_snapshot().statistics("lineno") 1533 1534 total_memory_usage = sum([stat.size for stat in snapshot]) / 1024 / 1024 1535 memory_usage_total_items = [f"{stat}" for stat in snapshot] 1536 memory_usage_langfuse_items = [ 1537 stat for stat in memory_usage_total_items if "/langfuse/" in stat 1538 ] 1539 1540 logged_memory_usage = { 1541 "all_files": [f"{stat}" for stat in memory_usage_total_items][ 1542 :top_k_items 1543 ], 1544 "langfuse_files": [f"{stat}" for stat in memory_usage_langfuse_items][ 1545 :top_k_items 1546 ], 1547 "total_usage": f"{total_memory_usage:.2f} MB", 1548 "langfuse_queue_length": self.task_manager._ingestion_queue.qsize(), 1549 } 1550 1551 self.log.debug("Memory usage: ", logged_memory_usage) 1552 1553 event = SdkLogBody(log=logged_memory_usage) 1554 self.task_manager.add_task( 1555 { 1556 "id": str(uuid.uuid4()), 1557 "type": "sdk-log", 1558 "timestamp": _get_timestamp(), 1559 "body": event.dict(), 1560 } 1561 ) 1562 1563 except Exception as e: 1564 self.log.exception(e) 1565 1566 @overload 1567 def score( 1568 self, 1569 *, 1570 name: str, 1571 value: float, 1572 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1573 trace_id: typing.Optional[str] = None, 1574 id: typing.Optional[str] = None, 1575 comment: typing.Optional[str] = None, 1576 observation_id: typing.Optional[str] = None, 1577 config_id: typing.Optional[str] = None, 1578 **kwargs, 1579 ) -> "StatefulClient": ... 1580 1581 @overload 1582 def score( 1583 self, 1584 *, 1585 name: str, 1586 value: str, 1587 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1588 trace_id: typing.Optional[str] = None, 1589 id: typing.Optional[str] = None, 1590 comment: typing.Optional[str] = None, 1591 observation_id: typing.Optional[str] = None, 1592 config_id: typing.Optional[str] = None, 1593 **kwargs, 1594 ) -> "StatefulClient": ... 1595 1596 def score( 1597 self, 1598 *, 1599 name: str, 1600 value: typing.Union[float, str], 1601 data_type: typing.Optional[ScoreDataType] = None, 1602 trace_id: typing.Optional[str] = None, 1603 id: typing.Optional[str] = None, 1604 comment: typing.Optional[str] = None, 1605 observation_id: typing.Optional[str] = None, 1606 config_id: typing.Optional[str] = None, 1607 **kwargs, 1608 ) -> "StatefulClient": 1609 """Create a score attached to a trace (and optionally an observation). 1610 1611 Args: 1612 name (str): Identifier of the score. 1613 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1614 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1615 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1616 trace_id (str): The id of the trace to which the score should be attached. 1617 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1618 comment (Optional[str]): Additional context/explanation of the score. 1619 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1620 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1621 **kwargs: Additional keyword arguments to include in the score. 1622 1623 Returns: 1624 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1625 1626 Example: 1627 ```python 1628 from langfuse import Langfuse 1629 1630 langfuse = Langfuse() 1631 1632 # Create a trace 1633 trace = langfuse.trace(name="example-application") 1634 1635 # Get id of created trace 1636 trace_id = trace.id 1637 1638 # Add score to the trace 1639 trace = langfuse.score( 1640 trace_id=trace_id, 1641 name="user-explicit-feedback", 1642 value=0.9, 1643 comment="I like how personalized the response is" 1644 ) 1645 ``` 1646 """ 1647 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1648 new_id = id or str(uuid.uuid4()) 1649 try: 1650 new_dict = { 1651 "id": new_id, 1652 "trace_id": trace_id, 1653 "observation_id": observation_id, 1654 "name": name, 1655 "value": value, 1656 "data_type": data_type, 1657 "comment": comment, 1658 "config_id": config_id, 1659 "environment": self.environment, 1660 **kwargs, 1661 } 1662 1663 self.log.debug(f"Creating score {new_dict}...") 1664 new_body = ScoreBody(**new_dict) 1665 1666 event = { 1667 "id": str(uuid.uuid4()), 1668 "type": "score-create", 1669 "body": new_body, 1670 } 1671 self.task_manager.add_task(event) 1672 1673 except Exception as e: 1674 self.log.exception(e) 1675 finally: 1676 if observation_id is not None: 1677 return StatefulClient( 1678 self.client, 1679 observation_id, 1680 StateType.OBSERVATION, 1681 trace_id, 1682 self.task_manager, 1683 self.environment, 1684 ) 1685 else: 1686 return StatefulClient( 1687 self.client, 1688 new_id, 1689 StateType.TRACE, 1690 new_id, 1691 self.task_manager, 1692 self.environment, 1693 ) 1694 1695 def span( 1696 self, 1697 *, 1698 id: typing.Optional[str] = None, 1699 trace_id: typing.Optional[str] = None, 1700 parent_observation_id: typing.Optional[str] = None, 1701 name: typing.Optional[str] = None, 1702 start_time: typing.Optional[dt.datetime] = None, 1703 end_time: typing.Optional[dt.datetime] = None, 1704 metadata: typing.Optional[typing.Any] = None, 1705 level: typing.Optional[SpanLevel] = None, 1706 status_message: typing.Optional[str] = None, 1707 input: typing.Optional[typing.Any] = None, 1708 output: typing.Optional[typing.Any] = None, 1709 version: typing.Optional[str] = None, 1710 **kwargs, 1711 ) -> "StatefulSpanClient": 1712 """Create a span. 1713 1714 A span represents durations of units of work in a trace. 1715 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1716 1717 If no trace_id is provided, a new trace is created just for this span. 1718 1719 Args: 1720 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1721 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1722 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1723 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1724 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1725 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1726 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1727 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1728 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1729 input (Optional[dict]): The input to the span. Can be any JSON object. 1730 output (Optional[dict]): The output to the span. Can be any JSON object. 1731 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1732 **kwargs: Additional keyword arguments to include in the span. 1733 1734 Returns: 1735 StatefulSpanClient: The created span. 1736 1737 Example: 1738 ```python 1739 from langfuse import Langfuse 1740 1741 langfuse = Langfuse() 1742 1743 trace = langfuse.trace(name = "llm-feature") 1744 1745 # Create a span 1746 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1747 1748 # Create a nested span 1749 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1750 ``` 1751 """ 1752 new_span_id = id or str(uuid.uuid4()) 1753 new_trace_id = trace_id or str(uuid.uuid4()) 1754 self.trace_id = new_trace_id 1755 try: 1756 span_body = { 1757 "id": new_span_id, 1758 "trace_id": new_trace_id, 1759 "name": name, 1760 "start_time": start_time or _get_timestamp(), 1761 "metadata": metadata, 1762 "input": input, 1763 "output": output, 1764 "level": level, 1765 "status_message": status_message, 1766 "parent_observation_id": parent_observation_id, 1767 "version": version, 1768 "end_time": end_time, 1769 "trace": {"release": self.release}, 1770 "environment": self.environment, 1771 **kwargs, 1772 } 1773 1774 if trace_id is None: 1775 self._generate_trace(new_trace_id, name or new_trace_id) 1776 1777 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1778 1779 span_body = CreateSpanBody(**span_body) 1780 1781 event = { 1782 "id": str(uuid.uuid4()), 1783 "type": "span-create", 1784 "body": span_body, 1785 } 1786 1787 self.task_manager.add_task(event) 1788 1789 except Exception as e: 1790 self.log.exception(e) 1791 finally: 1792 self._log_memory_usage() 1793 1794 return StatefulSpanClient( 1795 self.client, 1796 new_span_id, 1797 StateType.OBSERVATION, 1798 new_trace_id, 1799 self.task_manager, 1800 self.environment, 1801 ) 1802 1803 def event( 1804 self, 1805 *, 1806 id: typing.Optional[str] = None, 1807 trace_id: typing.Optional[str] = None, 1808 parent_observation_id: typing.Optional[str] = None, 1809 name: typing.Optional[str] = None, 1810 start_time: typing.Optional[dt.datetime] = None, 1811 metadata: typing.Optional[typing.Any] = None, 1812 input: typing.Optional[typing.Any] = None, 1813 output: typing.Optional[typing.Any] = None, 1814 level: typing.Optional[SpanLevel] = None, 1815 status_message: typing.Optional[str] = None, 1816 version: typing.Optional[str] = None, 1817 **kwargs, 1818 ) -> "StatefulSpanClient": 1819 """Create an event. 1820 1821 An event represents a discrete event in a trace. 1822 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1823 1824 If no trace_id is provided, a new trace is created just for this event. 1825 1826 Args: 1827 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1828 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1829 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1830 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1831 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1832 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1833 input (Optional[Any]): The input to the event. Can be any JSON object. 1834 output (Optional[Any]): The output to the event. Can be any JSON object. 1835 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1836 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1837 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1838 **kwargs: Additional keyword arguments to include in the event. 1839 1840 Returns: 1841 StatefulSpanClient: The created event. 1842 1843 Example: 1844 ```python 1845 from langfuse import Langfuse 1846 1847 langfuse = Langfuse() 1848 1849 trace = langfuse.trace(name = "llm-feature") 1850 1851 # Create an event 1852 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1853 ``` 1854 """ 1855 event_id = id or str(uuid.uuid4()) 1856 new_trace_id = trace_id or str(uuid.uuid4()) 1857 self.trace_id = new_trace_id 1858 try: 1859 event_body = { 1860 "id": event_id, 1861 "trace_id": new_trace_id, 1862 "name": name, 1863 "start_time": start_time or _get_timestamp(), 1864 "metadata": metadata, 1865 "input": input, 1866 "output": output, 1867 "level": level, 1868 "status_message": status_message, 1869 "parent_observation_id": parent_observation_id, 1870 "version": version, 1871 "trace": {"release": self.release}, 1872 "environment": self.environment, 1873 **kwargs, 1874 } 1875 1876 if trace_id is None: 1877 self._generate_trace(new_trace_id, name or new_trace_id) 1878 1879 request = CreateEventBody(**event_body) 1880 1881 event = { 1882 "id": str(uuid.uuid4()), 1883 "type": "event-create", 1884 "body": request, 1885 } 1886 1887 self.log.debug( 1888 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1889 ) 1890 self.task_manager.add_task(event) 1891 1892 except Exception as e: 1893 self.log.exception(e) 1894 finally: 1895 return StatefulSpanClient( 1896 self.client, 1897 event_id, 1898 StateType.OBSERVATION, 1899 new_trace_id, 1900 self.task_manager, 1901 self.environment, 1902 ) 1903 1904 def generation( 1905 self, 1906 *, 1907 id: typing.Optional[str] = None, 1908 trace_id: typing.Optional[str] = None, 1909 parent_observation_id: typing.Optional[str] = None, 1910 name: typing.Optional[str] = None, 1911 start_time: typing.Optional[dt.datetime] = None, 1912 end_time: typing.Optional[dt.datetime] = None, 1913 completion_start_time: typing.Optional[dt.datetime] = None, 1914 metadata: typing.Optional[typing.Any] = None, 1915 level: typing.Optional[SpanLevel] = None, 1916 status_message: typing.Optional[str] = None, 1917 version: typing.Optional[str] = None, 1918 model: typing.Optional[str] = None, 1919 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1920 input: typing.Optional[typing.Any] = None, 1921 output: typing.Optional[typing.Any] = None, 1922 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1923 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1924 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1925 prompt: typing.Optional[PromptClient] = None, 1926 **kwargs, 1927 ) -> "StatefulGenerationClient": 1928 """Create a generation. 1929 1930 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1931 1932 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1933 1934 If no trace_id is provided, a new trace is created just for this generation. 1935 1936 Args: 1937 id (Optional[str]): The id of the generation can be set, defaults to random id. 1938 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1939 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1940 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1941 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1942 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1943 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1944 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1945 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1946 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1947 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1948 model (Optional[str]): The name of the model used for the generation. 1949 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1950 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1951 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1952 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1953 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1954 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1955 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1956 **kwargs: Additional keyword arguments to include in the generation. 1957 1958 Returns: 1959 StatefulGenerationClient: The created generation. 1960 1961 Example: 1962 ```python 1963 from langfuse import Langfuse 1964 1965 langfuse = Langfuse() 1966 1967 # Create a generation in Langfuse 1968 generation = langfuse.generation( 1969 name="summary-generation", 1970 model="gpt-3.5-turbo", 1971 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1972 input=[{"role": "system", "content": "You are a helpful assistant."}, 1973 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1974 metadata={"interface": "whatsapp"} 1975 ) 1976 ``` 1977 """ 1978 new_trace_id = trace_id or str(uuid.uuid4()) 1979 new_generation_id = id or str(uuid.uuid4()) 1980 self.trace_id = new_trace_id 1981 try: 1982 generation_body = { 1983 "id": new_generation_id, 1984 "trace_id": new_trace_id, 1985 "release": self.release, 1986 "name": name, 1987 "start_time": start_time or _get_timestamp(), 1988 "metadata": metadata, 1989 "input": input, 1990 "output": output, 1991 "level": level, 1992 "status_message": status_message, 1993 "parent_observation_id": parent_observation_id, 1994 "version": version, 1995 "end_time": end_time, 1996 "completion_start_time": completion_start_time, 1997 "model": model, 1998 "model_parameters": model_parameters, 1999 "usage": _convert_usage_input(usage) if usage is not None else None, 2000 "usage_details": usage_details, 2001 "cost_details": cost_details, 2002 "trace": {"release": self.release}, 2003 "environment": self.environment, 2004 **_create_prompt_context(prompt), 2005 **kwargs, 2006 } 2007 2008 if trace_id is None: 2009 trace = { 2010 "id": new_trace_id, 2011 "release": self.release, 2012 "name": name, 2013 "environment": self.environment, 2014 } 2015 request = TraceBody(**trace) 2016 2017 event = { 2018 "id": str(uuid.uuid4()), 2019 "type": "trace-create", 2020 "body": request, 2021 } 2022 2023 self.log.debug("Creating trace...") 2024 2025 self.task_manager.add_task(event) 2026 2027 self.log.debug( 2028 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2029 ) 2030 request = CreateGenerationBody(**generation_body) 2031 2032 event = { 2033 "id": str(uuid.uuid4()), 2034 "type": "generation-create", 2035 "body": request, 2036 } 2037 2038 self.task_manager.add_task(event) 2039 2040 except Exception as e: 2041 self.log.exception(e) 2042 finally: 2043 return StatefulGenerationClient( 2044 self.client, 2045 new_generation_id, 2046 StateType.OBSERVATION, 2047 new_trace_id, 2048 self.task_manager, 2049 self.environment, 2050 ) 2051 2052 def _generate_trace(self, trace_id: str, name: str): 2053 trace_dict = { 2054 "id": trace_id, 2055 "release": self.release, 2056 "name": name, 2057 "environment": self.environment, 2058 } 2059 2060 trace_body = TraceBody(**trace_dict) 2061 2062 event = { 2063 "id": str(uuid.uuid4()), 2064 "type": "trace-create", 2065 "body": trace_body, 2066 } 2067 2068 self.log.debug(f"Creating trace {_filter_io_from_event_body(trace_dict)}...") 2069 self.task_manager.add_task(event) 2070 2071 def join(self): 2072 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2073 2074 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2075 To guarantee all messages have been delivered, you still need to call flush(). 2076 """ 2077 try: 2078 return self.task_manager.join() 2079 except Exception as e: 2080 self.log.exception(e) 2081 2082 def flush(self): 2083 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2084 2085 Example: 2086 ```python 2087 from langfuse import Langfuse 2088 2089 langfuse = Langfuse() 2090 2091 # Some operations with Langfuse 2092 2093 # Flushing all events to end Langfuse cleanly 2094 langfuse.flush() 2095 ``` 2096 """ 2097 try: 2098 return self.task_manager.flush() 2099 except Exception as e: 2100 self.log.exception(e) 2101 2102 def shutdown(self): 2103 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2104 2105 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2106 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2107 """ 2108 try: 2109 self.prompt_cache._task_manager.shutdown() 2110 2111 # In logging.py, a handler is attached to the httpx logger. 2112 # To avoid a memory leak on singleton reset, remove all handlers 2113 httpx_logger = logging.getLogger("httpx") 2114 for handler in httpx_logger.handlers: 2115 httpx_logger.removeHandler(handler) 2116 2117 return self.task_manager.shutdown() 2118 except Exception as e: 2119 self.log.exception(e) 2120 2121 2122class StateType(Enum): 2123 """Enum to distinguish observation and trace states. 2124 2125 Attributes: 2126 OBSERVATION (int): Observation state. 2127 TRACE (int): Trace state. 2128 """ 2129 2130 OBSERVATION = 1 2131 TRACE = 0 2132 2133 2134class StatefulClient(object): 2135 """Base class for handling stateful operations in the Langfuse system. 2136 2137 This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, 2138 associating them with either an observation or a trace based on the specified state type. 2139 2140 Attributes: 2141 client (FernLangfuse): Core interface for Langfuse API interactions. 2142 id (str): Unique identifier of the stateful client (either observation or trace). 2143 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2144 trace_id (str): Id of the trace associated with the stateful client. 2145 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2146 environment (Optional(str)): The tracing environment. 2147 """ 2148 2149 log = logging.getLogger("langfuse") 2150 2151 def __init__( 2152 self, 2153 client: FernLangfuse, 2154 id: str, 2155 state_type: StateType, 2156 trace_id: str, 2157 task_manager: TaskManager, 2158 environment: Optional[str] = None, 2159 ): 2160 """Initialize the StatefulClient. 2161 2162 Args: 2163 client (FernLangfuse): Core interface for Langfuse API interactions. 2164 id (str): Unique identifier of the stateful client (either observation or trace). 2165 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2166 trace_id (str): Id of the trace associated with the stateful client. 2167 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2168 """ 2169 self.client = client 2170 self.trace_id = trace_id 2171 self.id = id 2172 self.state_type = state_type 2173 self.task_manager = task_manager 2174 2175 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2176 2177 if self.environment and not bool( 2178 re.match(ENVIRONMENT_PATTERN, self.environment) 2179 ): 2180 self.log.warning( 2181 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2182 ) 2183 2184 def _add_state_to_event(self, body: dict): 2185 if self.state_type == StateType.OBSERVATION: 2186 body["parent_observation_id"] = self.id 2187 body["trace_id"] = self.trace_id 2188 else: 2189 body["trace_id"] = self.id 2190 return body 2191 2192 def _add_default_values(self, body: dict): 2193 if body.get("start_time") is None: 2194 body["start_time"] = _get_timestamp() 2195 return body 2196 2197 def generation( 2198 self, 2199 *, 2200 id: typing.Optional[str] = None, 2201 name: typing.Optional[str] = None, 2202 start_time: typing.Optional[dt.datetime] = None, 2203 end_time: typing.Optional[dt.datetime] = None, 2204 metadata: typing.Optional[typing.Any] = None, 2205 level: typing.Optional[SpanLevel] = None, 2206 status_message: typing.Optional[str] = None, 2207 version: typing.Optional[str] = None, 2208 completion_start_time: typing.Optional[dt.datetime] = None, 2209 model: typing.Optional[str] = None, 2210 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2211 input: typing.Optional[typing.Any] = None, 2212 output: typing.Optional[typing.Any] = None, 2213 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2214 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2215 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2216 prompt: typing.Optional[PromptClient] = None, 2217 **kwargs, 2218 ) -> "StatefulGenerationClient": 2219 """Create a generation nested within the current observation or trace. 2220 2221 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2222 2223 Args: 2224 id (Optional[str]): The id of the generation can be set, defaults to random id. 2225 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2226 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2227 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2228 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2229 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2230 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2231 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2232 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2233 model (Optional[str]): The name of the model used for the generation. 2234 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2235 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2236 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2237 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2238 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2239 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2240 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2241 **kwargs: Additional keyword arguments to include in the generation. 2242 2243 Returns: 2244 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2245 2246 Example: 2247 ```python 2248 from langfuse import Langfuse 2249 2250 langfuse = Langfuse() 2251 2252 # Create a trace 2253 trace = langfuse.trace(name = "llm-feature") 2254 2255 # Create a nested generation in Langfuse 2256 generation = trace.generation( 2257 name="summary-generation", 2258 model="gpt-3.5-turbo", 2259 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2260 input=[{"role": "system", "content": "You are a helpful assistant."}, 2261 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2262 metadata={"interface": "whatsapp"} 2263 ) 2264 ``` 2265 """ 2266 generation_id = id or str(uuid.uuid4()) 2267 try: 2268 generation_body = { 2269 "id": generation_id, 2270 "name": name, 2271 "start_time": start_time or _get_timestamp(), 2272 "metadata": metadata, 2273 "level": level, 2274 "status_message": status_message, 2275 "version": version, 2276 "end_time": end_time, 2277 "completion_start_time": completion_start_time, 2278 "model": model, 2279 "model_parameters": model_parameters, 2280 "input": input, 2281 "output": output, 2282 "usage": _convert_usage_input(usage) if usage is not None else None, 2283 "usage_details": usage_details, 2284 "cost_details": cost_details, 2285 "environment": self.environment, 2286 **_create_prompt_context(prompt), 2287 **kwargs, 2288 } 2289 2290 generation_body = self._add_state_to_event(generation_body) 2291 new_body = self._add_default_values(generation_body) 2292 2293 new_body = CreateGenerationBody(**new_body) 2294 2295 event = { 2296 "id": str(uuid.uuid4()), 2297 "type": "generation-create", 2298 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2299 } 2300 2301 self.log.debug( 2302 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2303 ) 2304 self.task_manager.add_task(event) 2305 2306 except Exception as e: 2307 self.log.exception(e) 2308 finally: 2309 return StatefulGenerationClient( 2310 self.client, 2311 generation_id, 2312 StateType.OBSERVATION, 2313 self.trace_id, 2314 self.task_manager, 2315 self.environment, 2316 ) 2317 2318 def span( 2319 self, 2320 *, 2321 id: typing.Optional[str] = None, 2322 name: typing.Optional[str] = None, 2323 start_time: typing.Optional[dt.datetime] = None, 2324 end_time: typing.Optional[dt.datetime] = None, 2325 metadata: typing.Optional[typing.Any] = None, 2326 input: typing.Optional[typing.Any] = None, 2327 output: typing.Optional[typing.Any] = None, 2328 level: typing.Optional[SpanLevel] = None, 2329 status_message: typing.Optional[str] = None, 2330 version: typing.Optional[str] = None, 2331 **kwargs, 2332 ) -> "StatefulSpanClient": 2333 """Create a span nested within the current observation or trace. 2334 2335 A span represents durations of units of work in a trace. 2336 2337 Args: 2338 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2339 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2340 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2341 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2342 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2343 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2344 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2345 input (Optional[dict]): The input to the span. Can be any JSON object. 2346 output (Optional[dict]): The output to the span. Can be any JSON object. 2347 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2348 **kwargs: Additional keyword arguments to include in the span. 2349 2350 Returns: 2351 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2352 2353 Example: 2354 ```python 2355 from langfuse import Langfuse 2356 2357 langfuse = Langfuse() 2358 2359 # Create a trace 2360 trace = langfuse.trace(name = "llm-feature") 2361 2362 # Create a span 2363 retrieval = langfuse.span(name = "retrieval") 2364 ``` 2365 """ 2366 span_id = id or str(uuid.uuid4()) 2367 try: 2368 span_body = { 2369 "id": span_id, 2370 "name": name, 2371 "start_time": start_time or _get_timestamp(), 2372 "metadata": metadata, 2373 "input": input, 2374 "output": output, 2375 "level": level, 2376 "status_message": status_message, 2377 "version": version, 2378 "end_time": end_time, 2379 "environment": self.environment, 2380 **kwargs, 2381 } 2382 2383 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2384 2385 new_dict = self._add_state_to_event(span_body) 2386 new_body = self._add_default_values(new_dict) 2387 2388 event = CreateSpanBody(**new_body) 2389 2390 event = { 2391 "id": str(uuid.uuid4()), 2392 "type": "span-create", 2393 "body": event, 2394 } 2395 2396 self.task_manager.add_task(event) 2397 except Exception as e: 2398 self.log.exception(e) 2399 finally: 2400 return StatefulSpanClient( 2401 self.client, 2402 span_id, 2403 StateType.OBSERVATION, 2404 self.trace_id, 2405 self.task_manager, 2406 self.environment, 2407 ) 2408 2409 @overload 2410 def score( 2411 self, 2412 *, 2413 id: typing.Optional[str] = None, 2414 name: str, 2415 value: float, 2416 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2417 comment: typing.Optional[str] = None, 2418 config_id: typing.Optional[str] = None, 2419 **kwargs, 2420 ) -> "StatefulClient": ... 2421 2422 @overload 2423 def score( 2424 self, 2425 *, 2426 id: typing.Optional[str] = None, 2427 name: str, 2428 value: str, 2429 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2430 comment: typing.Optional[str] = None, 2431 config_id: typing.Optional[str] = None, 2432 **kwargs, 2433 ) -> "StatefulClient": ... 2434 2435 def score( 2436 self, 2437 *, 2438 id: typing.Optional[str] = None, 2439 name: str, 2440 value: typing.Union[float, str], 2441 data_type: typing.Optional[ScoreDataType] = None, 2442 comment: typing.Optional[str] = None, 2443 config_id: typing.Optional[str] = None, 2444 **kwargs, 2445 ) -> "StatefulClient": 2446 """Create a score attached for the current observation or trace. 2447 2448 Args: 2449 name (str): Identifier of the score. 2450 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2451 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2452 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2453 comment (Optional[str]): Additional context/explanation of the score. 2454 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2455 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2456 **kwargs: Additional keyword arguments to include in the score. 2457 2458 Returns: 2459 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2460 2461 Example: 2462 ```python 2463 from langfuse import Langfuse 2464 2465 langfuse = Langfuse() 2466 2467 # Create a trace 2468 trace = langfuse.trace(name="example-application") 2469 2470 # Add score to the trace 2471 trace = trace.score( 2472 name="user-explicit-feedback", 2473 value=0.8, 2474 comment="I like how personalized the response is" 2475 ) 2476 ``` 2477 """ 2478 score_id = id or str(uuid.uuid4()) 2479 try: 2480 new_score = { 2481 "id": score_id, 2482 "trace_id": self.trace_id, 2483 "name": name, 2484 "value": value, 2485 "data_type": data_type, 2486 "comment": comment, 2487 "config_id": config_id, 2488 "environment": self.environment, 2489 **kwargs, 2490 } 2491 2492 self.log.debug(f"Creating score {new_score}...") 2493 2494 new_dict = self._add_state_to_event(new_score) 2495 2496 if self.state_type == StateType.OBSERVATION: 2497 new_dict["observationId"] = self.id 2498 2499 request = ScoreBody(**new_dict) 2500 2501 event = { 2502 "id": str(uuid.uuid4()), 2503 "type": "score-create", 2504 "body": request, 2505 } 2506 2507 self.task_manager.add_task(event) 2508 2509 except Exception as e: 2510 self.log.exception(e) 2511 finally: 2512 return StatefulClient( 2513 self.client, 2514 self.id, 2515 self.state_type, 2516 self.trace_id, 2517 self.task_manager, 2518 self.environment, 2519 ) 2520 2521 def event( 2522 self, 2523 *, 2524 id: typing.Optional[str] = None, 2525 name: typing.Optional[str] = None, 2526 start_time: typing.Optional[dt.datetime] = None, 2527 metadata: typing.Optional[typing.Any] = None, 2528 input: typing.Optional[typing.Any] = None, 2529 output: typing.Optional[typing.Any] = None, 2530 level: typing.Optional[SpanLevel] = None, 2531 status_message: typing.Optional[str] = None, 2532 version: typing.Optional[str] = None, 2533 **kwargs, 2534 ) -> "StatefulClient": 2535 """Create an event nested within the current observation or trace. 2536 2537 An event represents a discrete event in a trace. 2538 2539 Args: 2540 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2541 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2542 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2543 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2544 input (Optional[Any]): The input to the event. Can be any JSON object. 2545 output (Optional[Any]): The output to the event. Can be any JSON object. 2546 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2547 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2548 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2549 **kwargs: Additional keyword arguments to include in the event. 2550 2551 Returns: 2552 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2553 2554 Example: 2555 ```python 2556 from langfuse import Langfuse 2557 2558 langfuse = Langfuse() 2559 2560 # Create a trace 2561 trace = langfuse.trace(name = "llm-feature") 2562 2563 # Create an event 2564 retrieval = trace.event(name = "retrieval") 2565 ``` 2566 """ 2567 event_id = id or str(uuid.uuid4()) 2568 try: 2569 event_body = { 2570 "id": event_id, 2571 "name": name, 2572 "start_time": start_time or _get_timestamp(), 2573 "metadata": metadata, 2574 "input": input, 2575 "output": output, 2576 "level": level, 2577 "status_message": status_message, 2578 "version": version, 2579 "environment": self.environment, 2580 **kwargs, 2581 } 2582 2583 new_dict = self._add_state_to_event(event_body) 2584 new_body = self._add_default_values(new_dict) 2585 2586 request = CreateEventBody(**new_body) 2587 2588 event = { 2589 "id": str(uuid.uuid4()), 2590 "type": "event-create", 2591 "body": request, 2592 } 2593 2594 self.log.debug( 2595 f"Creating event {_filter_io_from_event_body(event_body)}..." 2596 ) 2597 self.task_manager.add_task(event) 2598 2599 except Exception as e: 2600 self.log.exception(e) 2601 finally: 2602 return StatefulClient( 2603 self.client, 2604 event_id, 2605 StateType.OBSERVATION, 2606 self.trace_id, 2607 self.task_manager, 2608 self.environment, 2609 ) 2610 2611 def get_trace_url(self): 2612 """Get the URL to see the current trace in the Langfuse UI.""" 2613 return f"{self.client._client_wrapper._base_url}/trace/{self.trace_id}" 2614 2615 2616class StatefulGenerationClient(StatefulClient): 2617 """Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient. 2618 2619 This client extends the capabilities of the StatefulClient to specifically handle generation, 2620 allowing for the creation, update, and termination of generation processes in Langfuse. 2621 2622 Attributes: 2623 client (FernLangfuse): Core interface for Langfuse API interaction. 2624 id (str): Unique identifier of the generation. 2625 state_type (StateType): Type of the stateful entity (observation or trace). 2626 trace_id (str): Id of trace associated with the generation. 2627 task_manager (TaskManager): Manager for handling asynchronous tasks. 2628 """ 2629 2630 log = logging.getLogger("langfuse") 2631 2632 def __init__( 2633 self, 2634 client: FernLangfuse, 2635 id: str, 2636 state_type: StateType, 2637 trace_id: str, 2638 task_manager: TaskManager, 2639 environment: Optional[str] = None, 2640 ): 2641 """Initialize the StatefulGenerationClient.""" 2642 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2643 2644 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2645 def update( 2646 self, 2647 *, 2648 name: typing.Optional[str] = None, 2649 start_time: typing.Optional[dt.datetime] = None, 2650 end_time: typing.Optional[dt.datetime] = None, 2651 completion_start_time: typing.Optional[dt.datetime] = None, 2652 metadata: typing.Optional[typing.Any] = None, 2653 level: typing.Optional[SpanLevel] = None, 2654 status_message: typing.Optional[str] = None, 2655 version: typing.Optional[str] = None, 2656 model: typing.Optional[str] = None, 2657 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2658 input: typing.Optional[typing.Any] = None, 2659 output: typing.Optional[typing.Any] = None, 2660 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2661 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2662 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2663 prompt: typing.Optional[PromptClient] = None, 2664 **kwargs, 2665 ) -> "StatefulGenerationClient": 2666 """Update the generation. 2667 2668 Args: 2669 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2670 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2671 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2672 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2673 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2674 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2675 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2676 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2677 model (Optional[str]): The name of the model used for the generation. 2678 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2679 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2680 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2681 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2682 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2683 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2684 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2685 **kwargs: Additional keyword arguments to include in the generation. 2686 2687 Returns: 2688 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2689 2690 Example: 2691 ```python 2692 from langfuse import Langfuse 2693 2694 langfuse = Langfuse() 2695 2696 # Create a trace 2697 trace = langfuse.trace(name = "llm-feature") 2698 2699 # Create a nested generation in Langfuse 2700 generation = trace.generation(name="summary-generation") 2701 2702 # Update the generation 2703 generation = generation.update(metadata={"interface": "whatsapp"}) 2704 ``` 2705 """ 2706 try: 2707 generation_body = { 2708 "id": self.id, 2709 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2710 "name": name, 2711 "start_time": start_time, 2712 "metadata": metadata, 2713 "level": level, 2714 "status_message": status_message, 2715 "version": version, 2716 "end_time": end_time, 2717 "completion_start_time": completion_start_time, 2718 "model": model, 2719 "model_parameters": model_parameters, 2720 "input": input, 2721 "output": output, 2722 "usage": _convert_usage_input(usage) if usage is not None else None, 2723 "usage_details": usage_details, 2724 "cost_details": cost_details, 2725 **_create_prompt_context(prompt), 2726 **kwargs, 2727 } 2728 2729 self.log.debug( 2730 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2731 ) 2732 2733 request = UpdateGenerationBody(**generation_body) 2734 2735 event = { 2736 "id": str(uuid.uuid4()), 2737 "type": "generation-update", 2738 "body": request.dict(exclude_none=True, exclude_unset=False), 2739 } 2740 2741 self.log.debug( 2742 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2743 ) 2744 self.task_manager.add_task(event) 2745 2746 except Exception as e: 2747 self.log.exception(e) 2748 finally: 2749 return StatefulGenerationClient( 2750 self.client, 2751 self.id, 2752 StateType.OBSERVATION, 2753 self.trace_id, 2754 self.task_manager, 2755 self.environment, 2756 ) 2757 2758 def end( 2759 self, 2760 *, 2761 name: typing.Optional[str] = None, 2762 start_time: typing.Optional[dt.datetime] = None, 2763 end_time: typing.Optional[dt.datetime] = None, 2764 completion_start_time: typing.Optional[dt.datetime] = None, 2765 metadata: typing.Optional[typing.Any] = None, 2766 level: typing.Optional[SpanLevel] = None, 2767 status_message: typing.Optional[str] = None, 2768 version: typing.Optional[str] = None, 2769 model: typing.Optional[str] = None, 2770 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2771 input: typing.Optional[typing.Any] = None, 2772 output: typing.Optional[typing.Any] = None, 2773 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2774 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2775 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2776 prompt: typing.Optional[PromptClient] = None, 2777 **kwargs, 2778 ) -> "StatefulGenerationClient": 2779 """End the generation, optionally updating its properties. 2780 2781 Args: 2782 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2783 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2784 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2785 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2786 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2787 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2788 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2789 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2790 model (Optional[str]): The name of the model used for the generation. 2791 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2792 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2793 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2794 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2795 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2796 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2797 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2798 **kwargs: Additional keyword arguments to include in the generation. 2799 2800 Returns: 2801 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2802 2803 Example: 2804 ```python 2805 from langfuse import Langfuse 2806 2807 langfuse = Langfuse() 2808 2809 # Create a trace 2810 trace = langfuse.trace(name = "llm-feature") 2811 2812 # Create a nested generation in Langfuse 2813 generation = trace.generation(name="summary-generation") 2814 2815 # End the generation and update its properties 2816 generation = generation.end(metadata={"interface": "whatsapp"}) 2817 ``` 2818 """ 2819 return self.update( 2820 name=name, 2821 start_time=start_time, 2822 end_time=end_time or _get_timestamp(), 2823 metadata=metadata, 2824 level=level, 2825 status_message=status_message, 2826 version=version, 2827 completion_start_time=completion_start_time, 2828 model=model, 2829 model_parameters=model_parameters, 2830 input=input, 2831 output=output, 2832 usage=usage, 2833 usage_details=usage_details, 2834 cost_details=cost_details, 2835 prompt=prompt, 2836 **kwargs, 2837 ) 2838 2839 2840class StatefulSpanClient(StatefulClient): 2841 """Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient. 2842 2843 Attributes: 2844 client (FernLangfuse): Core interface for Langfuse API interaction. 2845 id (str): Unique identifier of the span. 2846 state_type (StateType): Type of the stateful entity (observation or trace). 2847 trace_id (str): Id of trace associated with the span. 2848 task_manager (TaskManager): Manager for handling asynchronous tasks. 2849 """ 2850 2851 log = logging.getLogger("langfuse") 2852 2853 def __init__( 2854 self, 2855 client: FernLangfuse, 2856 id: str, 2857 state_type: StateType, 2858 trace_id: str, 2859 task_manager: TaskManager, 2860 environment: Optional[str] = None, 2861 ): 2862 """Initialize the StatefulSpanClient.""" 2863 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2864 2865 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2866 def update( 2867 self, 2868 *, 2869 name: typing.Optional[str] = None, 2870 start_time: typing.Optional[dt.datetime] = None, 2871 end_time: typing.Optional[dt.datetime] = None, 2872 metadata: typing.Optional[typing.Any] = None, 2873 input: typing.Optional[typing.Any] = None, 2874 output: typing.Optional[typing.Any] = None, 2875 level: typing.Optional[SpanLevel] = None, 2876 status_message: typing.Optional[str] = None, 2877 version: typing.Optional[str] = None, 2878 **kwargs, 2879 ) -> "StatefulSpanClient": 2880 """Update the span. 2881 2882 Args: 2883 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2884 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2885 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2886 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2887 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2888 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2889 input (Optional[dict]): The input to the span. Can be any JSON object. 2890 output (Optional[dict]): The output to the span. Can be any JSON object. 2891 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2892 **kwargs: Additional keyword arguments to include in the span. 2893 2894 Returns: 2895 StatefulSpanClient: The updated span. Passthrough for chaining. 2896 2897 Example: 2898 ```python 2899 from langfuse import Langfuse 2900 2901 langfuse = Langfuse() 2902 2903 # Create a trace 2904 trace = langfuse.trace(name = "llm-feature") 2905 2906 # Create a nested span in Langfuse 2907 span = trace.span(name="retrieval") 2908 2909 # Update the span 2910 span = span.update(metadata={"interface": "whatsapp"}) 2911 ``` 2912 """ 2913 try: 2914 span_body = { 2915 "id": self.id, 2916 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2917 "name": name, 2918 "start_time": start_time, 2919 "metadata": metadata, 2920 "input": input, 2921 "output": output, 2922 "level": level, 2923 "status_message": status_message, 2924 "version": version, 2925 "end_time": end_time, 2926 **kwargs, 2927 } 2928 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2929 2930 request = UpdateSpanBody(**span_body) 2931 2932 event = { 2933 "id": str(uuid.uuid4()), 2934 "type": "span-update", 2935 "body": request, 2936 } 2937 2938 self.task_manager.add_task(event) 2939 except Exception as e: 2940 self.log.exception(e) 2941 finally: 2942 return StatefulSpanClient( 2943 self.client, 2944 self.id, 2945 StateType.OBSERVATION, 2946 self.trace_id, 2947 self.task_manager, 2948 self.environment, 2949 ) 2950 2951 def end( 2952 self, 2953 *, 2954 name: typing.Optional[str] = None, 2955 start_time: typing.Optional[dt.datetime] = None, 2956 end_time: typing.Optional[dt.datetime] = None, 2957 metadata: typing.Optional[typing.Any] = None, 2958 input: typing.Optional[typing.Any] = None, 2959 output: typing.Optional[typing.Any] = None, 2960 level: typing.Optional[SpanLevel] = None, 2961 status_message: typing.Optional[str] = None, 2962 version: typing.Optional[str] = None, 2963 **kwargs, 2964 ) -> "StatefulSpanClient": 2965 """End the span, optionally updating its properties. 2966 2967 Args: 2968 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2969 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2970 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2971 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2972 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2973 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2974 input (Optional[dict]): The input to the span. Can be any JSON object. 2975 output (Optional[dict]): The output to the span. Can be any JSON object. 2976 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2977 **kwargs: Additional keyword arguments to include in the span. 2978 2979 Returns: 2980 StatefulSpanClient: The updated span. Passthrough for chaining. 2981 2982 Example: 2983 ```python 2984 from langfuse import Langfuse 2985 2986 langfuse = Langfuse() 2987 2988 # Create a trace 2989 trace = langfuse.trace(name = "llm-feature") 2990 2991 # Create a nested span in Langfuse 2992 span = trace.span(name="retrieval") 2993 2994 # End the span and update its properties 2995 span = span.end(metadata={"interface": "whatsapp"}) 2996 ``` 2997 """ 2998 try: 2999 span_body = { 3000 "name": name, 3001 "start_time": start_time, 3002 "metadata": metadata, 3003 "input": input, 3004 "output": output, 3005 "level": level, 3006 "status_message": status_message, 3007 "version": version, 3008 "end_time": end_time or _get_timestamp(), 3009 **kwargs, 3010 } 3011 return self.update(**span_body) 3012 3013 except Exception as e: 3014 self.log.warning(e) 3015 finally: 3016 return StatefulSpanClient( 3017 self.client, 3018 self.id, 3019 StateType.OBSERVATION, 3020 self.trace_id, 3021 self.task_manager, 3022 self.environment, 3023 ) 3024 3025 def get_langchain_handler(self, update_parent: bool = False): 3026 """Get langchain callback handler associated with the current span. 3027 3028 Args: 3029 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3030 3031 Returns: 3032 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3033 """ 3034 from langfuse.callback import CallbackHandler 3035 3036 return CallbackHandler( 3037 stateful_client=self, update_stateful_client=update_parent 3038 ) 3039 3040 3041class StatefulTraceClient(StatefulClient): 3042 """Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient. 3043 3044 Attributes: 3045 client (FernLangfuse): Core interface for Langfuse API interaction. 3046 id (str): Unique identifier of the trace. 3047 state_type (StateType): Type of the stateful entity (observation or trace). 3048 trace_id (str): The trace ID associated with this client. 3049 task_manager (TaskManager): Manager for handling asynchronous tasks. 3050 """ 3051 3052 log = logging.getLogger("langfuse") 3053 3054 def __init__( 3055 self, 3056 client: FernLangfuse, 3057 id: str, 3058 state_type: StateType, 3059 trace_id: str, 3060 task_manager: TaskManager, 3061 environment: Optional[str] = None, 3062 ): 3063 """Initialize the StatefulTraceClient.""" 3064 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3065 self.task_manager = task_manager 3066 3067 def update( 3068 self, 3069 *, 3070 name: typing.Optional[str] = None, 3071 user_id: typing.Optional[str] = None, 3072 session_id: typing.Optional[str] = None, 3073 version: typing.Optional[str] = None, 3074 release: typing.Optional[str] = None, 3075 input: typing.Optional[typing.Any] = None, 3076 output: typing.Optional[typing.Any] = None, 3077 metadata: typing.Optional[typing.Any] = None, 3078 tags: typing.Optional[typing.List[str]] = None, 3079 public: typing.Optional[bool] = None, 3080 **kwargs, 3081 ) -> "StatefulTraceClient": 3082 """Update the trace. 3083 3084 Args: 3085 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3086 input: The input of the trace. Can be any JSON object. 3087 output: The output of the trace. Can be any JSON object. 3088 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3089 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3090 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3091 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3092 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3093 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3094 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3095 **kwargs: Additional keyword arguments that can be included in the trace. 3096 3097 Returns: 3098 StatefulTraceClient: The updated trace. Passthrough for chaining. 3099 3100 Example: 3101 ```python 3102 from langfuse import Langfuse 3103 3104 langfuse = Langfuse() 3105 3106 # Create a trace 3107 trace = langfuse.trace( 3108 name="example-application", 3109 user_id="user-1234") 3110 ) 3111 3112 # Update the trace 3113 trace = trace.update( 3114 output={"result": "success"}, 3115 metadata={"interface": "whatsapp"} 3116 ) 3117 ``` 3118 """ 3119 try: 3120 trace_body = { 3121 "id": self.id, 3122 "name": name, 3123 "userId": user_id, 3124 "sessionId": session_id 3125 or kwargs.get("sessionId", None), # backward compatibility 3126 "version": version, 3127 "release": release, 3128 "input": input, 3129 "output": output, 3130 "metadata": metadata, 3131 "public": public, 3132 "tags": tags, 3133 **kwargs, 3134 } 3135 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3136 3137 request = TraceBody(**trace_body) 3138 3139 event = { 3140 "id": str(uuid.uuid4()), 3141 "type": "trace-create", 3142 "body": request, 3143 } 3144 3145 self.task_manager.add_task(event) 3146 3147 except Exception as e: 3148 self.log.exception(e) 3149 finally: 3150 return StatefulTraceClient( 3151 self.client, 3152 self.id, 3153 StateType.TRACE, 3154 self.trace_id, 3155 self.task_manager, 3156 self.environment, 3157 ) 3158 3159 def get_langchain_handler(self, update_parent: bool = False): 3160 """Get langchain callback handler associated with the current trace. 3161 3162 This method creates and returns a CallbackHandler instance, linking it with the current 3163 trace. Use this if you want to group multiple Langchain runs within a single trace. 3164 3165 Args: 3166 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3167 3168 Raises: 3169 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3170 3171 Returns: 3172 CallbackHandler: Langchain callback handler linked to the current trace. 3173 3174 Example: 3175 ```python 3176 from langfuse import Langfuse 3177 3178 langfuse = Langfuse() 3179 3180 # Create a trace 3181 trace = langfuse.trace(name = "llm-feature") 3182 3183 # Get a langchain callback handler 3184 handler = trace.get_langchain_handler() 3185 ``` 3186 """ 3187 try: 3188 from langfuse.callback import CallbackHandler 3189 3190 self.log.debug(f"Creating new handler for trace {self.id}") 3191 3192 return CallbackHandler( 3193 stateful_client=self, 3194 debug=self.log.level == logging.DEBUG, 3195 update_stateful_client=update_parent, 3196 ) 3197 except Exception as e: 3198 self.log.exception(e) 3199 3200 def getNewHandler(self): 3201 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3202 return self.get_langchain_handler() 3203 3204 3205class DatasetItemClient: 3206 """Class for managing dataset items in Langfuse. 3207 3208 Args: 3209 id (str): Unique identifier of the dataset item. 3210 status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'. 3211 input (Any): Input data of the dataset item. 3212 expected_output (Optional[Any]): Expected output of the dataset item. 3213 metadata (Optional[Any]): Additional metadata of the dataset item. 3214 source_trace_id (Optional[str]): Identifier of the source trace. 3215 source_observation_id (Optional[str]): Identifier of the source observation. 3216 dataset_id (str): Identifier of the dataset to which this item belongs. 3217 dataset_name (str): Name of the dataset to which this item belongs. 3218 created_at (datetime): Timestamp of dataset item creation. 3219 updated_at (datetime): Timestamp of the last update to the dataset item. 3220 langfuse (Langfuse): Instance of Langfuse client for API interactions. 3221 3222 Example: 3223 ```python 3224 from langfuse import Langfuse 3225 3226 langfuse = Langfuse() 3227 3228 dataset = langfuse.get_dataset("<dataset_name>") 3229 3230 for item in dataset.items: 3231 # Generate a completion using the input of every item 3232 completion, generation = llm_app.run(item.input) 3233 3234 # Evaluate the completion 3235 generation.score( 3236 name="example-score", 3237 value=1 3238 ) 3239 ``` 3240 """ 3241 3242 log = logging.getLogger("langfuse") 3243 3244 id: str 3245 status: DatasetStatus 3246 input: typing.Any 3247 expected_output: typing.Optional[typing.Any] 3248 metadata: Optional[Any] 3249 source_trace_id: typing.Optional[str] 3250 source_observation_id: typing.Optional[str] 3251 dataset_id: str 3252 dataset_name: str 3253 created_at: dt.datetime 3254 updated_at: dt.datetime 3255 3256 langfuse: Langfuse 3257 3258 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3259 """Initialize the DatasetItemClient.""" 3260 self.id = dataset_item.id 3261 self.status = dataset_item.status 3262 self.input = dataset_item.input 3263 self.expected_output = dataset_item.expected_output 3264 self.metadata = dataset_item.metadata 3265 self.source_trace_id = dataset_item.source_trace_id 3266 self.source_observation_id = dataset_item.source_observation_id 3267 self.dataset_id = dataset_item.dataset_id 3268 self.dataset_name = dataset_item.dataset_name 3269 self.created_at = dataset_item.created_at 3270 self.updated_at = dataset_item.updated_at 3271 3272 self.langfuse = langfuse 3273 3274 def flush(self, observation: StatefulClient, run_name: str): 3275 """Flushes an observations task manager's queue. 3276 3277 Used before creating a dataset run item to ensure all events are persistent. 3278 3279 Args: 3280 observation (StatefulClient): The observation or trace client associated with the dataset item. 3281 run_name (str): The name of the dataset run. 3282 """ 3283 observation.task_manager.flush() 3284 3285 def link( 3286 self, 3287 trace_or_observation: typing.Union[StatefulClient, str, None], 3288 run_name: str, 3289 run_metadata: Optional[Any] = None, 3290 run_description: Optional[str] = None, 3291 trace_id: Optional[str] = None, 3292 observation_id: Optional[str] = None, 3293 ): 3294 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3295 3296 Args: 3297 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3298 run_name (str): The name of the dataset run. 3299 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3300 run_description (Optional[str]): Description of the dataset run. 3301 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3302 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3303 """ 3304 parsed_trace_id: str = None 3305 parsed_observation_id: str = None 3306 3307 if isinstance(trace_or_observation, StatefulClient): 3308 # flush the queue before creating the dataset run item 3309 # to ensure that all events are persisted. 3310 if trace_or_observation.state_type == StateType.TRACE: 3311 parsed_trace_id = trace_or_observation.trace_id 3312 elif trace_or_observation.state_type == StateType.OBSERVATION: 3313 parsed_observation_id = trace_or_observation.id 3314 parsed_trace_id = trace_or_observation.trace_id 3315 # legacy support for observation_id 3316 elif isinstance(trace_or_observation, str): 3317 parsed_observation_id = trace_or_observation 3318 elif trace_or_observation is None: 3319 if trace_id is not None: 3320 parsed_trace_id = trace_id 3321 if observation_id is not None: 3322 parsed_observation_id = observation_id 3323 else: 3324 raise ValueError( 3325 "trace_id must be provided if trace_or_observation is None" 3326 ) 3327 else: 3328 raise ValueError( 3329 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3330 ) 3331 3332 self.log.debug( 3333 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3334 ) 3335 self.langfuse.client.dataset_run_items.create( 3336 request=CreateDatasetRunItemRequest( 3337 runName=run_name, 3338 datasetItemId=self.id, 3339 traceId=parsed_trace_id, 3340 observationId=parsed_observation_id, 3341 metadata=run_metadata, 3342 runDescription=run_description, 3343 ) 3344 ) 3345 3346 def get_langchain_handler( 3347 self, 3348 *, 3349 run_name: str, 3350 run_description: Optional[str] = None, 3351 run_metadata: Optional[Any] = None, 3352 ): 3353 """Create and get a langchain callback handler linked to this dataset item. 3354 3355 Args: 3356 run_name (str): The name of the dataset run to be used in the callback handler. 3357 run_description (Optional[str]): Description of the dataset run. 3358 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3359 3360 Returns: 3361 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3362 """ 3363 metadata = { 3364 "dataset_item_id": self.id, 3365 "run_name": run_name, 3366 "dataset_id": self.dataset_id, 3367 } 3368 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3369 3370 self.link( 3371 trace, run_name, run_metadata=run_metadata, run_description=run_description 3372 ) 3373 3374 return trace.get_langchain_handler(update_parent=True) 3375 3376 @contextmanager 3377 def observe( 3378 self, 3379 *, 3380 run_name: str, 3381 run_description: Optional[str] = None, 3382 run_metadata: Optional[Any] = None, 3383 trace_id: Optional[str] = None, 3384 ): 3385 """Observes a dataset run within the Langfuse client. 3386 3387 Args: 3388 run_name (str): The name of the dataset run. 3389 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3390 run_description (Optional[str]): The description of the dataset run. 3391 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3392 3393 Yields: 3394 StatefulTraceClient: The trace associated with the dataset run. 3395 """ 3396 from langfuse.decorators import langfuse_context 3397 3398 root_trace_id = trace_id or str(uuid.uuid4()) 3399 3400 langfuse_context._set_root_trace_id(root_trace_id) 3401 3402 try: 3403 yield root_trace_id 3404 3405 finally: 3406 self.link( 3407 run_name=run_name, 3408 run_metadata=run_metadata, 3409 run_description=run_description, 3410 trace_or_observation=None, 3411 trace_id=root_trace_id, 3412 ) 3413 3414 @contextmanager 3415 def observe_llama_index( 3416 self, 3417 *, 3418 run_name: str, 3419 run_description: Optional[str] = None, 3420 run_metadata: Optional[Any] = None, 3421 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3422 ): 3423 """Context manager for observing LlamaIndex operations linked to this dataset item. 3424 3425 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3426 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3427 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3428 3429 Args: 3430 run_name (str): The name of the dataset run. 3431 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3432 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3433 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3434 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3435 3436 Yields: 3437 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3438 3439 Example: 3440 ```python 3441 dataset_item = dataset.items[0] 3442 3443 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3444 # Perform LlamaIndex operations here 3445 some_llama_index_operation() 3446 ``` 3447 3448 Raises: 3449 ImportError: If required modules for LlamaIndex integration are not available. 3450 """ 3451 metadata = { 3452 "dataset_item_id": self.id, 3453 "run_name": run_name, 3454 "dataset_id": self.dataset_id, 3455 } 3456 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3457 self.link( 3458 trace, run_name, run_metadata=run_metadata, run_description=run_description 3459 ) 3460 3461 try: 3462 import llama_index.core 3463 from llama_index.core import Settings 3464 from llama_index.core.callbacks import CallbackManager 3465 3466 from langfuse.llama_index import LlamaIndexCallbackHandler 3467 3468 callback_handler = LlamaIndexCallbackHandler( 3469 **llama_index_integration_constructor_kwargs, 3470 ) 3471 callback_handler.set_root(trace, update_root=True) 3472 3473 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3474 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3475 prev_global_handler = llama_index.core.global_handler 3476 prev_langfuse_handler = None 3477 3478 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3479 llama_index.core.global_handler = None 3480 3481 if Settings.callback_manager is None: 3482 Settings.callback_manager = CallbackManager([callback_handler]) 3483 else: 3484 for handler in Settings.callback_manager.handlers: 3485 if isinstance(handler, LlamaIndexCallbackHandler): 3486 prev_langfuse_handler = handler 3487 Settings.callback_manager.remove_handler(handler) 3488 3489 Settings.callback_manager.add_handler(callback_handler) 3490 3491 except Exception as e: 3492 self.log.exception(e) 3493 3494 try: 3495 yield callback_handler 3496 finally: 3497 # Reset the handlers 3498 Settings.callback_manager.remove_handler(callback_handler) 3499 if prev_langfuse_handler is not None: 3500 Settings.callback_manager.add_handler(prev_langfuse_handler) 3501 3502 llama_index.core.global_handler = prev_global_handler 3503 3504 def get_llama_index_handler( 3505 self, 3506 *, 3507 run_name: str, 3508 run_description: Optional[str] = None, 3509 run_metadata: Optional[Any] = None, 3510 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3511 ): 3512 """Create and get a llama-index callback handler linked to this dataset item. 3513 3514 Args: 3515 run_name (str): The name of the dataset run to be used in the callback handler. 3516 run_description (Optional[str]): Description of the dataset run. 3517 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3518 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3519 3520 Returns: 3521 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3522 """ 3523 metadata = { 3524 "dataset_item_id": self.id, 3525 "run_name": run_name, 3526 "dataset_id": self.dataset_id, 3527 } 3528 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3529 3530 self.link( 3531 trace, run_name, run_metadata=run_metadata, run_description=run_description 3532 ) 3533 3534 try: 3535 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3536 3537 callback_handler = LlamaIndexCallbackHandler( 3538 **llama_index_integration_constructor_kwargs, 3539 ) 3540 callback_handler.set_root(trace, update_root=True) 3541 3542 return callback_handler 3543 except Exception as e: 3544 self.log.exception(e) 3545 3546 3547class DatasetClient: 3548 """Class for managing datasets in Langfuse. 3549 3550 Attributes: 3551 id (str): Unique identifier of the dataset. 3552 name (str): Name of the dataset. 3553 description (Optional[str]): Description of the dataset. 3554 metadata (Optional[typing.Any]): Additional metadata of the dataset. 3555 project_id (str): Identifier of the project to which the dataset belongs. 3556 dataset_name (str): Name of the dataset. 3557 created_at (datetime): Timestamp of dataset creation. 3558 updated_at (datetime): Timestamp of the last update to the dataset. 3559 items (List[DatasetItemClient]): List of dataset items associated with the dataset. 3560 runs (List[str]): List of dataset runs associated with the dataset. Deprecated. 3561 3562 Example: 3563 Print the input of each dataset item in a dataset. 3564 ```python 3565 from langfuse import Langfuse 3566 3567 langfuse = Langfuse() 3568 3569 dataset = langfuse.get_dataset("<dataset_name>") 3570 3571 for item in dataset.items: 3572 print(item.input) 3573 ``` 3574 """ 3575 3576 id: str 3577 name: str 3578 description: Optional[str] 3579 project_id: str 3580 dataset_name: str # for backward compatibility, to be deprecated 3581 metadata: Optional[Any] 3582 created_at: dt.datetime 3583 updated_at: dt.datetime 3584 items: typing.List[DatasetItemClient] 3585 runs: typing.List[str] = [] # deprecated 3586 3587 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3588 """Initialize the DatasetClient.""" 3589 self.id = dataset.id 3590 self.name = dataset.name 3591 self.description = dataset.description 3592 self.project_id = dataset.project_id 3593 self.metadata = dataset.metadata 3594 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3595 self.created_at = dataset.created_at 3596 self.updated_at = dataset.updated_at 3597 self.items = items 3598 3599 3600def _filter_io_from_event_body(event_body: Dict[str, Any]): 3601 return { 3602 k: v for k, v in event_body.items() if k not in ("input", "output", "metadata") 3603 }
94@dataclass 95class FetchTracesResponse: 96 """Response object for fetch_traces method.""" 97 98 data: typing.List[TraceWithDetails] 99 meta: MetaResponse
Response object for fetch_traces method.
102@dataclass 103class FetchTraceResponse: 104 """Response object for fetch_trace method.""" 105 106 data: TraceWithFullDetails
Response object for fetch_trace method.
109@dataclass 110class FetchObservationsResponse: 111 """Response object for fetch_observations method.""" 112 113 data: typing.List[ObservationsView] 114 meta: MetaResponse
Response object for fetch_observations method.
117@dataclass 118class FetchObservationResponse: 119 """Response object for fetch_observation method.""" 120 121 data: Observation
Response object for fetch_observation method.
124@dataclass 125class FetchMediaResponse: 126 """Response object for fetch_media method.""" 127 128 data: GetMediaResponse
Response object for fetch_media method.
131@dataclass 132class FetchSessionsResponse: 133 """Response object for fetch_sessions method.""" 134 135 data: typing.List[Session] 136 meta: MetaResponse
Response object for fetch_sessions method.
139class Langfuse(object): 140 """Langfuse Python client. 141 142 Attributes: 143 log (logging.Logger): Logger for the Langfuse client. 144 base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction. 145 httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API. 146 client (FernLangfuse): Core interface for Langfuse API interaction. 147 task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks. 148 release (str): Identifies the release number or hash of the application. 149 prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances. 150 151 Example: 152 Initiating the Langfuse client should always be first step to use Langfuse. 153 ```python 154 import os 155 from langfuse import Langfuse 156 157 # Set the public and secret keys as environment variables 158 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 159 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 160 161 # Initialize the Langfuse client using the credentials 162 langfuse = Langfuse() 163 ``` 164 """ 165 166 log = logging.getLogger("langfuse") 167 """Logger for the Langfuse client.""" 168 169 host: str 170 """Host of Langfuse API.""" 171 172 project_id: Optional[str] 173 """Project ID of the Langfuse project associated with the API keys provided.""" 174 175 def __init__( 176 self, 177 public_key: Optional[str] = None, 178 secret_key: Optional[str] = None, 179 host: Optional[str] = None, 180 release: Optional[str] = None, 181 debug: bool = False, 182 threads: Optional[int] = None, 183 flush_at: Optional[int] = None, 184 flush_interval: Optional[float] = None, 185 max_retries: Optional[int] = None, 186 timeout: Optional[int] = None, # seconds 187 sdk_integration: Optional[str] = "default", 188 httpx_client: Optional[httpx.Client] = None, 189 enabled: Optional[bool] = True, 190 sample_rate: Optional[float] = None, 191 mask: Optional[MaskFunction] = None, 192 environment: Optional[str] = None, 193 ): 194 """Initialize the Langfuse client. 195 196 Args: 197 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 198 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 199 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 200 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 201 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 202 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 203 flush_at: Max batch size that's sent to the API. 204 flush_interval: Max delay until a new batch is sent to the API. 205 max_retries: Max number of retries in case of API/network errors. 206 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 207 httpx_client: Pass your own httpx client for more customizability of requests. 208 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 209 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 210 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 211 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 212 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 213 214 Raises: 215 ValueError: If public_key or secret_key are not set and not found in environment variables. 216 217 Example: 218 Initiating the Langfuse client should always be first step to use Langfuse. 219 ```python 220 import os 221 from langfuse import Langfuse 222 223 # Set the public and secret keys as environment variables 224 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 225 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 226 227 # Initialize the Langfuse client using the credentials 228 langfuse = Langfuse() 229 ``` 230 """ 231 self.enabled = enabled 232 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 233 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 234 sample_rate = ( 235 sample_rate 236 if sample_rate 237 is not None # needs explicit None check, as 0 is a valid value 238 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 239 ) 240 241 if sample_rate is not None and ( 242 sample_rate > 1 or sample_rate < 0 243 ): # default value 1 will be set in the taskmanager 244 self.enabled = False 245 self.log.warning( 246 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 247 ) 248 249 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 250 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 251 flush_interval = flush_interval or float( 252 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 253 ) 254 255 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 256 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 257 258 if not self.enabled: 259 self.log.warning( 260 "Langfuse client is disabled. No observability data will be sent." 261 ) 262 263 elif not public_key: 264 self.enabled = False 265 self.log.warning( 266 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 267 ) 268 269 elif not secret_key: 270 self.enabled = False 271 self.log.warning( 272 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 273 ) 274 275 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 276 277 if set_debug is True: 278 # Ensures that debug level messages are logged when debug mode is on. 279 # Otherwise, defaults to WARNING level. 280 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 281 logging.basicConfig() 282 # Set level for all loggers under langfuse package 283 logging.getLogger("langfuse").setLevel(logging.DEBUG) 284 285 clean_logger() 286 else: 287 logging.getLogger("langfuse").setLevel(logging.WARNING) 288 clean_logger() 289 290 self.base_url = ( 291 host 292 if host 293 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 294 ) 295 296 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 297 298 if self.environment and not bool( 299 re.match(ENVIRONMENT_PATTERN, self.environment) 300 ): 301 self.log.error( 302 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 303 ) 304 305 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 306 307 public_api_client = FernLangfuse( 308 base_url=self.base_url, 309 username=public_key, 310 password=secret_key, 311 x_langfuse_sdk_name="python", 312 x_langfuse_sdk_version=version, 313 x_langfuse_public_key=public_key, 314 httpx_client=self.httpx_client, 315 timeout=timeout, 316 ) 317 async_public_api_client = AsyncFernLangfuse( 318 base_url=self.base_url, 319 username=public_key, 320 password=secret_key, 321 x_langfuse_sdk_name="python", 322 x_langfuse_sdk_version=version, 323 x_langfuse_public_key=public_key, 324 timeout=timeout, 325 ) 326 327 self.api = public_api_client 328 self.client = public_api_client # legacy, to be removed in next major release 329 self.async_api = async_public_api_client 330 331 langfuse_client = LangfuseClient( 332 public_key=public_key, 333 secret_key=secret_key, 334 base_url=self.base_url, 335 version=version, 336 timeout=timeout, 337 session=self.httpx_client, 338 ) 339 340 args = { 341 "threads": threads, 342 "flush_at": flush_at, 343 "flush_interval": flush_interval, 344 "max_retries": max_retries, 345 "client": langfuse_client, 346 "api_client": self.client, 347 "public_key": public_key, 348 "sdk_name": "python", 349 "sdk_version": version, 350 "sdk_integration": sdk_integration, 351 "enabled": self.enabled, 352 "sample_rate": sample_rate, 353 "mask": mask, 354 } 355 356 self.task_manager = TaskManager(**args) 357 358 self.trace_id = None 359 self.project_id = None 360 361 self.release = self._get_release_value(release) 362 363 self.prompt_cache = PromptCache() 364 365 def _get_release_value(self, release: Optional[str] = None) -> Optional[str]: 366 if release: 367 return release 368 elif "LANGFUSE_RELEASE" in os.environ: 369 return os.environ["LANGFUSE_RELEASE"] 370 else: 371 return get_common_release_envs() 372 373 def _get_project_id(self) -> Optional[str]: 374 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 375 if not self.project_id: 376 proj = self.client.projects.get() 377 if not proj.data or not proj.data[0].id: 378 return None 379 380 self.project_id = proj.data[0].id 381 382 return self.project_id 383 384 def get_trace_id(self) -> str: 385 """Get the current trace id.""" 386 return self.trace_id 387 388 def get_trace_url(self) -> str: 389 """Get the URL of the current trace to view it in the Langfuse UI.""" 390 project_id = self._get_project_id() 391 if not project_id: 392 return f"{self.base_url}/trace/{self.trace_id}" 393 394 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}" 395 396 def get_dataset( 397 self, name: str, *, fetch_items_page_size: Optional[int] = 50 398 ) -> "DatasetClient": 399 """Fetch a dataset by its name. 400 401 Args: 402 name (str): The name of the dataset to fetch. 403 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 404 405 Returns: 406 DatasetClient: The dataset with the given name. 407 """ 408 try: 409 self.log.debug(f"Getting datasets {name}") 410 dataset = self.client.datasets.get(dataset_name=name) 411 412 dataset_items = [] 413 page = 1 414 while True: 415 new_items = self.client.dataset_items.list( 416 dataset_name=self._url_encode(name), 417 page=page, 418 limit=fetch_items_page_size, 419 ) 420 dataset_items.extend(new_items.data) 421 if new_items.meta.total_pages <= page: 422 break 423 page += 1 424 425 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 426 427 return DatasetClient(dataset, items=items) 428 except Exception as e: 429 handle_fern_exception(e) 430 raise e 431 432 def get_dataset_item(self, id: str) -> "DatasetItemClient": 433 """Get the dataset item with the given id.""" 434 try: 435 self.log.debug(f"Getting dataset item {id}") 436 dataset_item = self.client.dataset_items.get(id=id) 437 return DatasetItemClient(dataset_item, langfuse=self) 438 except Exception as e: 439 handle_fern_exception(e) 440 raise e 441 442 def auth_check(self) -> bool: 443 """Check if the provided credentials (public and secret key) are valid. 444 445 Raises: 446 Exception: If no projects were found for the provided credentials. 447 448 Note: 449 This method is blocking. It is discouraged to use it in production code. 450 """ 451 try: 452 projects = self.client.projects.get() 453 self.log.debug( 454 f"Auth check successful, found {len(projects.data)} projects" 455 ) 456 if len(projects.data) == 0: 457 raise Exception( 458 "Auth check failed, no project found for the keys provided." 459 ) 460 return True 461 462 except Exception as e: 463 handle_fern_exception(e) 464 raise e 465 466 def get_dataset_runs( 467 self, 468 dataset_name: str, 469 *, 470 page: typing.Optional[int] = None, 471 limit: typing.Optional[int] = None, 472 ) -> PaginatedDatasetRuns: 473 """Get all dataset runs. 474 475 Args: 476 dataset_name (str): Name of the dataset. 477 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 478 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 479 480 Returns: 481 PaginatedDatasetRuns: The dataset runs. 482 """ 483 try: 484 self.log.debug("Getting dataset runs") 485 return self.client.datasets.get_runs( 486 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 487 ) 488 except Exception as e: 489 handle_fern_exception(e) 490 raise e 491 492 def get_dataset_run( 493 self, 494 dataset_name: str, 495 dataset_run_name: str, 496 ) -> DatasetRunWithItems: 497 """Get a dataset run. 498 499 Args: 500 dataset_name: Name of the dataset. 501 dataset_run_name: Name of the dataset run. 502 503 Returns: 504 DatasetRunWithItems: The dataset run. 505 """ 506 try: 507 self.log.debug( 508 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 509 ) 510 return self.client.datasets.get_run( 511 dataset_name=self._url_encode(dataset_name), 512 run_name=self._url_encode(dataset_run_name), 513 ) 514 except Exception as e: 515 handle_fern_exception(e) 516 raise e 517 518 def create_dataset( 519 self, 520 name: str, 521 description: Optional[str] = None, 522 metadata: Optional[Any] = None, 523 ) -> Dataset: 524 """Create a dataset with the given name on Langfuse. 525 526 Args: 527 name: Name of the dataset to create. 528 description: Description of the dataset. Defaults to None. 529 metadata: Additional metadata. Defaults to None. 530 531 Returns: 532 Dataset: The created dataset as returned by the Langfuse API. 533 """ 534 try: 535 body = CreateDatasetRequest( 536 name=name, description=description, metadata=metadata 537 ) 538 self.log.debug(f"Creating datasets {body}") 539 return self.client.datasets.create(request=body) 540 except Exception as e: 541 handle_fern_exception(e) 542 raise e 543 544 def create_dataset_item( 545 self, 546 dataset_name: str, 547 input: Optional[Any] = None, 548 expected_output: Optional[Any] = None, 549 metadata: Optional[Any] = None, 550 source_trace_id: Optional[str] = None, 551 source_observation_id: Optional[str] = None, 552 status: Optional[DatasetStatus] = None, 553 id: Optional[str] = None, 554 ) -> DatasetItem: 555 """Create a dataset item. 556 557 Upserts if an item with id already exists. 558 559 Args: 560 dataset_name: Name of the dataset in which the dataset item should be created. 561 input: Input data. Defaults to None. Can contain any dict, list or scalar. 562 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 563 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 564 source_trace_id: Id of the source trace. Defaults to None. 565 source_observation_id: Id of the source observation. Defaults to None. 566 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 567 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 568 569 Returns: 570 DatasetItem: The created dataset item as returned by the Langfuse API. 571 572 Example: 573 ```python 574 from langfuse import Langfuse 575 576 langfuse = Langfuse() 577 578 # Uploading items to the Langfuse dataset named "capital_cities" 579 langfuse.create_dataset_item( 580 dataset_name="capital_cities", 581 input={"input": {"country": "Italy"}}, 582 expected_output={"expected_output": "Rome"}, 583 metadata={"foo": "bar"} 584 ) 585 ``` 586 """ 587 try: 588 body = CreateDatasetItemRequest( 589 datasetName=dataset_name, 590 input=input, 591 expectedOutput=expected_output, 592 metadata=metadata, 593 sourceTraceId=source_trace_id, 594 sourceObservationId=source_observation_id, 595 status=status, 596 id=id, 597 ) 598 self.log.debug(f"Creating dataset item {body}") 599 return self.client.dataset_items.create(request=body) 600 except Exception as e: 601 handle_fern_exception(e) 602 raise e 603 604 def fetch_trace( 605 self, 606 id: str, 607 ) -> FetchTraceResponse: 608 """Fetch a trace via the Langfuse API by its id. 609 610 Args: 611 id: The id of the trace to fetch. 612 613 Returns: 614 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 615 616 Raises: 617 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 618 """ 619 try: 620 self.log.debug(f"Getting trace {id}") 621 trace = self.client.trace.get(id) 622 return FetchTraceResponse(data=trace) 623 except Exception as e: 624 handle_fern_exception(e) 625 raise e 626 627 def get_trace( 628 self, 629 id: str, 630 ) -> TraceWithFullDetails: 631 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 632 633 Args: 634 id: The id of the trace to fetch. 635 636 Returns: 637 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 638 639 Raises: 640 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 641 """ 642 warnings.warn( 643 "get_trace is deprecated, use fetch_trace instead.", 644 DeprecationWarning, 645 ) 646 647 try: 648 self.log.debug(f"Getting trace {id}") 649 return self.client.trace.get(id) 650 except Exception as e: 651 handle_fern_exception(e) 652 raise e 653 654 def fetch_traces( 655 self, 656 *, 657 page: Optional[int] = None, 658 limit: Optional[int] = None, 659 user_id: Optional[str] = None, 660 name: Optional[str] = None, 661 session_id: Optional[str] = None, 662 from_timestamp: Optional[dt.datetime] = None, 663 to_timestamp: Optional[dt.datetime] = None, 664 order_by: Optional[str] = None, 665 tags: Optional[Union[str, Sequence[str]]] = None, 666 ) -> FetchTracesResponse: 667 """Fetch a list of traces in the current project matching the given parameters. 668 669 Args: 670 page (Optional[int]): Page number, starts at 1. Defaults to None. 671 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 672 name (Optional[str]): Filter by name of traces. Defaults to None. 673 user_id (Optional[str]): Filter by user_id. Defaults to None. 674 session_id (Optional[str]): Filter by session_id. Defaults to None. 675 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 676 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 677 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 678 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 679 680 Returns: 681 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 682 683 Raises: 684 Exception: If an error occurred during the request. 685 """ 686 try: 687 self.log.debug( 688 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 689 ) 690 res = self.client.trace.list( 691 page=page, 692 limit=limit, 693 name=name, 694 user_id=user_id, 695 session_id=session_id, 696 from_timestamp=from_timestamp, 697 to_timestamp=to_timestamp, 698 order_by=order_by, 699 tags=tags, 700 ) 701 return FetchTracesResponse(data=res.data, meta=res.meta) 702 except Exception as e: 703 handle_fern_exception(e) 704 raise e 705 706 def get_traces( 707 self, 708 *, 709 page: Optional[int] = None, 710 limit: Optional[int] = None, 711 user_id: Optional[str] = None, 712 name: Optional[str] = None, 713 session_id: Optional[str] = None, 714 from_timestamp: Optional[dt.datetime] = None, 715 to_timestamp: Optional[dt.datetime] = None, 716 order_by: Optional[str] = None, 717 tags: Optional[Union[str, Sequence[str]]] = None, 718 ) -> Traces: 719 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 720 721 Args: 722 page (Optional[int]): Page number, starts at 1. Defaults to None. 723 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 724 name (Optional[str]): Filter by name of traces. Defaults to None. 725 user_id (Optional[str]): Filter by user_id. Defaults to None. 726 session_id (Optional[str]): Filter by session_id. Defaults to None. 727 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 728 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 729 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 730 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 731 732 Returns: 733 List of Traces 734 735 Raises: 736 Exception: If an error occurred during the request. 737 """ 738 warnings.warn( 739 "get_traces is deprecated, use fetch_traces instead.", 740 DeprecationWarning, 741 ) 742 try: 743 self.log.debug( 744 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 745 ) 746 return self.client.trace.list( 747 page=page, 748 limit=limit, 749 name=name, 750 user_id=user_id, 751 session_id=session_id, 752 from_timestamp=from_timestamp, 753 to_timestamp=to_timestamp, 754 order_by=order_by, 755 tags=tags, 756 ) 757 except Exception as e: 758 handle_fern_exception(e) 759 raise e 760 761 def fetch_observations( 762 self, 763 *, 764 page: typing.Optional[int] = None, 765 limit: typing.Optional[int] = None, 766 name: typing.Optional[str] = None, 767 user_id: typing.Optional[str] = None, 768 trace_id: typing.Optional[str] = None, 769 parent_observation_id: typing.Optional[str] = None, 770 from_start_time: typing.Optional[dt.datetime] = None, 771 to_start_time: typing.Optional[dt.datetime] = None, 772 type: typing.Optional[str] = None, 773 ) -> FetchObservationsResponse: 774 """Get a list of observations in the current project matching the given parameters. 775 776 Args: 777 page (Optional[int]): Page number of the observations to return. Defaults to None. 778 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 779 name (Optional[str]): Name of the observations to return. Defaults to None. 780 user_id (Optional[str]): User identifier. Defaults to None. 781 trace_id (Optional[str]): Trace identifier. Defaults to None. 782 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 783 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 784 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 785 type (Optional[str]): Type of the observation. Defaults to None. 786 787 Returns: 788 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 789 790 Raises: 791 Exception: If an error occurred during the request. 792 """ 793 try: 794 self.log.debug( 795 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 796 ) 797 res = self.client.observations.get_many( 798 page=page, 799 limit=limit, 800 name=name, 801 user_id=user_id, 802 trace_id=trace_id, 803 parent_observation_id=parent_observation_id, 804 from_start_time=from_start_time, 805 to_start_time=to_start_time, 806 type=type, 807 ) 808 return FetchObservationsResponse(data=res.data, meta=res.meta) 809 except Exception as e: 810 self.log.exception(e) 811 raise e 812 813 def get_observations( 814 self, 815 *, 816 page: typing.Optional[int] = None, 817 limit: typing.Optional[int] = None, 818 name: typing.Optional[str] = None, 819 user_id: typing.Optional[str] = None, 820 trace_id: typing.Optional[str] = None, 821 parent_observation_id: typing.Optional[str] = None, 822 from_start_time: typing.Optional[dt.datetime] = None, 823 to_start_time: typing.Optional[dt.datetime] = None, 824 type: typing.Optional[str] = None, 825 ) -> ObservationsViews: 826 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 827 828 Args: 829 page (Optional[int]): Page number of the observations to return. Defaults to None. 830 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 831 name (Optional[str]): Name of the observations to return. Defaults to None. 832 user_id (Optional[str]): User identifier. Defaults to None. 833 trace_id (Optional[str]): Trace identifier. Defaults to None. 834 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 835 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 836 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 837 type (Optional[str]): Type of the observation. Defaults to None. 838 839 Returns: 840 List of ObservationsViews: List of observations in the project matching the given parameters. 841 842 Raises: 843 Exception: If an error occurred during the request. 844 """ 845 warnings.warn( 846 "get_observations is deprecated, use fetch_observations instead.", 847 DeprecationWarning, 848 ) 849 try: 850 self.log.debug( 851 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 852 ) 853 return self.client.observations.get_many( 854 page=page, 855 limit=limit, 856 name=name, 857 user_id=user_id, 858 trace_id=trace_id, 859 parent_observation_id=parent_observation_id, 860 from_start_time=from_start_time, 861 to_start_time=to_start_time, 862 type=type, 863 ) 864 except Exception as e: 865 handle_fern_exception(e) 866 raise e 867 868 def get_generations( 869 self, 870 *, 871 page: typing.Optional[int] = None, 872 limit: typing.Optional[int] = None, 873 name: typing.Optional[str] = None, 874 user_id: typing.Optional[str] = None, 875 trace_id: typing.Optional[str] = None, 876 from_start_time: typing.Optional[dt.datetime] = None, 877 to_start_time: typing.Optional[dt.datetime] = None, 878 parent_observation_id: typing.Optional[str] = None, 879 ) -> ObservationsViews: 880 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 881 882 Args: 883 page (Optional[int]): Page number of the generations to return. Defaults to None. 884 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 885 name (Optional[str]): Name of the generations to return. Defaults to None. 886 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 887 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 888 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 889 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 890 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 891 892 Returns: 893 List of ObservationsViews: List of generations in the project matching the given parameters. 894 895 Raises: 896 Exception: If an error occurred during the request. 897 """ 898 warnings.warn( 899 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 900 DeprecationWarning, 901 ) 902 return self.get_observations( 903 page=page, 904 limit=limit, 905 name=name, 906 user_id=user_id, 907 trace_id=trace_id, 908 parent_observation_id=parent_observation_id, 909 from_start_time=from_start_time, 910 to_start_time=to_start_time, 911 type="GENERATION", 912 ) 913 914 def fetch_observation( 915 self, 916 id: str, 917 ) -> FetchObservationResponse: 918 """Get an observation in the current project with the given identifier. 919 920 Args: 921 id: The identifier of the observation to fetch. 922 923 Returns: 924 FetchObservationResponse: The observation with the given id on `data`. 925 926 Raises: 927 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 928 """ 929 try: 930 self.log.debug(f"Getting observation {id}") 931 observation = self.client.observations.get(id) 932 return FetchObservationResponse(data=observation) 933 except Exception as e: 934 handle_fern_exception(e) 935 raise e 936 937 def fetch_media(self, id: str) -> FetchMediaResponse: 938 """Get media content by ID. 939 940 Args: 941 id: The identifier of the media content to fetch. 942 943 Returns: 944 FetchMediaResponse: The media data of the given id on `data`. 945 946 Raises: 947 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 948 """ 949 try: 950 return FetchMediaResponse(data=self.client.media.get(id)) 951 except Exception as e: 952 handle_fern_exception(e) 953 raise e 954 955 def resolve_media_references( 956 self, 957 *, 958 obj: Any, 959 resolve_with: Literal["base64_data_uri"], 960 max_depth: int = 10, 961 content_fetch_timeout_seconds: int = 10, 962 ): 963 """Replace media reference strings in an object with base64 data URIs. 964 965 This method recursively traverses an object (up to max_depth) looking for media reference strings 966 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 967 the provided Langfuse client and replaces the reference string with a base64 data URI. 968 969 If fetching media content fails for a reference string, a warning is logged and the reference 970 string is left unchanged. 971 972 Args: 973 obj: The object to process. Can be a primitive value, array, or nested object. 974 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 975 resolve_with: The representation of the media content to replace the media reference string with. 976 Currently only "base64_data_uri" is supported. 977 max_depth: int: The maximum depth to traverse the object. Default is 10. 978 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 979 980 Returns: 981 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 982 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 983 984 Example: 985 obj = { 986 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 987 "nested": { 988 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 989 } 990 } 991 992 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 993 994 # Result: 995 # { 996 # "image": "...", 997 # "nested": { 998 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 999 # } 1000 # } 1001 """ 1002 return LangfuseMedia.resolve_media_references( 1003 langfuse_client=self, 1004 obj=obj, 1005 resolve_with=resolve_with, 1006 max_depth=max_depth, 1007 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1008 ) 1009 1010 def get_observation( 1011 self, 1012 id: str, 1013 ) -> Observation: 1014 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1015 1016 Args: 1017 id: The identifier of the observation to fetch. 1018 1019 Raises: 1020 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1021 """ 1022 warnings.warn( 1023 "get_observation is deprecated, use fetch_observation instead.", 1024 DeprecationWarning, 1025 ) 1026 try: 1027 self.log.debug(f"Getting observation {id}") 1028 return self.client.observations.get(id) 1029 except Exception as e: 1030 handle_fern_exception(e) 1031 raise e 1032 1033 def fetch_sessions( 1034 self, 1035 *, 1036 page: typing.Optional[int] = None, 1037 limit: typing.Optional[int] = None, 1038 from_timestamp: typing.Optional[dt.datetime] = None, 1039 to_timestamp: typing.Optional[dt.datetime] = None, 1040 ) -> FetchSessionsResponse: 1041 """Get a list of sessions in the current project. 1042 1043 Args: 1044 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1045 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1046 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1047 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1048 1049 Returns: 1050 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1051 1052 Raises: 1053 Exception: If an error occurred during the request. 1054 """ 1055 try: 1056 self.log.debug( 1057 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1058 ) 1059 res = self.client.sessions.list( 1060 page=page, 1061 limit=limit, 1062 from_timestamp=from_timestamp, 1063 to_timestamp=to_timestamp, 1064 ) 1065 return FetchSessionsResponse(data=res.data, meta=res.meta) 1066 except Exception as e: 1067 handle_fern_exception(e) 1068 raise e 1069 1070 @overload 1071 def get_prompt( 1072 self, 1073 name: str, 1074 version: Optional[int] = None, 1075 *, 1076 label: Optional[str] = None, 1077 type: Literal["chat"], 1078 cache_ttl_seconds: Optional[int] = None, 1079 fallback: Optional[List[ChatMessageDict]] = None, 1080 max_retries: Optional[int] = None, 1081 fetch_timeout_seconds: Optional[int] = None, 1082 ) -> ChatPromptClient: ... 1083 1084 @overload 1085 def get_prompt( 1086 self, 1087 name: str, 1088 version: Optional[int] = None, 1089 *, 1090 label: Optional[str] = None, 1091 type: Literal["text"] = "text", 1092 cache_ttl_seconds: Optional[int] = None, 1093 fallback: Optional[str] = None, 1094 max_retries: Optional[int] = None, 1095 fetch_timeout_seconds: Optional[int] = None, 1096 ) -> TextPromptClient: ... 1097 1098 def get_prompt( 1099 self, 1100 name: str, 1101 version: Optional[int] = None, 1102 *, 1103 label: Optional[str] = None, 1104 type: Literal["chat", "text"] = "text", 1105 cache_ttl_seconds: Optional[int] = None, 1106 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1107 max_retries: Optional[int] = None, 1108 fetch_timeout_seconds: Optional[int] = None, 1109 ) -> PromptClient: 1110 """Get a prompt. 1111 1112 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1113 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1114 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1115 return the expired prompt as a fallback. 1116 1117 Args: 1118 name (str): The name of the prompt to retrieve. 1119 1120 Keyword Args: 1121 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1122 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1123 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1124 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1125 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1126 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1127 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1128 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1129 1130 Returns: 1131 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1132 - TextPromptClient, if type argument is 'text'. 1133 - ChatPromptClient, if type argument is 'chat'. 1134 1135 Raises: 1136 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1137 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1138 """ 1139 if version is not None and label is not None: 1140 raise ValueError("Cannot specify both version and label at the same time.") 1141 1142 if not name: 1143 raise ValueError("Prompt name cannot be empty.") 1144 1145 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1146 bounded_max_retries = self._get_bounded_max_retries( 1147 max_retries, default_max_retries=2, max_retries_upper_bound=4 1148 ) 1149 1150 self.log.debug(f"Getting prompt '{cache_key}'") 1151 cached_prompt = self.prompt_cache.get(cache_key) 1152 1153 if cached_prompt is None or cache_ttl_seconds == 0: 1154 self.log.debug( 1155 f"Prompt '{cache_key}' not found in cache or caching disabled." 1156 ) 1157 try: 1158 return self._fetch_prompt_and_update_cache( 1159 name, 1160 version=version, 1161 label=label, 1162 ttl_seconds=cache_ttl_seconds, 1163 max_retries=bounded_max_retries, 1164 fetch_timeout_seconds=fetch_timeout_seconds, 1165 ) 1166 except Exception as e: 1167 if fallback: 1168 self.log.warning( 1169 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1170 ) 1171 1172 fallback_client_args = { 1173 "name": name, 1174 "prompt": fallback, 1175 "type": type, 1176 "version": version or 0, 1177 "config": {}, 1178 "labels": [label] if label else [], 1179 "tags": [], 1180 } 1181 1182 if type == "text": 1183 return TextPromptClient( 1184 prompt=Prompt_Text(**fallback_client_args), 1185 is_fallback=True, 1186 ) 1187 1188 if type == "chat": 1189 return ChatPromptClient( 1190 prompt=Prompt_Chat(**fallback_client_args), 1191 is_fallback=True, 1192 ) 1193 1194 raise e 1195 1196 if cached_prompt.is_expired(): 1197 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1198 try: 1199 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1200 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1201 self.prompt_cache.add_refresh_prompt_task( 1202 cache_key, 1203 lambda: self._fetch_prompt_and_update_cache( 1204 name, 1205 version=version, 1206 label=label, 1207 ttl_seconds=cache_ttl_seconds, 1208 max_retries=bounded_max_retries, 1209 fetch_timeout_seconds=fetch_timeout_seconds, 1210 ), 1211 ) 1212 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1213 # return stale prompt 1214 return cached_prompt.value 1215 1216 except Exception as e: 1217 self.log.warning( 1218 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1219 ) 1220 # creation of refresh prompt task failed, return stale prompt 1221 return cached_prompt.value 1222 1223 return cached_prompt.value 1224 1225 def _fetch_prompt_and_update_cache( 1226 self, 1227 name: str, 1228 *, 1229 version: Optional[int] = None, 1230 label: Optional[str] = None, 1231 ttl_seconds: Optional[int] = None, 1232 max_retries: int, 1233 fetch_timeout_seconds, 1234 ) -> PromptClient: 1235 try: 1236 cache_key = PromptCache.generate_cache_key( 1237 name, version=version, label=label 1238 ) 1239 1240 self.log.debug(f"Fetching prompt '{cache_key}' from server...") 1241 1242 @backoff.on_exception( 1243 backoff.constant, Exception, max_tries=max_retries, logger=None 1244 ) 1245 def fetch_prompts(): 1246 return self.client.prompts.get( 1247 self._url_encode(name), 1248 version=version, 1249 label=label, 1250 request_options={ 1251 "timeout_in_seconds": fetch_timeout_seconds, 1252 } 1253 if fetch_timeout_seconds is not None 1254 else None, 1255 ) 1256 1257 prompt_response = fetch_prompts() 1258 1259 if prompt_response.type == "chat": 1260 prompt = ChatPromptClient(prompt_response) 1261 else: 1262 prompt = TextPromptClient(prompt_response) 1263 1264 self.prompt_cache.set(cache_key, prompt, ttl_seconds) 1265 1266 return prompt 1267 1268 except Exception as e: 1269 self.log.error(f"Error while fetching prompt '{cache_key}': {str(e)}") 1270 raise e 1271 1272 def _get_bounded_max_retries( 1273 self, 1274 max_retries: Optional[int], 1275 *, 1276 default_max_retries: int = 2, 1277 max_retries_upper_bound: int = 4, 1278 ) -> int: 1279 if max_retries is None: 1280 return default_max_retries 1281 1282 bounded_max_retries = min( 1283 max(max_retries, 0), 1284 max_retries_upper_bound, 1285 ) 1286 1287 return bounded_max_retries 1288 1289 @overload 1290 def create_prompt( 1291 self, 1292 *, 1293 name: str, 1294 prompt: List[ChatMessageDict], 1295 is_active: Optional[bool] = None, # deprecated 1296 labels: List[str] = [], 1297 tags: Optional[List[str]] = None, 1298 type: Optional[Literal["chat"]], 1299 config: Optional[Any] = None, 1300 commit_message: Optional[str] = None, 1301 ) -> ChatPromptClient: ... 1302 1303 @overload 1304 def create_prompt( 1305 self, 1306 *, 1307 name: str, 1308 prompt: str, 1309 is_active: Optional[bool] = None, # deprecated 1310 labels: List[str] = [], 1311 tags: Optional[List[str]] = None, 1312 type: Optional[Literal["text"]] = "text", 1313 config: Optional[Any] = None, 1314 commit_message: Optional[str] = None, 1315 ) -> TextPromptClient: ... 1316 1317 def create_prompt( 1318 self, 1319 *, 1320 name: str, 1321 prompt: Union[str, List[ChatMessageDict]], 1322 is_active: Optional[bool] = None, # deprecated 1323 labels: List[str] = [], 1324 tags: Optional[List[str]] = None, 1325 type: Optional[Literal["chat", "text"]] = "text", 1326 config: Optional[Any] = None, 1327 commit_message: Optional[str] = None, 1328 ) -> PromptClient: 1329 """Create a new prompt in Langfuse. 1330 1331 Keyword Args: 1332 name : The name of the prompt to be created. 1333 prompt : The content of the prompt to be created. 1334 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1335 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1336 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1337 config: Additional structured data to be saved with the prompt. Defaults to None. 1338 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1339 commit_message: Optional string describing the change. 1340 1341 Returns: 1342 TextPromptClient: The prompt if type argument is 'text'. 1343 ChatPromptClient: The prompt if type argument is 'chat'. 1344 """ 1345 try: 1346 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1347 1348 # Handle deprecated is_active flag 1349 if is_active: 1350 self.log.warning( 1351 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1352 ) 1353 1354 labels = labels if "production" in labels else labels + ["production"] 1355 1356 if type == "chat": 1357 if not isinstance(prompt, list): 1358 raise ValueError( 1359 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1360 ) 1361 request = CreatePromptRequest_Chat( 1362 name=name, 1363 prompt=prompt, 1364 labels=labels, 1365 tags=tags, 1366 config=config or {}, 1367 commitMessage=commit_message, 1368 type="chat", 1369 ) 1370 server_prompt = self.client.prompts.create(request=request) 1371 1372 return ChatPromptClient(prompt=server_prompt) 1373 1374 if not isinstance(prompt, str): 1375 raise ValueError("For 'text' type, 'prompt' must be a string.") 1376 1377 request = CreatePromptRequest_Text( 1378 name=name, 1379 prompt=prompt, 1380 labels=labels, 1381 tags=tags, 1382 config=config or {}, 1383 commitMessage=commit_message, 1384 type="text", 1385 ) 1386 1387 server_prompt = self.client.prompts.create(request=request) 1388 return TextPromptClient(prompt=server_prompt) 1389 1390 except Exception as e: 1391 handle_fern_exception(e) 1392 raise e 1393 1394 def update_prompt( 1395 self, 1396 *, 1397 name: str, 1398 version: int, 1399 new_labels: List[str] = [], 1400 ): 1401 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1402 1403 Args: 1404 name (str): The name of the prompt to update. 1405 version (int): The version number of the prompt to update. 1406 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1407 1408 Returns: 1409 Prompt: The updated prompt from the Langfuse API. 1410 1411 """ 1412 updated_prompt = self.client.prompt_version.update( 1413 name=name, 1414 version=version, 1415 new_labels=new_labels, 1416 ) 1417 self.prompt_cache.invalidate(name) 1418 return updated_prompt 1419 1420 def _url_encode(self, url: str) -> str: 1421 return urllib.parse.quote(url) 1422 1423 def trace( 1424 self, 1425 *, 1426 id: typing.Optional[str] = None, 1427 name: typing.Optional[str] = None, 1428 user_id: typing.Optional[str] = None, 1429 session_id: typing.Optional[str] = None, 1430 version: typing.Optional[str] = None, 1431 input: typing.Optional[typing.Any] = None, 1432 output: typing.Optional[typing.Any] = None, 1433 metadata: typing.Optional[typing.Any] = None, 1434 tags: typing.Optional[typing.List[str]] = None, 1435 timestamp: typing.Optional[dt.datetime] = None, 1436 public: typing.Optional[bool] = None, 1437 **kwargs, 1438 ) -> "StatefulTraceClient": 1439 """Create a trace. 1440 1441 Args: 1442 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1443 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1444 input: The input of the trace. Can be any JSON object. 1445 output: The output of the trace. Can be any JSON object. 1446 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1447 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1448 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1449 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1450 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1451 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1452 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1453 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1454 **kwargs: Additional keyword arguments that can be included in the trace. 1455 1456 Returns: 1457 StatefulTraceClient: The created trace. 1458 1459 Example: 1460 ```python 1461 from langfuse import Langfuse 1462 1463 langfuse = Langfuse() 1464 1465 trace = langfuse.trace( 1466 name="example-application", 1467 user_id="user-1234") 1468 ) 1469 ``` 1470 """ 1471 new_id = id or str(uuid.uuid4()) 1472 self.trace_id = new_id 1473 try: 1474 new_dict = { 1475 "id": new_id, 1476 "name": name, 1477 "userId": user_id, 1478 "sessionId": session_id 1479 or kwargs.get("sessionId", None), # backward compatibility 1480 "release": self.release, 1481 "version": version, 1482 "metadata": metadata, 1483 "input": input, 1484 "output": output, 1485 "tags": tags, 1486 "timestamp": timestamp or _get_timestamp(), 1487 "public": public, 1488 "environment": self.environment, 1489 } 1490 if kwargs is not None: 1491 new_dict.update(kwargs) 1492 1493 new_body = TraceBody(**new_dict) 1494 1495 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1496 event = { 1497 "id": str(uuid.uuid4()), 1498 "type": "trace-create", 1499 "body": new_body, 1500 } 1501 1502 self.task_manager.add_task( 1503 event, 1504 ) 1505 1506 except Exception as e: 1507 self.log.exception(e) 1508 finally: 1509 self._log_memory_usage() 1510 1511 return StatefulTraceClient( 1512 self.client, 1513 new_id, 1514 StateType.TRACE, 1515 new_id, 1516 self.task_manager, 1517 self.environment, 1518 ) 1519 1520 def _log_memory_usage(self): 1521 try: 1522 is_malloc_tracing_enabled = bool(int(os.getenv("PYTHONTRACEMALLOC", 0))) 1523 report_interval = int(os.getenv("LANGFUSE_DEBUG_MEMORY_REPORT_INTERVAL", 0)) 1524 top_k_items = int(os.getenv("LANGFUSE_DEBUG_MEMORY_TOP_K", 10)) 1525 1526 if ( 1527 not is_malloc_tracing_enabled 1528 or report_interval <= 0 1529 or round(time.monotonic()) % report_interval != 0 1530 ): 1531 return 1532 1533 snapshot = tracemalloc.take_snapshot().statistics("lineno") 1534 1535 total_memory_usage = sum([stat.size for stat in snapshot]) / 1024 / 1024 1536 memory_usage_total_items = [f"{stat}" for stat in snapshot] 1537 memory_usage_langfuse_items = [ 1538 stat for stat in memory_usage_total_items if "/langfuse/" in stat 1539 ] 1540 1541 logged_memory_usage = { 1542 "all_files": [f"{stat}" for stat in memory_usage_total_items][ 1543 :top_k_items 1544 ], 1545 "langfuse_files": [f"{stat}" for stat in memory_usage_langfuse_items][ 1546 :top_k_items 1547 ], 1548 "total_usage": f"{total_memory_usage:.2f} MB", 1549 "langfuse_queue_length": self.task_manager._ingestion_queue.qsize(), 1550 } 1551 1552 self.log.debug("Memory usage: ", logged_memory_usage) 1553 1554 event = SdkLogBody(log=logged_memory_usage) 1555 self.task_manager.add_task( 1556 { 1557 "id": str(uuid.uuid4()), 1558 "type": "sdk-log", 1559 "timestamp": _get_timestamp(), 1560 "body": event.dict(), 1561 } 1562 ) 1563 1564 except Exception as e: 1565 self.log.exception(e) 1566 1567 @overload 1568 def score( 1569 self, 1570 *, 1571 name: str, 1572 value: float, 1573 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1574 trace_id: typing.Optional[str] = None, 1575 id: typing.Optional[str] = None, 1576 comment: typing.Optional[str] = None, 1577 observation_id: typing.Optional[str] = None, 1578 config_id: typing.Optional[str] = None, 1579 **kwargs, 1580 ) -> "StatefulClient": ... 1581 1582 @overload 1583 def score( 1584 self, 1585 *, 1586 name: str, 1587 value: str, 1588 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1589 trace_id: typing.Optional[str] = None, 1590 id: typing.Optional[str] = None, 1591 comment: typing.Optional[str] = None, 1592 observation_id: typing.Optional[str] = None, 1593 config_id: typing.Optional[str] = None, 1594 **kwargs, 1595 ) -> "StatefulClient": ... 1596 1597 def score( 1598 self, 1599 *, 1600 name: str, 1601 value: typing.Union[float, str], 1602 data_type: typing.Optional[ScoreDataType] = None, 1603 trace_id: typing.Optional[str] = None, 1604 id: typing.Optional[str] = None, 1605 comment: typing.Optional[str] = None, 1606 observation_id: typing.Optional[str] = None, 1607 config_id: typing.Optional[str] = None, 1608 **kwargs, 1609 ) -> "StatefulClient": 1610 """Create a score attached to a trace (and optionally an observation). 1611 1612 Args: 1613 name (str): Identifier of the score. 1614 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1615 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1616 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1617 trace_id (str): The id of the trace to which the score should be attached. 1618 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1619 comment (Optional[str]): Additional context/explanation of the score. 1620 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1621 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1622 **kwargs: Additional keyword arguments to include in the score. 1623 1624 Returns: 1625 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1626 1627 Example: 1628 ```python 1629 from langfuse import Langfuse 1630 1631 langfuse = Langfuse() 1632 1633 # Create a trace 1634 trace = langfuse.trace(name="example-application") 1635 1636 # Get id of created trace 1637 trace_id = trace.id 1638 1639 # Add score to the trace 1640 trace = langfuse.score( 1641 trace_id=trace_id, 1642 name="user-explicit-feedback", 1643 value=0.9, 1644 comment="I like how personalized the response is" 1645 ) 1646 ``` 1647 """ 1648 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1649 new_id = id or str(uuid.uuid4()) 1650 try: 1651 new_dict = { 1652 "id": new_id, 1653 "trace_id": trace_id, 1654 "observation_id": observation_id, 1655 "name": name, 1656 "value": value, 1657 "data_type": data_type, 1658 "comment": comment, 1659 "config_id": config_id, 1660 "environment": self.environment, 1661 **kwargs, 1662 } 1663 1664 self.log.debug(f"Creating score {new_dict}...") 1665 new_body = ScoreBody(**new_dict) 1666 1667 event = { 1668 "id": str(uuid.uuid4()), 1669 "type": "score-create", 1670 "body": new_body, 1671 } 1672 self.task_manager.add_task(event) 1673 1674 except Exception as e: 1675 self.log.exception(e) 1676 finally: 1677 if observation_id is not None: 1678 return StatefulClient( 1679 self.client, 1680 observation_id, 1681 StateType.OBSERVATION, 1682 trace_id, 1683 self.task_manager, 1684 self.environment, 1685 ) 1686 else: 1687 return StatefulClient( 1688 self.client, 1689 new_id, 1690 StateType.TRACE, 1691 new_id, 1692 self.task_manager, 1693 self.environment, 1694 ) 1695 1696 def span( 1697 self, 1698 *, 1699 id: typing.Optional[str] = None, 1700 trace_id: typing.Optional[str] = None, 1701 parent_observation_id: typing.Optional[str] = None, 1702 name: typing.Optional[str] = None, 1703 start_time: typing.Optional[dt.datetime] = None, 1704 end_time: typing.Optional[dt.datetime] = None, 1705 metadata: typing.Optional[typing.Any] = None, 1706 level: typing.Optional[SpanLevel] = None, 1707 status_message: typing.Optional[str] = None, 1708 input: typing.Optional[typing.Any] = None, 1709 output: typing.Optional[typing.Any] = None, 1710 version: typing.Optional[str] = None, 1711 **kwargs, 1712 ) -> "StatefulSpanClient": 1713 """Create a span. 1714 1715 A span represents durations of units of work in a trace. 1716 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1717 1718 If no trace_id is provided, a new trace is created just for this span. 1719 1720 Args: 1721 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1722 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1723 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1724 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1725 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1726 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1727 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1728 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1729 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1730 input (Optional[dict]): The input to the span. Can be any JSON object. 1731 output (Optional[dict]): The output to the span. Can be any JSON object. 1732 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1733 **kwargs: Additional keyword arguments to include in the span. 1734 1735 Returns: 1736 StatefulSpanClient: The created span. 1737 1738 Example: 1739 ```python 1740 from langfuse import Langfuse 1741 1742 langfuse = Langfuse() 1743 1744 trace = langfuse.trace(name = "llm-feature") 1745 1746 # Create a span 1747 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1748 1749 # Create a nested span 1750 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1751 ``` 1752 """ 1753 new_span_id = id or str(uuid.uuid4()) 1754 new_trace_id = trace_id or str(uuid.uuid4()) 1755 self.trace_id = new_trace_id 1756 try: 1757 span_body = { 1758 "id": new_span_id, 1759 "trace_id": new_trace_id, 1760 "name": name, 1761 "start_time": start_time or _get_timestamp(), 1762 "metadata": metadata, 1763 "input": input, 1764 "output": output, 1765 "level": level, 1766 "status_message": status_message, 1767 "parent_observation_id": parent_observation_id, 1768 "version": version, 1769 "end_time": end_time, 1770 "trace": {"release": self.release}, 1771 "environment": self.environment, 1772 **kwargs, 1773 } 1774 1775 if trace_id is None: 1776 self._generate_trace(new_trace_id, name or new_trace_id) 1777 1778 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1779 1780 span_body = CreateSpanBody(**span_body) 1781 1782 event = { 1783 "id": str(uuid.uuid4()), 1784 "type": "span-create", 1785 "body": span_body, 1786 } 1787 1788 self.task_manager.add_task(event) 1789 1790 except Exception as e: 1791 self.log.exception(e) 1792 finally: 1793 self._log_memory_usage() 1794 1795 return StatefulSpanClient( 1796 self.client, 1797 new_span_id, 1798 StateType.OBSERVATION, 1799 new_trace_id, 1800 self.task_manager, 1801 self.environment, 1802 ) 1803 1804 def event( 1805 self, 1806 *, 1807 id: typing.Optional[str] = None, 1808 trace_id: typing.Optional[str] = None, 1809 parent_observation_id: typing.Optional[str] = None, 1810 name: typing.Optional[str] = None, 1811 start_time: typing.Optional[dt.datetime] = None, 1812 metadata: typing.Optional[typing.Any] = None, 1813 input: typing.Optional[typing.Any] = None, 1814 output: typing.Optional[typing.Any] = None, 1815 level: typing.Optional[SpanLevel] = None, 1816 status_message: typing.Optional[str] = None, 1817 version: typing.Optional[str] = None, 1818 **kwargs, 1819 ) -> "StatefulSpanClient": 1820 """Create an event. 1821 1822 An event represents a discrete event in a trace. 1823 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1824 1825 If no trace_id is provided, a new trace is created just for this event. 1826 1827 Args: 1828 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1829 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1830 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1831 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1832 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1833 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1834 input (Optional[Any]): The input to the event. Can be any JSON object. 1835 output (Optional[Any]): The output to the event. Can be any JSON object. 1836 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1837 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1838 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1839 **kwargs: Additional keyword arguments to include in the event. 1840 1841 Returns: 1842 StatefulSpanClient: The created event. 1843 1844 Example: 1845 ```python 1846 from langfuse import Langfuse 1847 1848 langfuse = Langfuse() 1849 1850 trace = langfuse.trace(name = "llm-feature") 1851 1852 # Create an event 1853 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1854 ``` 1855 """ 1856 event_id = id or str(uuid.uuid4()) 1857 new_trace_id = trace_id or str(uuid.uuid4()) 1858 self.trace_id = new_trace_id 1859 try: 1860 event_body = { 1861 "id": event_id, 1862 "trace_id": new_trace_id, 1863 "name": name, 1864 "start_time": start_time or _get_timestamp(), 1865 "metadata": metadata, 1866 "input": input, 1867 "output": output, 1868 "level": level, 1869 "status_message": status_message, 1870 "parent_observation_id": parent_observation_id, 1871 "version": version, 1872 "trace": {"release": self.release}, 1873 "environment": self.environment, 1874 **kwargs, 1875 } 1876 1877 if trace_id is None: 1878 self._generate_trace(new_trace_id, name or new_trace_id) 1879 1880 request = CreateEventBody(**event_body) 1881 1882 event = { 1883 "id": str(uuid.uuid4()), 1884 "type": "event-create", 1885 "body": request, 1886 } 1887 1888 self.log.debug( 1889 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1890 ) 1891 self.task_manager.add_task(event) 1892 1893 except Exception as e: 1894 self.log.exception(e) 1895 finally: 1896 return StatefulSpanClient( 1897 self.client, 1898 event_id, 1899 StateType.OBSERVATION, 1900 new_trace_id, 1901 self.task_manager, 1902 self.environment, 1903 ) 1904 1905 def generation( 1906 self, 1907 *, 1908 id: typing.Optional[str] = None, 1909 trace_id: typing.Optional[str] = None, 1910 parent_observation_id: typing.Optional[str] = None, 1911 name: typing.Optional[str] = None, 1912 start_time: typing.Optional[dt.datetime] = None, 1913 end_time: typing.Optional[dt.datetime] = None, 1914 completion_start_time: typing.Optional[dt.datetime] = None, 1915 metadata: typing.Optional[typing.Any] = None, 1916 level: typing.Optional[SpanLevel] = None, 1917 status_message: typing.Optional[str] = None, 1918 version: typing.Optional[str] = None, 1919 model: typing.Optional[str] = None, 1920 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1921 input: typing.Optional[typing.Any] = None, 1922 output: typing.Optional[typing.Any] = None, 1923 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1924 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1925 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1926 prompt: typing.Optional[PromptClient] = None, 1927 **kwargs, 1928 ) -> "StatefulGenerationClient": 1929 """Create a generation. 1930 1931 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1932 1933 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1934 1935 If no trace_id is provided, a new trace is created just for this generation. 1936 1937 Args: 1938 id (Optional[str]): The id of the generation can be set, defaults to random id. 1939 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1940 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1941 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1942 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1943 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1944 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1945 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1946 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1947 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1948 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1949 model (Optional[str]): The name of the model used for the generation. 1950 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1951 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1952 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1953 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1954 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1955 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1956 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1957 **kwargs: Additional keyword arguments to include in the generation. 1958 1959 Returns: 1960 StatefulGenerationClient: The created generation. 1961 1962 Example: 1963 ```python 1964 from langfuse import Langfuse 1965 1966 langfuse = Langfuse() 1967 1968 # Create a generation in Langfuse 1969 generation = langfuse.generation( 1970 name="summary-generation", 1971 model="gpt-3.5-turbo", 1972 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1973 input=[{"role": "system", "content": "You are a helpful assistant."}, 1974 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1975 metadata={"interface": "whatsapp"} 1976 ) 1977 ``` 1978 """ 1979 new_trace_id = trace_id or str(uuid.uuid4()) 1980 new_generation_id = id or str(uuid.uuid4()) 1981 self.trace_id = new_trace_id 1982 try: 1983 generation_body = { 1984 "id": new_generation_id, 1985 "trace_id": new_trace_id, 1986 "release": self.release, 1987 "name": name, 1988 "start_time": start_time or _get_timestamp(), 1989 "metadata": metadata, 1990 "input": input, 1991 "output": output, 1992 "level": level, 1993 "status_message": status_message, 1994 "parent_observation_id": parent_observation_id, 1995 "version": version, 1996 "end_time": end_time, 1997 "completion_start_time": completion_start_time, 1998 "model": model, 1999 "model_parameters": model_parameters, 2000 "usage": _convert_usage_input(usage) if usage is not None else None, 2001 "usage_details": usage_details, 2002 "cost_details": cost_details, 2003 "trace": {"release": self.release}, 2004 "environment": self.environment, 2005 **_create_prompt_context(prompt), 2006 **kwargs, 2007 } 2008 2009 if trace_id is None: 2010 trace = { 2011 "id": new_trace_id, 2012 "release": self.release, 2013 "name": name, 2014 "environment": self.environment, 2015 } 2016 request = TraceBody(**trace) 2017 2018 event = { 2019 "id": str(uuid.uuid4()), 2020 "type": "trace-create", 2021 "body": request, 2022 } 2023 2024 self.log.debug("Creating trace...") 2025 2026 self.task_manager.add_task(event) 2027 2028 self.log.debug( 2029 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2030 ) 2031 request = CreateGenerationBody(**generation_body) 2032 2033 event = { 2034 "id": str(uuid.uuid4()), 2035 "type": "generation-create", 2036 "body": request, 2037 } 2038 2039 self.task_manager.add_task(event) 2040 2041 except Exception as e: 2042 self.log.exception(e) 2043 finally: 2044 return StatefulGenerationClient( 2045 self.client, 2046 new_generation_id, 2047 StateType.OBSERVATION, 2048 new_trace_id, 2049 self.task_manager, 2050 self.environment, 2051 ) 2052 2053 def _generate_trace(self, trace_id: str, name: str): 2054 trace_dict = { 2055 "id": trace_id, 2056 "release": self.release, 2057 "name": name, 2058 "environment": self.environment, 2059 } 2060 2061 trace_body = TraceBody(**trace_dict) 2062 2063 event = { 2064 "id": str(uuid.uuid4()), 2065 "type": "trace-create", 2066 "body": trace_body, 2067 } 2068 2069 self.log.debug(f"Creating trace {_filter_io_from_event_body(trace_dict)}...") 2070 self.task_manager.add_task(event) 2071 2072 def join(self): 2073 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2074 2075 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2076 To guarantee all messages have been delivered, you still need to call flush(). 2077 """ 2078 try: 2079 return self.task_manager.join() 2080 except Exception as e: 2081 self.log.exception(e) 2082 2083 def flush(self): 2084 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2085 2086 Example: 2087 ```python 2088 from langfuse import Langfuse 2089 2090 langfuse = Langfuse() 2091 2092 # Some operations with Langfuse 2093 2094 # Flushing all events to end Langfuse cleanly 2095 langfuse.flush() 2096 ``` 2097 """ 2098 try: 2099 return self.task_manager.flush() 2100 except Exception as e: 2101 self.log.exception(e) 2102 2103 def shutdown(self): 2104 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2105 2106 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2107 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2108 """ 2109 try: 2110 self.prompt_cache._task_manager.shutdown() 2111 2112 # In logging.py, a handler is attached to the httpx logger. 2113 # To avoid a memory leak on singleton reset, remove all handlers 2114 httpx_logger = logging.getLogger("httpx") 2115 for handler in httpx_logger.handlers: 2116 httpx_logger.removeHandler(handler) 2117 2118 return self.task_manager.shutdown() 2119 except Exception as e: 2120 self.log.exception(e)
Langfuse Python client.
Attributes:
- log (logging.Logger): Logger for the Langfuse client.
- base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction.
- httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API.
- client (FernLangfuse): Core interface for Langfuse API interaction.
- task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks.
- release (str): Identifies the release number or hash of the application.
- prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances.
Example:
Initiating the Langfuse client should always be first step to use Langfuse.
import os from langfuse import Langfuse # Set the public and secret keys as environment variables os.environ['LANGFUSE_PUBLIC_KEY'] = public_key os.environ['LANGFUSE_SECRET_KEY'] = secret_key # Initialize the Langfuse client using the credentials langfuse = Langfuse()
175 def __init__( 176 self, 177 public_key: Optional[str] = None, 178 secret_key: Optional[str] = None, 179 host: Optional[str] = None, 180 release: Optional[str] = None, 181 debug: bool = False, 182 threads: Optional[int] = None, 183 flush_at: Optional[int] = None, 184 flush_interval: Optional[float] = None, 185 max_retries: Optional[int] = None, 186 timeout: Optional[int] = None, # seconds 187 sdk_integration: Optional[str] = "default", 188 httpx_client: Optional[httpx.Client] = None, 189 enabled: Optional[bool] = True, 190 sample_rate: Optional[float] = None, 191 mask: Optional[MaskFunction] = None, 192 environment: Optional[str] = None, 193 ): 194 """Initialize the Langfuse client. 195 196 Args: 197 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 198 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 199 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 200 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 201 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 202 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 203 flush_at: Max batch size that's sent to the API. 204 flush_interval: Max delay until a new batch is sent to the API. 205 max_retries: Max number of retries in case of API/network errors. 206 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 207 httpx_client: Pass your own httpx client for more customizability of requests. 208 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 209 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 210 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 211 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 212 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 213 214 Raises: 215 ValueError: If public_key or secret_key are not set and not found in environment variables. 216 217 Example: 218 Initiating the Langfuse client should always be first step to use Langfuse. 219 ```python 220 import os 221 from langfuse import Langfuse 222 223 # Set the public and secret keys as environment variables 224 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 225 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 226 227 # Initialize the Langfuse client using the credentials 228 langfuse = Langfuse() 229 ``` 230 """ 231 self.enabled = enabled 232 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 233 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 234 sample_rate = ( 235 sample_rate 236 if sample_rate 237 is not None # needs explicit None check, as 0 is a valid value 238 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 239 ) 240 241 if sample_rate is not None and ( 242 sample_rate > 1 or sample_rate < 0 243 ): # default value 1 will be set in the taskmanager 244 self.enabled = False 245 self.log.warning( 246 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 247 ) 248 249 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 250 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 251 flush_interval = flush_interval or float( 252 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 253 ) 254 255 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 256 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 257 258 if not self.enabled: 259 self.log.warning( 260 "Langfuse client is disabled. No observability data will be sent." 261 ) 262 263 elif not public_key: 264 self.enabled = False 265 self.log.warning( 266 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 267 ) 268 269 elif not secret_key: 270 self.enabled = False 271 self.log.warning( 272 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 273 ) 274 275 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 276 277 if set_debug is True: 278 # Ensures that debug level messages are logged when debug mode is on. 279 # Otherwise, defaults to WARNING level. 280 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 281 logging.basicConfig() 282 # Set level for all loggers under langfuse package 283 logging.getLogger("langfuse").setLevel(logging.DEBUG) 284 285 clean_logger() 286 else: 287 logging.getLogger("langfuse").setLevel(logging.WARNING) 288 clean_logger() 289 290 self.base_url = ( 291 host 292 if host 293 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 294 ) 295 296 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 297 298 if self.environment and not bool( 299 re.match(ENVIRONMENT_PATTERN, self.environment) 300 ): 301 self.log.error( 302 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 303 ) 304 305 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 306 307 public_api_client = FernLangfuse( 308 base_url=self.base_url, 309 username=public_key, 310 password=secret_key, 311 x_langfuse_sdk_name="python", 312 x_langfuse_sdk_version=version, 313 x_langfuse_public_key=public_key, 314 httpx_client=self.httpx_client, 315 timeout=timeout, 316 ) 317 async_public_api_client = AsyncFernLangfuse( 318 base_url=self.base_url, 319 username=public_key, 320 password=secret_key, 321 x_langfuse_sdk_name="python", 322 x_langfuse_sdk_version=version, 323 x_langfuse_public_key=public_key, 324 timeout=timeout, 325 ) 326 327 self.api = public_api_client 328 self.client = public_api_client # legacy, to be removed in next major release 329 self.async_api = async_public_api_client 330 331 langfuse_client = LangfuseClient( 332 public_key=public_key, 333 secret_key=secret_key, 334 base_url=self.base_url, 335 version=version, 336 timeout=timeout, 337 session=self.httpx_client, 338 ) 339 340 args = { 341 "threads": threads, 342 "flush_at": flush_at, 343 "flush_interval": flush_interval, 344 "max_retries": max_retries, 345 "client": langfuse_client, 346 "api_client": self.client, 347 "public_key": public_key, 348 "sdk_name": "python", 349 "sdk_version": version, 350 "sdk_integration": sdk_integration, 351 "enabled": self.enabled, 352 "sample_rate": sample_rate, 353 "mask": mask, 354 } 355 356 self.task_manager = TaskManager(**args) 357 358 self.trace_id = None 359 self.project_id = None 360 361 self.release = self._get_release_value(release) 362 363 self.prompt_cache = PromptCache()
Initialize the Langfuse client.
Arguments:
- public_key: Public API key of Langfuse project. Can be set via
LANGFUSE_PUBLIC_KEY
environment variable. - secret_key: Secret API key of Langfuse project. Can be set via
LANGFUSE_SECRET_KEY
environment variable. - host: Host of Langfuse API. Can be set via
LANGFUSE_HOST
environment variable. Defaults tohttps://cloud.langfuse.com
. - release: Release number/hash of the application to provide analytics grouped by release. Can be set via
LANGFUSE_RELEASE
environment variable. - debug: Enables debug mode for more verbose logging. Can be set via
LANGFUSE_DEBUG
environment variable. - threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues.
- flush_at: Max batch size that's sent to the API.
- flush_interval: Max delay until a new batch is sent to the API.
- max_retries: Max number of retries in case of API/network errors.
- timeout: Timeout of API requests in seconds. Defaults to 20 seconds.
- httpx_client: Pass your own httpx client for more customizability of requests.
- sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly.
- enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops.
- sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via
LANGFUSE_SAMPLE_RATE
environment variable. - mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument
data
and return a serializable, masked version of the data. - environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via
LANGFUSE_TRACING_ENVIRONMENT
environment variable.
Raises:
- ValueError: If public_key or secret_key are not set and not found in environment variables.
Example:
Initiating the Langfuse client should always be first step to use Langfuse.
import os from langfuse import Langfuse # Set the public and secret keys as environment variables os.environ['LANGFUSE_PUBLIC_KEY'] = public_key os.environ['LANGFUSE_SECRET_KEY'] = secret_key # Initialize the Langfuse client using the credentials langfuse = Langfuse()
388 def get_trace_url(self) -> str: 389 """Get the URL of the current trace to view it in the Langfuse UI.""" 390 project_id = self._get_project_id() 391 if not project_id: 392 return f"{self.base_url}/trace/{self.trace_id}" 393 394 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}"
Get the URL of the current trace to view it in the Langfuse UI.
396 def get_dataset( 397 self, name: str, *, fetch_items_page_size: Optional[int] = 50 398 ) -> "DatasetClient": 399 """Fetch a dataset by its name. 400 401 Args: 402 name (str): The name of the dataset to fetch. 403 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 404 405 Returns: 406 DatasetClient: The dataset with the given name. 407 """ 408 try: 409 self.log.debug(f"Getting datasets {name}") 410 dataset = self.client.datasets.get(dataset_name=name) 411 412 dataset_items = [] 413 page = 1 414 while True: 415 new_items = self.client.dataset_items.list( 416 dataset_name=self._url_encode(name), 417 page=page, 418 limit=fetch_items_page_size, 419 ) 420 dataset_items.extend(new_items.data) 421 if new_items.meta.total_pages <= page: 422 break 423 page += 1 424 425 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 426 427 return DatasetClient(dataset, items=items) 428 except Exception as e: 429 handle_fern_exception(e) 430 raise e
Fetch a dataset by its name.
Arguments:
- name (str): The name of the dataset to fetch.
- fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:
DatasetClient: The dataset with the given name.
432 def get_dataset_item(self, id: str) -> "DatasetItemClient": 433 """Get the dataset item with the given id.""" 434 try: 435 self.log.debug(f"Getting dataset item {id}") 436 dataset_item = self.client.dataset_items.get(id=id) 437 return DatasetItemClient(dataset_item, langfuse=self) 438 except Exception as e: 439 handle_fern_exception(e) 440 raise e
Get the dataset item with the given id.
442 def auth_check(self) -> bool: 443 """Check if the provided credentials (public and secret key) are valid. 444 445 Raises: 446 Exception: If no projects were found for the provided credentials. 447 448 Note: 449 This method is blocking. It is discouraged to use it in production code. 450 """ 451 try: 452 projects = self.client.projects.get() 453 self.log.debug( 454 f"Auth check successful, found {len(projects.data)} projects" 455 ) 456 if len(projects.data) == 0: 457 raise Exception( 458 "Auth check failed, no project found for the keys provided." 459 ) 460 return True 461 462 except Exception as e: 463 handle_fern_exception(e) 464 raise e
Check if the provided credentials (public and secret key) are valid.
Raises:
- Exception: If no projects were found for the provided credentials.
Note:
This method is blocking. It is discouraged to use it in production code.
466 def get_dataset_runs( 467 self, 468 dataset_name: str, 469 *, 470 page: typing.Optional[int] = None, 471 limit: typing.Optional[int] = None, 472 ) -> PaginatedDatasetRuns: 473 """Get all dataset runs. 474 475 Args: 476 dataset_name (str): Name of the dataset. 477 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 478 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 479 480 Returns: 481 PaginatedDatasetRuns: The dataset runs. 482 """ 483 try: 484 self.log.debug("Getting dataset runs") 485 return self.client.datasets.get_runs( 486 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 487 ) 488 except Exception as e: 489 handle_fern_exception(e) 490 raise e
Get all dataset runs.
Arguments:
- dataset_name (str): Name of the dataset.
- page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None.
- limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50.
Returns:
PaginatedDatasetRuns: The dataset runs.
492 def get_dataset_run( 493 self, 494 dataset_name: str, 495 dataset_run_name: str, 496 ) -> DatasetRunWithItems: 497 """Get a dataset run. 498 499 Args: 500 dataset_name: Name of the dataset. 501 dataset_run_name: Name of the dataset run. 502 503 Returns: 504 DatasetRunWithItems: The dataset run. 505 """ 506 try: 507 self.log.debug( 508 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 509 ) 510 return self.client.datasets.get_run( 511 dataset_name=self._url_encode(dataset_name), 512 run_name=self._url_encode(dataset_run_name), 513 ) 514 except Exception as e: 515 handle_fern_exception(e) 516 raise e
Get a dataset run.
Arguments:
- dataset_name: Name of the dataset.
- dataset_run_name: Name of the dataset run.
Returns:
DatasetRunWithItems: The dataset run.
518 def create_dataset( 519 self, 520 name: str, 521 description: Optional[str] = None, 522 metadata: Optional[Any] = None, 523 ) -> Dataset: 524 """Create a dataset with the given name on Langfuse. 525 526 Args: 527 name: Name of the dataset to create. 528 description: Description of the dataset. Defaults to None. 529 metadata: Additional metadata. Defaults to None. 530 531 Returns: 532 Dataset: The created dataset as returned by the Langfuse API. 533 """ 534 try: 535 body = CreateDatasetRequest( 536 name=name, description=description, metadata=metadata 537 ) 538 self.log.debug(f"Creating datasets {body}") 539 return self.client.datasets.create(request=body) 540 except Exception as e: 541 handle_fern_exception(e) 542 raise e
Create a dataset with the given name on Langfuse.
Arguments:
- name: Name of the dataset to create.
- description: Description of the dataset. Defaults to None.
- metadata: Additional metadata. Defaults to None.
Returns:
Dataset: The created dataset as returned by the Langfuse API.
544 def create_dataset_item( 545 self, 546 dataset_name: str, 547 input: Optional[Any] = None, 548 expected_output: Optional[Any] = None, 549 metadata: Optional[Any] = None, 550 source_trace_id: Optional[str] = None, 551 source_observation_id: Optional[str] = None, 552 status: Optional[DatasetStatus] = None, 553 id: Optional[str] = None, 554 ) -> DatasetItem: 555 """Create a dataset item. 556 557 Upserts if an item with id already exists. 558 559 Args: 560 dataset_name: Name of the dataset in which the dataset item should be created. 561 input: Input data. Defaults to None. Can contain any dict, list or scalar. 562 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 563 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 564 source_trace_id: Id of the source trace. Defaults to None. 565 source_observation_id: Id of the source observation. Defaults to None. 566 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 567 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 568 569 Returns: 570 DatasetItem: The created dataset item as returned by the Langfuse API. 571 572 Example: 573 ```python 574 from langfuse import Langfuse 575 576 langfuse = Langfuse() 577 578 # Uploading items to the Langfuse dataset named "capital_cities" 579 langfuse.create_dataset_item( 580 dataset_name="capital_cities", 581 input={"input": {"country": "Italy"}}, 582 expected_output={"expected_output": "Rome"}, 583 metadata={"foo": "bar"} 584 ) 585 ``` 586 """ 587 try: 588 body = CreateDatasetItemRequest( 589 datasetName=dataset_name, 590 input=input, 591 expectedOutput=expected_output, 592 metadata=metadata, 593 sourceTraceId=source_trace_id, 594 sourceObservationId=source_observation_id, 595 status=status, 596 id=id, 597 ) 598 self.log.debug(f"Creating dataset item {body}") 599 return self.client.dataset_items.create(request=body) 600 except Exception as e: 601 handle_fern_exception(e) 602 raise e
Create a dataset item.
Upserts if an item with id already exists.
Arguments:
- dataset_name: Name of the dataset in which the dataset item should be created.
- input: Input data. Defaults to None. Can contain any dict, list or scalar.
- expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
- metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
- source_trace_id: Id of the source trace. Defaults to None.
- source_observation_id: Id of the source observation. Defaults to None.
- status: Status of the dataset item. Defaults to ACTIVE for newly created items.
- id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:
DatasetItem: The created dataset item as returned by the Langfuse API.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Uploading items to the Langfuse dataset named "capital_cities" langfuse.create_dataset_item( dataset_name="capital_cities", input={"input": {"country": "Italy"}}, expected_output={"expected_output": "Rome"}, metadata={"foo": "bar"} )
604 def fetch_trace( 605 self, 606 id: str, 607 ) -> FetchTraceResponse: 608 """Fetch a trace via the Langfuse API by its id. 609 610 Args: 611 id: The id of the trace to fetch. 612 613 Returns: 614 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 615 616 Raises: 617 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 618 """ 619 try: 620 self.log.debug(f"Getting trace {id}") 621 trace = self.client.trace.get(id) 622 return FetchTraceResponse(data=trace) 623 except Exception as e: 624 handle_fern_exception(e) 625 raise e
Fetch a trace via the Langfuse API by its id.
Arguments:
- id: The id of the trace to fetch.
Returns:
FetchTraceResponse: The trace with full details as returned by the Langfuse API on
data
.
Raises:
- Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request.
627 def get_trace( 628 self, 629 id: str, 630 ) -> TraceWithFullDetails: 631 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 632 633 Args: 634 id: The id of the trace to fetch. 635 636 Returns: 637 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 638 639 Raises: 640 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 641 """ 642 warnings.warn( 643 "get_trace is deprecated, use fetch_trace instead.", 644 DeprecationWarning, 645 ) 646 647 try: 648 self.log.debug(f"Getting trace {id}") 649 return self.client.trace.get(id) 650 except Exception as e: 651 handle_fern_exception(e) 652 raise e
Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead.
Arguments:
- id: The id of the trace to fetch.
Returns:
TraceWithFullDetails: The trace with full details as returned by the Langfuse API.
Raises:
- Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request.
654 def fetch_traces( 655 self, 656 *, 657 page: Optional[int] = None, 658 limit: Optional[int] = None, 659 user_id: Optional[str] = None, 660 name: Optional[str] = None, 661 session_id: Optional[str] = None, 662 from_timestamp: Optional[dt.datetime] = None, 663 to_timestamp: Optional[dt.datetime] = None, 664 order_by: Optional[str] = None, 665 tags: Optional[Union[str, Sequence[str]]] = None, 666 ) -> FetchTracesResponse: 667 """Fetch a list of traces in the current project matching the given parameters. 668 669 Args: 670 page (Optional[int]): Page number, starts at 1. Defaults to None. 671 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 672 name (Optional[str]): Filter by name of traces. Defaults to None. 673 user_id (Optional[str]): Filter by user_id. Defaults to None. 674 session_id (Optional[str]): Filter by session_id. Defaults to None. 675 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 676 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 677 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 678 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 679 680 Returns: 681 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 682 683 Raises: 684 Exception: If an error occurred during the request. 685 """ 686 try: 687 self.log.debug( 688 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 689 ) 690 res = self.client.trace.list( 691 page=page, 692 limit=limit, 693 name=name, 694 user_id=user_id, 695 session_id=session_id, 696 from_timestamp=from_timestamp, 697 to_timestamp=to_timestamp, 698 order_by=order_by, 699 tags=tags, 700 ) 701 return FetchTracesResponse(data=res.data, meta=res.meta) 702 except Exception as e: 703 handle_fern_exception(e) 704 raise e
Fetch a list of traces in the current project matching the given parameters.
Arguments:
- page (Optional[int]): Page number, starts at 1. Defaults to None.
- limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None.
- name (Optional[str]): Filter by name of traces. Defaults to None.
- user_id (Optional[str]): Filter by user_id. Defaults to None.
- session_id (Optional[str]): Filter by session_id. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None.
- order_by (Optional[str]): Format of the string
[field].[asc/desc]
. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example:timestamp.asc
. Defaults to None. - tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None.
Returns:
FetchTracesResponse, list of traces on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
706 def get_traces( 707 self, 708 *, 709 page: Optional[int] = None, 710 limit: Optional[int] = None, 711 user_id: Optional[str] = None, 712 name: Optional[str] = None, 713 session_id: Optional[str] = None, 714 from_timestamp: Optional[dt.datetime] = None, 715 to_timestamp: Optional[dt.datetime] = None, 716 order_by: Optional[str] = None, 717 tags: Optional[Union[str, Sequence[str]]] = None, 718 ) -> Traces: 719 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 720 721 Args: 722 page (Optional[int]): Page number, starts at 1. Defaults to None. 723 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 724 name (Optional[str]): Filter by name of traces. Defaults to None. 725 user_id (Optional[str]): Filter by user_id. Defaults to None. 726 session_id (Optional[str]): Filter by session_id. Defaults to None. 727 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 728 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 729 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 730 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 731 732 Returns: 733 List of Traces 734 735 Raises: 736 Exception: If an error occurred during the request. 737 """ 738 warnings.warn( 739 "get_traces is deprecated, use fetch_traces instead.", 740 DeprecationWarning, 741 ) 742 try: 743 self.log.debug( 744 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 745 ) 746 return self.client.trace.list( 747 page=page, 748 limit=limit, 749 name=name, 750 user_id=user_id, 751 session_id=session_id, 752 from_timestamp=from_timestamp, 753 to_timestamp=to_timestamp, 754 order_by=order_by, 755 tags=tags, 756 ) 757 except Exception as e: 758 handle_fern_exception(e) 759 raise e
Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead.
Arguments:
- page (Optional[int]): Page number, starts at 1. Defaults to None.
- limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None.
- name (Optional[str]): Filter by name of traces. Defaults to None.
- user_id (Optional[str]): Filter by user_id. Defaults to None.
- session_id (Optional[str]): Filter by session_id. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None.
- order_by (Optional[str]): Format of the string
[field].[asc/desc]
. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example:timestamp.asc
. Defaults to None. - tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None.
Returns:
List of Traces
Raises:
- Exception: If an error occurred during the request.
761 def fetch_observations( 762 self, 763 *, 764 page: typing.Optional[int] = None, 765 limit: typing.Optional[int] = None, 766 name: typing.Optional[str] = None, 767 user_id: typing.Optional[str] = None, 768 trace_id: typing.Optional[str] = None, 769 parent_observation_id: typing.Optional[str] = None, 770 from_start_time: typing.Optional[dt.datetime] = None, 771 to_start_time: typing.Optional[dt.datetime] = None, 772 type: typing.Optional[str] = None, 773 ) -> FetchObservationsResponse: 774 """Get a list of observations in the current project matching the given parameters. 775 776 Args: 777 page (Optional[int]): Page number of the observations to return. Defaults to None. 778 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 779 name (Optional[str]): Name of the observations to return. Defaults to None. 780 user_id (Optional[str]): User identifier. Defaults to None. 781 trace_id (Optional[str]): Trace identifier. Defaults to None. 782 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 783 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 784 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 785 type (Optional[str]): Type of the observation. Defaults to None. 786 787 Returns: 788 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 789 790 Raises: 791 Exception: If an error occurred during the request. 792 """ 793 try: 794 self.log.debug( 795 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 796 ) 797 res = self.client.observations.get_many( 798 page=page, 799 limit=limit, 800 name=name, 801 user_id=user_id, 802 trace_id=trace_id, 803 parent_observation_id=parent_observation_id, 804 from_start_time=from_start_time, 805 to_start_time=to_start_time, 806 type=type, 807 ) 808 return FetchObservationsResponse(data=res.data, meta=res.meta) 809 except Exception as e: 810 self.log.exception(e) 811 raise e
Get a list of observations in the current project matching the given parameters.
Arguments:
- page (Optional[int]): Page number of the observations to return. Defaults to None.
- limit (Optional[int]): Maximum number of observations to return. Defaults to None.
- name (Optional[str]): Name of the observations to return. Defaults to None.
- user_id (Optional[str]): User identifier. Defaults to None.
- trace_id (Optional[str]): Trace identifier. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- type (Optional[str]): Type of the observation. Defaults to None.
Returns:
FetchObservationsResponse, list of observations on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
813 def get_observations( 814 self, 815 *, 816 page: typing.Optional[int] = None, 817 limit: typing.Optional[int] = None, 818 name: typing.Optional[str] = None, 819 user_id: typing.Optional[str] = None, 820 trace_id: typing.Optional[str] = None, 821 parent_observation_id: typing.Optional[str] = None, 822 from_start_time: typing.Optional[dt.datetime] = None, 823 to_start_time: typing.Optional[dt.datetime] = None, 824 type: typing.Optional[str] = None, 825 ) -> ObservationsViews: 826 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 827 828 Args: 829 page (Optional[int]): Page number of the observations to return. Defaults to None. 830 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 831 name (Optional[str]): Name of the observations to return. Defaults to None. 832 user_id (Optional[str]): User identifier. Defaults to None. 833 trace_id (Optional[str]): Trace identifier. Defaults to None. 834 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 835 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 836 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 837 type (Optional[str]): Type of the observation. Defaults to None. 838 839 Returns: 840 List of ObservationsViews: List of observations in the project matching the given parameters. 841 842 Raises: 843 Exception: If an error occurred during the request. 844 """ 845 warnings.warn( 846 "get_observations is deprecated, use fetch_observations instead.", 847 DeprecationWarning, 848 ) 849 try: 850 self.log.debug( 851 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 852 ) 853 return self.client.observations.get_many( 854 page=page, 855 limit=limit, 856 name=name, 857 user_id=user_id, 858 trace_id=trace_id, 859 parent_observation_id=parent_observation_id, 860 from_start_time=from_start_time, 861 to_start_time=to_start_time, 862 type=type, 863 ) 864 except Exception as e: 865 handle_fern_exception(e) 866 raise e
Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead.
Arguments:
- page (Optional[int]): Page number of the observations to return. Defaults to None.
- limit (Optional[int]): Maximum number of observations to return. Defaults to None.
- name (Optional[str]): Name of the observations to return. Defaults to None.
- user_id (Optional[str]): User identifier. Defaults to None.
- trace_id (Optional[str]): Trace identifier. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- type (Optional[str]): Type of the observation. Defaults to None.
Returns:
List of ObservationsViews: List of observations in the project matching the given parameters.
Raises:
- Exception: If an error occurred during the request.
868 def get_generations( 869 self, 870 *, 871 page: typing.Optional[int] = None, 872 limit: typing.Optional[int] = None, 873 name: typing.Optional[str] = None, 874 user_id: typing.Optional[str] = None, 875 trace_id: typing.Optional[str] = None, 876 from_start_time: typing.Optional[dt.datetime] = None, 877 to_start_time: typing.Optional[dt.datetime] = None, 878 parent_observation_id: typing.Optional[str] = None, 879 ) -> ObservationsViews: 880 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 881 882 Args: 883 page (Optional[int]): Page number of the generations to return. Defaults to None. 884 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 885 name (Optional[str]): Name of the generations to return. Defaults to None. 886 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 887 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 888 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 889 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 890 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 891 892 Returns: 893 List of ObservationsViews: List of generations in the project matching the given parameters. 894 895 Raises: 896 Exception: If an error occurred during the request. 897 """ 898 warnings.warn( 899 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 900 DeprecationWarning, 901 ) 902 return self.get_observations( 903 page=page, 904 limit=limit, 905 name=name, 906 user_id=user_id, 907 trace_id=trace_id, 908 parent_observation_id=parent_observation_id, 909 from_start_time=from_start_time, 910 to_start_time=to_start_time, 911 type="GENERATION", 912 )
Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead.
Arguments:
- page (Optional[int]): Page number of the generations to return. Defaults to None.
- limit (Optional[int]): Maximum number of generations to return. Defaults to None.
- name (Optional[str]): Name of the generations to return. Defaults to None.
- user_id (Optional[str]): User identifier of the generations to return. Defaults to None.
- trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None.
Returns:
List of ObservationsViews: List of generations in the project matching the given parameters.
Raises:
- Exception: If an error occurred during the request.
914 def fetch_observation( 915 self, 916 id: str, 917 ) -> FetchObservationResponse: 918 """Get an observation in the current project with the given identifier. 919 920 Args: 921 id: The identifier of the observation to fetch. 922 923 Returns: 924 FetchObservationResponse: The observation with the given id on `data`. 925 926 Raises: 927 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 928 """ 929 try: 930 self.log.debug(f"Getting observation {id}") 931 observation = self.client.observations.get(id) 932 return FetchObservationResponse(data=observation) 933 except Exception as e: 934 handle_fern_exception(e) 935 raise e
Get an observation in the current project with the given identifier.
Arguments:
- id: The identifier of the observation to fetch.
Returns:
FetchObservationResponse: The observation with the given id on
data
.
Raises:
- Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request.
937 def fetch_media(self, id: str) -> FetchMediaResponse: 938 """Get media content by ID. 939 940 Args: 941 id: The identifier of the media content to fetch. 942 943 Returns: 944 FetchMediaResponse: The media data of the given id on `data`. 945 946 Raises: 947 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 948 """ 949 try: 950 return FetchMediaResponse(data=self.client.media.get(id)) 951 except Exception as e: 952 handle_fern_exception(e) 953 raise e
Get media content by ID.
Arguments:
- id: The identifier of the media content to fetch.
Returns:
FetchMediaResponse: The media data of the given id on
data
.
Raises:
- Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request.
955 def resolve_media_references( 956 self, 957 *, 958 obj: Any, 959 resolve_with: Literal["base64_data_uri"], 960 max_depth: int = 10, 961 content_fetch_timeout_seconds: int = 10, 962 ): 963 """Replace media reference strings in an object with base64 data URIs. 964 965 This method recursively traverses an object (up to max_depth) looking for media reference strings 966 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 967 the provided Langfuse client and replaces the reference string with a base64 data URI. 968 969 If fetching media content fails for a reference string, a warning is logged and the reference 970 string is left unchanged. 971 972 Args: 973 obj: The object to process. Can be a primitive value, array, or nested object. 974 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 975 resolve_with: The representation of the media content to replace the media reference string with. 976 Currently only "base64_data_uri" is supported. 977 max_depth: int: The maximum depth to traverse the object. Default is 10. 978 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 979 980 Returns: 981 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 982 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 983 984 Example: 985 obj = { 986 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 987 "nested": { 988 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 989 } 990 } 991 992 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 993 994 # Result: 995 # { 996 # "image": "...", 997 # "nested": { 998 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 999 # } 1000 # } 1001 """ 1002 return LangfuseMedia.resolve_media_references( 1003 langfuse_client=self, 1004 obj=obj, 1005 resolve_with=resolve_with, 1006 max_depth=max_depth, 1007 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1008 )
Replace media reference strings in an object with base64 data URIs.
This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.
If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.
Arguments:
- obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
- resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
- max_depth: int: The maximum depth to traverse the object. Default is 10.
- content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10.
Returns:
A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
Example:
obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }
result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
Result:
{
"image": "...",
"nested": {
"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
}
}
1010 def get_observation( 1011 self, 1012 id: str, 1013 ) -> Observation: 1014 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1015 1016 Args: 1017 id: The identifier of the observation to fetch. 1018 1019 Raises: 1020 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1021 """ 1022 warnings.warn( 1023 "get_observation is deprecated, use fetch_observation instead.", 1024 DeprecationWarning, 1025 ) 1026 try: 1027 self.log.debug(f"Getting observation {id}") 1028 return self.client.observations.get(id) 1029 except Exception as e: 1030 handle_fern_exception(e) 1031 raise e
Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead.
Arguments:
- id: The identifier of the observation to fetch.
Raises:
- Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request.
1033 def fetch_sessions( 1034 self, 1035 *, 1036 page: typing.Optional[int] = None, 1037 limit: typing.Optional[int] = None, 1038 from_timestamp: typing.Optional[dt.datetime] = None, 1039 to_timestamp: typing.Optional[dt.datetime] = None, 1040 ) -> FetchSessionsResponse: 1041 """Get a list of sessions in the current project. 1042 1043 Args: 1044 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1045 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1046 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1047 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1048 1049 Returns: 1050 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1051 1052 Raises: 1053 Exception: If an error occurred during the request. 1054 """ 1055 try: 1056 self.log.debug( 1057 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1058 ) 1059 res = self.client.sessions.list( 1060 page=page, 1061 limit=limit, 1062 from_timestamp=from_timestamp, 1063 to_timestamp=to_timestamp, 1064 ) 1065 return FetchSessionsResponse(data=res.data, meta=res.meta) 1066 except Exception as e: 1067 handle_fern_exception(e) 1068 raise e
Get a list of sessions in the current project.
Arguments:
- page (Optional[int]): Page number of the sessions to return. Defaults to None.
- limit (Optional[int]): Maximum number of sessions to return. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None.
Returns:
FetchSessionsResponse, list of sessions on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
1098 def get_prompt( 1099 self, 1100 name: str, 1101 version: Optional[int] = None, 1102 *, 1103 label: Optional[str] = None, 1104 type: Literal["chat", "text"] = "text", 1105 cache_ttl_seconds: Optional[int] = None, 1106 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1107 max_retries: Optional[int] = None, 1108 fetch_timeout_seconds: Optional[int] = None, 1109 ) -> PromptClient: 1110 """Get a prompt. 1111 1112 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1113 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1114 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1115 return the expired prompt as a fallback. 1116 1117 Args: 1118 name (str): The name of the prompt to retrieve. 1119 1120 Keyword Args: 1121 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1122 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1123 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1124 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1125 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1126 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1127 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1128 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1129 1130 Returns: 1131 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1132 - TextPromptClient, if type argument is 'text'. 1133 - ChatPromptClient, if type argument is 'chat'. 1134 1135 Raises: 1136 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1137 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1138 """ 1139 if version is not None and label is not None: 1140 raise ValueError("Cannot specify both version and label at the same time.") 1141 1142 if not name: 1143 raise ValueError("Prompt name cannot be empty.") 1144 1145 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1146 bounded_max_retries = self._get_bounded_max_retries( 1147 max_retries, default_max_retries=2, max_retries_upper_bound=4 1148 ) 1149 1150 self.log.debug(f"Getting prompt '{cache_key}'") 1151 cached_prompt = self.prompt_cache.get(cache_key) 1152 1153 if cached_prompt is None or cache_ttl_seconds == 0: 1154 self.log.debug( 1155 f"Prompt '{cache_key}' not found in cache or caching disabled." 1156 ) 1157 try: 1158 return self._fetch_prompt_and_update_cache( 1159 name, 1160 version=version, 1161 label=label, 1162 ttl_seconds=cache_ttl_seconds, 1163 max_retries=bounded_max_retries, 1164 fetch_timeout_seconds=fetch_timeout_seconds, 1165 ) 1166 except Exception as e: 1167 if fallback: 1168 self.log.warning( 1169 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1170 ) 1171 1172 fallback_client_args = { 1173 "name": name, 1174 "prompt": fallback, 1175 "type": type, 1176 "version": version or 0, 1177 "config": {}, 1178 "labels": [label] if label else [], 1179 "tags": [], 1180 } 1181 1182 if type == "text": 1183 return TextPromptClient( 1184 prompt=Prompt_Text(**fallback_client_args), 1185 is_fallback=True, 1186 ) 1187 1188 if type == "chat": 1189 return ChatPromptClient( 1190 prompt=Prompt_Chat(**fallback_client_args), 1191 is_fallback=True, 1192 ) 1193 1194 raise e 1195 1196 if cached_prompt.is_expired(): 1197 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1198 try: 1199 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1200 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1201 self.prompt_cache.add_refresh_prompt_task( 1202 cache_key, 1203 lambda: self._fetch_prompt_and_update_cache( 1204 name, 1205 version=version, 1206 label=label, 1207 ttl_seconds=cache_ttl_seconds, 1208 max_retries=bounded_max_retries, 1209 fetch_timeout_seconds=fetch_timeout_seconds, 1210 ), 1211 ) 1212 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1213 # return stale prompt 1214 return cached_prompt.value 1215 1216 except Exception as e: 1217 self.log.warning( 1218 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1219 ) 1220 # creation of refresh prompt task failed, return stale prompt 1221 return cached_prompt.value 1222 1223 return cached_prompt.value
Get a prompt.
This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.
Arguments:
- name (str): The name of the prompt to retrieve.
Keyword Args:
version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the
production
label is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, theproduction
label is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default.
Returns:
The prompt object retrieved from the cache or directly fetched if not cached or expired of type
- TextPromptClient, if type argument is 'text'.
- ChatPromptClient, if type argument is 'chat'.
Raises:
- Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
- expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
1317 def create_prompt( 1318 self, 1319 *, 1320 name: str, 1321 prompt: Union[str, List[ChatMessageDict]], 1322 is_active: Optional[bool] = None, # deprecated 1323 labels: List[str] = [], 1324 tags: Optional[List[str]] = None, 1325 type: Optional[Literal["chat", "text"]] = "text", 1326 config: Optional[Any] = None, 1327 commit_message: Optional[str] = None, 1328 ) -> PromptClient: 1329 """Create a new prompt in Langfuse. 1330 1331 Keyword Args: 1332 name : The name of the prompt to be created. 1333 prompt : The content of the prompt to be created. 1334 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1335 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1336 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1337 config: Additional structured data to be saved with the prompt. Defaults to None. 1338 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1339 commit_message: Optional string describing the change. 1340 1341 Returns: 1342 TextPromptClient: The prompt if type argument is 'text'. 1343 ChatPromptClient: The prompt if type argument is 'chat'. 1344 """ 1345 try: 1346 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1347 1348 # Handle deprecated is_active flag 1349 if is_active: 1350 self.log.warning( 1351 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1352 ) 1353 1354 labels = labels if "production" in labels else labels + ["production"] 1355 1356 if type == "chat": 1357 if not isinstance(prompt, list): 1358 raise ValueError( 1359 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1360 ) 1361 request = CreatePromptRequest_Chat( 1362 name=name, 1363 prompt=prompt, 1364 labels=labels, 1365 tags=tags, 1366 config=config or {}, 1367 commitMessage=commit_message, 1368 type="chat", 1369 ) 1370 server_prompt = self.client.prompts.create(request=request) 1371 1372 return ChatPromptClient(prompt=server_prompt) 1373 1374 if not isinstance(prompt, str): 1375 raise ValueError("For 'text' type, 'prompt' must be a string.") 1376 1377 request = CreatePromptRequest_Text( 1378 name=name, 1379 prompt=prompt, 1380 labels=labels, 1381 tags=tags, 1382 config=config or {}, 1383 commitMessage=commit_message, 1384 type="text", 1385 ) 1386 1387 server_prompt = self.client.prompts.create(request=request) 1388 return TextPromptClient(prompt=server_prompt) 1389 1390 except Exception as e: 1391 handle_fern_exception(e) 1392 raise e
Create a new prompt in Langfuse.
Keyword Args:
name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.
Returns:
TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.
1394 def update_prompt( 1395 self, 1396 *, 1397 name: str, 1398 version: int, 1399 new_labels: List[str] = [], 1400 ): 1401 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1402 1403 Args: 1404 name (str): The name of the prompt to update. 1405 version (int): The version number of the prompt to update. 1406 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1407 1408 Returns: 1409 Prompt: The updated prompt from the Langfuse API. 1410 1411 """ 1412 updated_prompt = self.client.prompt_version.update( 1413 name=name, 1414 version=version, 1415 new_labels=new_labels, 1416 ) 1417 self.prompt_cache.invalidate(name) 1418 return updated_prompt
Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
Arguments:
- name (str): The name of the prompt to update.
- version (int): The version number of the prompt to update.
- new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:
Prompt: The updated prompt from the Langfuse API.
1423 def trace( 1424 self, 1425 *, 1426 id: typing.Optional[str] = None, 1427 name: typing.Optional[str] = None, 1428 user_id: typing.Optional[str] = None, 1429 session_id: typing.Optional[str] = None, 1430 version: typing.Optional[str] = None, 1431 input: typing.Optional[typing.Any] = None, 1432 output: typing.Optional[typing.Any] = None, 1433 metadata: typing.Optional[typing.Any] = None, 1434 tags: typing.Optional[typing.List[str]] = None, 1435 timestamp: typing.Optional[dt.datetime] = None, 1436 public: typing.Optional[bool] = None, 1437 **kwargs, 1438 ) -> "StatefulTraceClient": 1439 """Create a trace. 1440 1441 Args: 1442 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1443 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1444 input: The input of the trace. Can be any JSON object. 1445 output: The output of the trace. Can be any JSON object. 1446 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1447 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1448 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1449 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1450 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1451 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1452 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1453 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1454 **kwargs: Additional keyword arguments that can be included in the trace. 1455 1456 Returns: 1457 StatefulTraceClient: The created trace. 1458 1459 Example: 1460 ```python 1461 from langfuse import Langfuse 1462 1463 langfuse = Langfuse() 1464 1465 trace = langfuse.trace( 1466 name="example-application", 1467 user_id="user-1234") 1468 ) 1469 ``` 1470 """ 1471 new_id = id or str(uuid.uuid4()) 1472 self.trace_id = new_id 1473 try: 1474 new_dict = { 1475 "id": new_id, 1476 "name": name, 1477 "userId": user_id, 1478 "sessionId": session_id 1479 or kwargs.get("sessionId", None), # backward compatibility 1480 "release": self.release, 1481 "version": version, 1482 "metadata": metadata, 1483 "input": input, 1484 "output": output, 1485 "tags": tags, 1486 "timestamp": timestamp or _get_timestamp(), 1487 "public": public, 1488 "environment": self.environment, 1489 } 1490 if kwargs is not None: 1491 new_dict.update(kwargs) 1492 1493 new_body = TraceBody(**new_dict) 1494 1495 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1496 event = { 1497 "id": str(uuid.uuid4()), 1498 "type": "trace-create", 1499 "body": new_body, 1500 } 1501 1502 self.task_manager.add_task( 1503 event, 1504 ) 1505 1506 except Exception as e: 1507 self.log.exception(e) 1508 finally: 1509 self._log_memory_usage() 1510 1511 return StatefulTraceClient( 1512 self.client, 1513 new_id, 1514 StateType.TRACE, 1515 new_id, 1516 self.task_manager, 1517 self.environment, 1518 )
Create a trace.
Arguments:
- id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id.
- name: Identifier of the trace. Useful for sorting/filtering in the UI.
- input: The input of the trace. Can be any JSON object.
- output: The output of the trace. Can be any JSON object.
- metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API.
- user_id: The id of the user that triggered the execution. Used to provide user-level analytics.
- session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier.
- version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging.
- release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging.
- tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API.
- timestamp: The timestamp of the trace. Defaults to the current time if not provided.
- public: You can make a trace
public
to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. - **kwargs: Additional keyword arguments that can be included in the trace.
Returns:
StatefulTraceClient: The created trace.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace( name="example-application", user_id="user-1234") )
1597 def score( 1598 self, 1599 *, 1600 name: str, 1601 value: typing.Union[float, str], 1602 data_type: typing.Optional[ScoreDataType] = None, 1603 trace_id: typing.Optional[str] = None, 1604 id: typing.Optional[str] = None, 1605 comment: typing.Optional[str] = None, 1606 observation_id: typing.Optional[str] = None, 1607 config_id: typing.Optional[str] = None, 1608 **kwargs, 1609 ) -> "StatefulClient": 1610 """Create a score attached to a trace (and optionally an observation). 1611 1612 Args: 1613 name (str): Identifier of the score. 1614 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1615 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1616 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1617 trace_id (str): The id of the trace to which the score should be attached. 1618 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1619 comment (Optional[str]): Additional context/explanation of the score. 1620 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1621 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1622 **kwargs: Additional keyword arguments to include in the score. 1623 1624 Returns: 1625 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1626 1627 Example: 1628 ```python 1629 from langfuse import Langfuse 1630 1631 langfuse = Langfuse() 1632 1633 # Create a trace 1634 trace = langfuse.trace(name="example-application") 1635 1636 # Get id of created trace 1637 trace_id = trace.id 1638 1639 # Add score to the trace 1640 trace = langfuse.score( 1641 trace_id=trace_id, 1642 name="user-explicit-feedback", 1643 value=0.9, 1644 comment="I like how personalized the response is" 1645 ) 1646 ``` 1647 """ 1648 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1649 new_id = id or str(uuid.uuid4()) 1650 try: 1651 new_dict = { 1652 "id": new_id, 1653 "trace_id": trace_id, 1654 "observation_id": observation_id, 1655 "name": name, 1656 "value": value, 1657 "data_type": data_type, 1658 "comment": comment, 1659 "config_id": config_id, 1660 "environment": self.environment, 1661 **kwargs, 1662 } 1663 1664 self.log.debug(f"Creating score {new_dict}...") 1665 new_body = ScoreBody(**new_dict) 1666 1667 event = { 1668 "id": str(uuid.uuid4()), 1669 "type": "score-create", 1670 "body": new_body, 1671 } 1672 self.task_manager.add_task(event) 1673 1674 except Exception as e: 1675 self.log.exception(e) 1676 finally: 1677 if observation_id is not None: 1678 return StatefulClient( 1679 self.client, 1680 observation_id, 1681 StateType.OBSERVATION, 1682 trace_id, 1683 self.task_manager, 1684 self.environment, 1685 ) 1686 else: 1687 return StatefulClient( 1688 self.client, 1689 new_id, 1690 StateType.TRACE, 1691 new_id, 1692 self.task_manager, 1693 self.environment, 1694 )
Create a score attached to a trace (and optionally an observation).
Arguments:
- name (str): Identifier of the score.
- value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores.
- data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores.
- trace_id (str): The id of the trace to which the score should be attached.
- id (Optional[str]): The id of the score. If not provided, a new UUID is generated.
- comment (Optional[str]): Additional context/explanation of the score.
- observation_id (Optional[str]): The id of the observation to which the score should be attached.
- config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None.
- **kwargs: Additional keyword arguments to include in the score.
Returns:
StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided).
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name="example-application") # Get id of created trace trace_id = trace.id # Add score to the trace trace = langfuse.score( trace_id=trace_id, name="user-explicit-feedback", value=0.9, comment="I like how personalized the response is" )
1696 def span( 1697 self, 1698 *, 1699 id: typing.Optional[str] = None, 1700 trace_id: typing.Optional[str] = None, 1701 parent_observation_id: typing.Optional[str] = None, 1702 name: typing.Optional[str] = None, 1703 start_time: typing.Optional[dt.datetime] = None, 1704 end_time: typing.Optional[dt.datetime] = None, 1705 metadata: typing.Optional[typing.Any] = None, 1706 level: typing.Optional[SpanLevel] = None, 1707 status_message: typing.Optional[str] = None, 1708 input: typing.Optional[typing.Any] = None, 1709 output: typing.Optional[typing.Any] = None, 1710 version: typing.Optional[str] = None, 1711 **kwargs, 1712 ) -> "StatefulSpanClient": 1713 """Create a span. 1714 1715 A span represents durations of units of work in a trace. 1716 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1717 1718 If no trace_id is provided, a new trace is created just for this span. 1719 1720 Args: 1721 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1722 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1723 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1724 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1725 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1726 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1727 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1728 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1729 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1730 input (Optional[dict]): The input to the span. Can be any JSON object. 1731 output (Optional[dict]): The output to the span. Can be any JSON object. 1732 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1733 **kwargs: Additional keyword arguments to include in the span. 1734 1735 Returns: 1736 StatefulSpanClient: The created span. 1737 1738 Example: 1739 ```python 1740 from langfuse import Langfuse 1741 1742 langfuse = Langfuse() 1743 1744 trace = langfuse.trace(name = "llm-feature") 1745 1746 # Create a span 1747 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1748 1749 # Create a nested span 1750 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1751 ``` 1752 """ 1753 new_span_id = id or str(uuid.uuid4()) 1754 new_trace_id = trace_id or str(uuid.uuid4()) 1755 self.trace_id = new_trace_id 1756 try: 1757 span_body = { 1758 "id": new_span_id, 1759 "trace_id": new_trace_id, 1760 "name": name, 1761 "start_time": start_time or _get_timestamp(), 1762 "metadata": metadata, 1763 "input": input, 1764 "output": output, 1765 "level": level, 1766 "status_message": status_message, 1767 "parent_observation_id": parent_observation_id, 1768 "version": version, 1769 "end_time": end_time, 1770 "trace": {"release": self.release}, 1771 "environment": self.environment, 1772 **kwargs, 1773 } 1774 1775 if trace_id is None: 1776 self._generate_trace(new_trace_id, name or new_trace_id) 1777 1778 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1779 1780 span_body = CreateSpanBody(**span_body) 1781 1782 event = { 1783 "id": str(uuid.uuid4()), 1784 "type": "span-create", 1785 "body": span_body, 1786 } 1787 1788 self.task_manager.add_task(event) 1789 1790 except Exception as e: 1791 self.log.exception(e) 1792 finally: 1793 self._log_memory_usage() 1794 1795 return StatefulSpanClient( 1796 self.client, 1797 new_span_id, 1798 StateType.OBSERVATION, 1799 new_trace_id, 1800 self.task_manager, 1801 self.environment, 1802 )
Create a span.
A span represents durations of units of work in a trace. Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this span.
Arguments:
- id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id.
- trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated.
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The created span.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace(name = "llm-feature") # Create a span retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) # Create a nested span nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id)
1804 def event( 1805 self, 1806 *, 1807 id: typing.Optional[str] = None, 1808 trace_id: typing.Optional[str] = None, 1809 parent_observation_id: typing.Optional[str] = None, 1810 name: typing.Optional[str] = None, 1811 start_time: typing.Optional[dt.datetime] = None, 1812 metadata: typing.Optional[typing.Any] = None, 1813 input: typing.Optional[typing.Any] = None, 1814 output: typing.Optional[typing.Any] = None, 1815 level: typing.Optional[SpanLevel] = None, 1816 status_message: typing.Optional[str] = None, 1817 version: typing.Optional[str] = None, 1818 **kwargs, 1819 ) -> "StatefulSpanClient": 1820 """Create an event. 1821 1822 An event represents a discrete event in a trace. 1823 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1824 1825 If no trace_id is provided, a new trace is created just for this event. 1826 1827 Args: 1828 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1829 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1830 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1831 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1832 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1833 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1834 input (Optional[Any]): The input to the event. Can be any JSON object. 1835 output (Optional[Any]): The output to the event. Can be any JSON object. 1836 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1837 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1838 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1839 **kwargs: Additional keyword arguments to include in the event. 1840 1841 Returns: 1842 StatefulSpanClient: The created event. 1843 1844 Example: 1845 ```python 1846 from langfuse import Langfuse 1847 1848 langfuse = Langfuse() 1849 1850 trace = langfuse.trace(name = "llm-feature") 1851 1852 # Create an event 1853 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1854 ``` 1855 """ 1856 event_id = id or str(uuid.uuid4()) 1857 new_trace_id = trace_id or str(uuid.uuid4()) 1858 self.trace_id = new_trace_id 1859 try: 1860 event_body = { 1861 "id": event_id, 1862 "trace_id": new_trace_id, 1863 "name": name, 1864 "start_time": start_time or _get_timestamp(), 1865 "metadata": metadata, 1866 "input": input, 1867 "output": output, 1868 "level": level, 1869 "status_message": status_message, 1870 "parent_observation_id": parent_observation_id, 1871 "version": version, 1872 "trace": {"release": self.release}, 1873 "environment": self.environment, 1874 **kwargs, 1875 } 1876 1877 if trace_id is None: 1878 self._generate_trace(new_trace_id, name or new_trace_id) 1879 1880 request = CreateEventBody(**event_body) 1881 1882 event = { 1883 "id": str(uuid.uuid4()), 1884 "type": "event-create", 1885 "body": request, 1886 } 1887 1888 self.log.debug( 1889 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1890 ) 1891 self.task_manager.add_task(event) 1892 1893 except Exception as e: 1894 self.log.exception(e) 1895 finally: 1896 return StatefulSpanClient( 1897 self.client, 1898 event_id, 1899 StateType.OBSERVATION, 1900 new_trace_id, 1901 self.task_manager, 1902 self.environment, 1903 )
Create an event.
An event represents a discrete event in a trace. Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this event.
Arguments:
- id (Optional[str]): The id of the event can be set, otherwise a random id is generated.
- trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event.
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the event started, defaults to the current time.
- metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API.
- input (Optional[Any]): The input to the event. Can be any JSON object.
- output (Optional[Any]): The output to the event. Can be any JSON object.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the event.
Returns:
StatefulSpanClient: The created event.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace(name = "llm-feature") # Create an event retrieval = langfuse.event(name = "retrieval", trace_id = trace.id)
1905 def generation( 1906 self, 1907 *, 1908 id: typing.Optional[str] = None, 1909 trace_id: typing.Optional[str] = None, 1910 parent_observation_id: typing.Optional[str] = None, 1911 name: typing.Optional[str] = None, 1912 start_time: typing.Optional[dt.datetime] = None, 1913 end_time: typing.Optional[dt.datetime] = None, 1914 completion_start_time: typing.Optional[dt.datetime] = None, 1915 metadata: typing.Optional[typing.Any] = None, 1916 level: typing.Optional[SpanLevel] = None, 1917 status_message: typing.Optional[str] = None, 1918 version: typing.Optional[str] = None, 1919 model: typing.Optional[str] = None, 1920 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1921 input: typing.Optional[typing.Any] = None, 1922 output: typing.Optional[typing.Any] = None, 1923 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1924 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1925 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1926 prompt: typing.Optional[PromptClient] = None, 1927 **kwargs, 1928 ) -> "StatefulGenerationClient": 1929 """Create a generation. 1930 1931 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1932 1933 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1934 1935 If no trace_id is provided, a new trace is created just for this generation. 1936 1937 Args: 1938 id (Optional[str]): The id of the generation can be set, defaults to random id. 1939 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1940 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1941 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1942 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1943 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1944 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1945 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1946 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1947 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1948 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1949 model (Optional[str]): The name of the model used for the generation. 1950 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1951 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1952 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1953 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1954 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1955 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1956 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1957 **kwargs: Additional keyword arguments to include in the generation. 1958 1959 Returns: 1960 StatefulGenerationClient: The created generation. 1961 1962 Example: 1963 ```python 1964 from langfuse import Langfuse 1965 1966 langfuse = Langfuse() 1967 1968 # Create a generation in Langfuse 1969 generation = langfuse.generation( 1970 name="summary-generation", 1971 model="gpt-3.5-turbo", 1972 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1973 input=[{"role": "system", "content": "You are a helpful assistant."}, 1974 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1975 metadata={"interface": "whatsapp"} 1976 ) 1977 ``` 1978 """ 1979 new_trace_id = trace_id or str(uuid.uuid4()) 1980 new_generation_id = id or str(uuid.uuid4()) 1981 self.trace_id = new_trace_id 1982 try: 1983 generation_body = { 1984 "id": new_generation_id, 1985 "trace_id": new_trace_id, 1986 "release": self.release, 1987 "name": name, 1988 "start_time": start_time or _get_timestamp(), 1989 "metadata": metadata, 1990 "input": input, 1991 "output": output, 1992 "level": level, 1993 "status_message": status_message, 1994 "parent_observation_id": parent_observation_id, 1995 "version": version, 1996 "end_time": end_time, 1997 "completion_start_time": completion_start_time, 1998 "model": model, 1999 "model_parameters": model_parameters, 2000 "usage": _convert_usage_input(usage) if usage is not None else None, 2001 "usage_details": usage_details, 2002 "cost_details": cost_details, 2003 "trace": {"release": self.release}, 2004 "environment": self.environment, 2005 **_create_prompt_context(prompt), 2006 **kwargs, 2007 } 2008 2009 if trace_id is None: 2010 trace = { 2011 "id": new_trace_id, 2012 "release": self.release, 2013 "name": name, 2014 "environment": self.environment, 2015 } 2016 request = TraceBody(**trace) 2017 2018 event = { 2019 "id": str(uuid.uuid4()), 2020 "type": "trace-create", 2021 "body": request, 2022 } 2023 2024 self.log.debug("Creating trace...") 2025 2026 self.task_manager.add_task(event) 2027 2028 self.log.debug( 2029 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2030 ) 2031 request = CreateGenerationBody(**generation_body) 2032 2033 event = { 2034 "id": str(uuid.uuid4()), 2035 "type": "generation-create", 2036 "body": request, 2037 } 2038 2039 self.task_manager.add_task(event) 2040 2041 except Exception as e: 2042 self.log.exception(e) 2043 finally: 2044 return StatefulGenerationClient( 2045 self.client, 2046 new_generation_id, 2047 StateType.OBSERVATION, 2048 new_trace_id, 2049 self.task_manager, 2050 self.environment, 2051 )
Create a generation.
A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI.
Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this generation.
Arguments:
- id (Optional[str]): The id of the generation can be set, defaults to random id.
- trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The created generation.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a generation in Langfuse generation = langfuse.generation( name="summary-generation", model="gpt-3.5-turbo", model_parameters={"maxTokens": "1000", "temperature": "0.9"}, input=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Please generate a summary of the following documents ..."}], metadata={"interface": "whatsapp"} )
2072 def join(self): 2073 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2074 2075 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2076 To guarantee all messages have been delivered, you still need to call flush(). 2077 """ 2078 try: 2079 return self.task_manager.join() 2080 except Exception as e: 2081 self.log.exception(e)
Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter.
If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. To guarantee all messages have been delivered, you still need to call flush().
2083 def flush(self): 2084 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2085 2086 Example: 2087 ```python 2088 from langfuse import Langfuse 2089 2090 langfuse = Langfuse() 2091 2092 # Some operations with Langfuse 2093 2094 # Flushing all events to end Langfuse cleanly 2095 langfuse.flush() 2096 ``` 2097 """ 2098 try: 2099 return self.task_manager.flush() 2100 except Exception as e: 2101 self.log.exception(e)
Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Some operations with Langfuse # Flushing all events to end Langfuse cleanly langfuse.flush()
2103 def shutdown(self): 2104 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2105 2106 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2107 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2108 """ 2109 try: 2110 self.prompt_cache._task_manager.shutdown() 2111 2112 # In logging.py, a handler is attached to the httpx logger. 2113 # To avoid a memory leak on singleton reset, remove all handlers 2114 httpx_logger = logging.getLogger("httpx") 2115 for handler in httpx_logger.handlers: 2116 httpx_logger.removeHandler(handler) 2117 2118 return self.task_manager.shutdown() 2119 except Exception as e: 2120 self.log.exception(e)
Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated.
This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API.
2123class StateType(Enum): 2124 """Enum to distinguish observation and trace states. 2125 2126 Attributes: 2127 OBSERVATION (int): Observation state. 2128 TRACE (int): Trace state. 2129 """ 2130 2131 OBSERVATION = 1 2132 TRACE = 0
Enum to distinguish observation and trace states.
Attributes:
- OBSERVATION (int): Observation state.
- TRACE (int): Trace state.
Inherited Members
- enum.Enum
- name
- value
2135class StatefulClient(object): 2136 """Base class for handling stateful operations in the Langfuse system. 2137 2138 This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, 2139 associating them with either an observation or a trace based on the specified state type. 2140 2141 Attributes: 2142 client (FernLangfuse): Core interface for Langfuse API interactions. 2143 id (str): Unique identifier of the stateful client (either observation or trace). 2144 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2145 trace_id (str): Id of the trace associated with the stateful client. 2146 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2147 environment (Optional(str)): The tracing environment. 2148 """ 2149 2150 log = logging.getLogger("langfuse") 2151 2152 def __init__( 2153 self, 2154 client: FernLangfuse, 2155 id: str, 2156 state_type: StateType, 2157 trace_id: str, 2158 task_manager: TaskManager, 2159 environment: Optional[str] = None, 2160 ): 2161 """Initialize the StatefulClient. 2162 2163 Args: 2164 client (FernLangfuse): Core interface for Langfuse API interactions. 2165 id (str): Unique identifier of the stateful client (either observation or trace). 2166 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2167 trace_id (str): Id of the trace associated with the stateful client. 2168 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2169 """ 2170 self.client = client 2171 self.trace_id = trace_id 2172 self.id = id 2173 self.state_type = state_type 2174 self.task_manager = task_manager 2175 2176 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2177 2178 if self.environment and not bool( 2179 re.match(ENVIRONMENT_PATTERN, self.environment) 2180 ): 2181 self.log.warning( 2182 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2183 ) 2184 2185 def _add_state_to_event(self, body: dict): 2186 if self.state_type == StateType.OBSERVATION: 2187 body["parent_observation_id"] = self.id 2188 body["trace_id"] = self.trace_id 2189 else: 2190 body["trace_id"] = self.id 2191 return body 2192 2193 def _add_default_values(self, body: dict): 2194 if body.get("start_time") is None: 2195 body["start_time"] = _get_timestamp() 2196 return body 2197 2198 def generation( 2199 self, 2200 *, 2201 id: typing.Optional[str] = None, 2202 name: typing.Optional[str] = None, 2203 start_time: typing.Optional[dt.datetime] = None, 2204 end_time: typing.Optional[dt.datetime] = None, 2205 metadata: typing.Optional[typing.Any] = None, 2206 level: typing.Optional[SpanLevel] = None, 2207 status_message: typing.Optional[str] = None, 2208 version: typing.Optional[str] = None, 2209 completion_start_time: typing.Optional[dt.datetime] = None, 2210 model: typing.Optional[str] = None, 2211 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2212 input: typing.Optional[typing.Any] = None, 2213 output: typing.Optional[typing.Any] = None, 2214 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2215 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2216 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2217 prompt: typing.Optional[PromptClient] = None, 2218 **kwargs, 2219 ) -> "StatefulGenerationClient": 2220 """Create a generation nested within the current observation or trace. 2221 2222 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2223 2224 Args: 2225 id (Optional[str]): The id of the generation can be set, defaults to random id. 2226 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2227 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2228 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2229 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2230 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2231 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2232 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2233 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2234 model (Optional[str]): The name of the model used for the generation. 2235 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2236 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2237 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2238 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2239 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2240 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2241 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2242 **kwargs: Additional keyword arguments to include in the generation. 2243 2244 Returns: 2245 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2246 2247 Example: 2248 ```python 2249 from langfuse import Langfuse 2250 2251 langfuse = Langfuse() 2252 2253 # Create a trace 2254 trace = langfuse.trace(name = "llm-feature") 2255 2256 # Create a nested generation in Langfuse 2257 generation = trace.generation( 2258 name="summary-generation", 2259 model="gpt-3.5-turbo", 2260 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2261 input=[{"role": "system", "content": "You are a helpful assistant."}, 2262 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2263 metadata={"interface": "whatsapp"} 2264 ) 2265 ``` 2266 """ 2267 generation_id = id or str(uuid.uuid4()) 2268 try: 2269 generation_body = { 2270 "id": generation_id, 2271 "name": name, 2272 "start_time": start_time or _get_timestamp(), 2273 "metadata": metadata, 2274 "level": level, 2275 "status_message": status_message, 2276 "version": version, 2277 "end_time": end_time, 2278 "completion_start_time": completion_start_time, 2279 "model": model, 2280 "model_parameters": model_parameters, 2281 "input": input, 2282 "output": output, 2283 "usage": _convert_usage_input(usage) if usage is not None else None, 2284 "usage_details": usage_details, 2285 "cost_details": cost_details, 2286 "environment": self.environment, 2287 **_create_prompt_context(prompt), 2288 **kwargs, 2289 } 2290 2291 generation_body = self._add_state_to_event(generation_body) 2292 new_body = self._add_default_values(generation_body) 2293 2294 new_body = CreateGenerationBody(**new_body) 2295 2296 event = { 2297 "id": str(uuid.uuid4()), 2298 "type": "generation-create", 2299 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2300 } 2301 2302 self.log.debug( 2303 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2304 ) 2305 self.task_manager.add_task(event) 2306 2307 except Exception as e: 2308 self.log.exception(e) 2309 finally: 2310 return StatefulGenerationClient( 2311 self.client, 2312 generation_id, 2313 StateType.OBSERVATION, 2314 self.trace_id, 2315 self.task_manager, 2316 self.environment, 2317 ) 2318 2319 def span( 2320 self, 2321 *, 2322 id: typing.Optional[str] = None, 2323 name: typing.Optional[str] = None, 2324 start_time: typing.Optional[dt.datetime] = None, 2325 end_time: typing.Optional[dt.datetime] = None, 2326 metadata: typing.Optional[typing.Any] = None, 2327 input: typing.Optional[typing.Any] = None, 2328 output: typing.Optional[typing.Any] = None, 2329 level: typing.Optional[SpanLevel] = None, 2330 status_message: typing.Optional[str] = None, 2331 version: typing.Optional[str] = None, 2332 **kwargs, 2333 ) -> "StatefulSpanClient": 2334 """Create a span nested within the current observation or trace. 2335 2336 A span represents durations of units of work in a trace. 2337 2338 Args: 2339 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2340 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2341 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2342 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2343 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2344 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2345 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2346 input (Optional[dict]): The input to the span. Can be any JSON object. 2347 output (Optional[dict]): The output to the span. Can be any JSON object. 2348 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2349 **kwargs: Additional keyword arguments to include in the span. 2350 2351 Returns: 2352 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2353 2354 Example: 2355 ```python 2356 from langfuse import Langfuse 2357 2358 langfuse = Langfuse() 2359 2360 # Create a trace 2361 trace = langfuse.trace(name = "llm-feature") 2362 2363 # Create a span 2364 retrieval = langfuse.span(name = "retrieval") 2365 ``` 2366 """ 2367 span_id = id or str(uuid.uuid4()) 2368 try: 2369 span_body = { 2370 "id": span_id, 2371 "name": name, 2372 "start_time": start_time or _get_timestamp(), 2373 "metadata": metadata, 2374 "input": input, 2375 "output": output, 2376 "level": level, 2377 "status_message": status_message, 2378 "version": version, 2379 "end_time": end_time, 2380 "environment": self.environment, 2381 **kwargs, 2382 } 2383 2384 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2385 2386 new_dict = self._add_state_to_event(span_body) 2387 new_body = self._add_default_values(new_dict) 2388 2389 event = CreateSpanBody(**new_body) 2390 2391 event = { 2392 "id": str(uuid.uuid4()), 2393 "type": "span-create", 2394 "body": event, 2395 } 2396 2397 self.task_manager.add_task(event) 2398 except Exception as e: 2399 self.log.exception(e) 2400 finally: 2401 return StatefulSpanClient( 2402 self.client, 2403 span_id, 2404 StateType.OBSERVATION, 2405 self.trace_id, 2406 self.task_manager, 2407 self.environment, 2408 ) 2409 2410 @overload 2411 def score( 2412 self, 2413 *, 2414 id: typing.Optional[str] = None, 2415 name: str, 2416 value: float, 2417 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2418 comment: typing.Optional[str] = None, 2419 config_id: typing.Optional[str] = None, 2420 **kwargs, 2421 ) -> "StatefulClient": ... 2422 2423 @overload 2424 def score( 2425 self, 2426 *, 2427 id: typing.Optional[str] = None, 2428 name: str, 2429 value: str, 2430 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2431 comment: typing.Optional[str] = None, 2432 config_id: typing.Optional[str] = None, 2433 **kwargs, 2434 ) -> "StatefulClient": ... 2435 2436 def score( 2437 self, 2438 *, 2439 id: typing.Optional[str] = None, 2440 name: str, 2441 value: typing.Union[float, str], 2442 data_type: typing.Optional[ScoreDataType] = None, 2443 comment: typing.Optional[str] = None, 2444 config_id: typing.Optional[str] = None, 2445 **kwargs, 2446 ) -> "StatefulClient": 2447 """Create a score attached for the current observation or trace. 2448 2449 Args: 2450 name (str): Identifier of the score. 2451 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2452 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2453 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2454 comment (Optional[str]): Additional context/explanation of the score. 2455 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2456 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2457 **kwargs: Additional keyword arguments to include in the score. 2458 2459 Returns: 2460 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2461 2462 Example: 2463 ```python 2464 from langfuse import Langfuse 2465 2466 langfuse = Langfuse() 2467 2468 # Create a trace 2469 trace = langfuse.trace(name="example-application") 2470 2471 # Add score to the trace 2472 trace = trace.score( 2473 name="user-explicit-feedback", 2474 value=0.8, 2475 comment="I like how personalized the response is" 2476 ) 2477 ``` 2478 """ 2479 score_id = id or str(uuid.uuid4()) 2480 try: 2481 new_score = { 2482 "id": score_id, 2483 "trace_id": self.trace_id, 2484 "name": name, 2485 "value": value, 2486 "data_type": data_type, 2487 "comment": comment, 2488 "config_id": config_id, 2489 "environment": self.environment, 2490 **kwargs, 2491 } 2492 2493 self.log.debug(f"Creating score {new_score}...") 2494 2495 new_dict = self._add_state_to_event(new_score) 2496 2497 if self.state_type == StateType.OBSERVATION: 2498 new_dict["observationId"] = self.id 2499 2500 request = ScoreBody(**new_dict) 2501 2502 event = { 2503 "id": str(uuid.uuid4()), 2504 "type": "score-create", 2505 "body": request, 2506 } 2507 2508 self.task_manager.add_task(event) 2509 2510 except Exception as e: 2511 self.log.exception(e) 2512 finally: 2513 return StatefulClient( 2514 self.client, 2515 self.id, 2516 self.state_type, 2517 self.trace_id, 2518 self.task_manager, 2519 self.environment, 2520 ) 2521 2522 def event( 2523 self, 2524 *, 2525 id: typing.Optional[str] = None, 2526 name: typing.Optional[str] = None, 2527 start_time: typing.Optional[dt.datetime] = None, 2528 metadata: typing.Optional[typing.Any] = None, 2529 input: typing.Optional[typing.Any] = None, 2530 output: typing.Optional[typing.Any] = None, 2531 level: typing.Optional[SpanLevel] = None, 2532 status_message: typing.Optional[str] = None, 2533 version: typing.Optional[str] = None, 2534 **kwargs, 2535 ) -> "StatefulClient": 2536 """Create an event nested within the current observation or trace. 2537 2538 An event represents a discrete event in a trace. 2539 2540 Args: 2541 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2542 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2543 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2544 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2545 input (Optional[Any]): The input to the event. Can be any JSON object. 2546 output (Optional[Any]): The output to the event. Can be any JSON object. 2547 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2548 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2549 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2550 **kwargs: Additional keyword arguments to include in the event. 2551 2552 Returns: 2553 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2554 2555 Example: 2556 ```python 2557 from langfuse import Langfuse 2558 2559 langfuse = Langfuse() 2560 2561 # Create a trace 2562 trace = langfuse.trace(name = "llm-feature") 2563 2564 # Create an event 2565 retrieval = trace.event(name = "retrieval") 2566 ``` 2567 """ 2568 event_id = id or str(uuid.uuid4()) 2569 try: 2570 event_body = { 2571 "id": event_id, 2572 "name": name, 2573 "start_time": start_time or _get_timestamp(), 2574 "metadata": metadata, 2575 "input": input, 2576 "output": output, 2577 "level": level, 2578 "status_message": status_message, 2579 "version": version, 2580 "environment": self.environment, 2581 **kwargs, 2582 } 2583 2584 new_dict = self._add_state_to_event(event_body) 2585 new_body = self._add_default_values(new_dict) 2586 2587 request = CreateEventBody(**new_body) 2588 2589 event = { 2590 "id": str(uuid.uuid4()), 2591 "type": "event-create", 2592 "body": request, 2593 } 2594 2595 self.log.debug( 2596 f"Creating event {_filter_io_from_event_body(event_body)}..." 2597 ) 2598 self.task_manager.add_task(event) 2599 2600 except Exception as e: 2601 self.log.exception(e) 2602 finally: 2603 return StatefulClient( 2604 self.client, 2605 event_id, 2606 StateType.OBSERVATION, 2607 self.trace_id, 2608 self.task_manager, 2609 self.environment, 2610 ) 2611 2612 def get_trace_url(self): 2613 """Get the URL to see the current trace in the Langfuse UI.""" 2614 return f"{self.client._client_wrapper._base_url}/trace/{self.trace_id}"
Base class for handling stateful operations in the Langfuse system.
This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, associating them with either an observation or a trace based on the specified state type.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interactions.
- id (str): Unique identifier of the stateful client (either observation or trace).
- state_type (StateType): Enum indicating whether the client is an observation or a trace.
- trace_id (str): Id of the trace associated with the stateful client.
- task_manager (TaskManager): Manager handling asynchronous tasks for the client.
- environment (Optional(str)): The tracing environment.
2152 def __init__( 2153 self, 2154 client: FernLangfuse, 2155 id: str, 2156 state_type: StateType, 2157 trace_id: str, 2158 task_manager: TaskManager, 2159 environment: Optional[str] = None, 2160 ): 2161 """Initialize the StatefulClient. 2162 2163 Args: 2164 client (FernLangfuse): Core interface for Langfuse API interactions. 2165 id (str): Unique identifier of the stateful client (either observation or trace). 2166 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2167 trace_id (str): Id of the trace associated with the stateful client. 2168 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2169 """ 2170 self.client = client 2171 self.trace_id = trace_id 2172 self.id = id 2173 self.state_type = state_type 2174 self.task_manager = task_manager 2175 2176 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2177 2178 if self.environment and not bool( 2179 re.match(ENVIRONMENT_PATTERN, self.environment) 2180 ): 2181 self.log.warning( 2182 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2183 )
Initialize the StatefulClient.
Arguments:
- client (FernLangfuse): Core interface for Langfuse API interactions.
- id (str): Unique identifier of the stateful client (either observation or trace).
- state_type (StateType): Enum indicating whether the client is an observation or a trace.
- trace_id (str): Id of the trace associated with the stateful client.
- task_manager (TaskManager): Manager handling asynchronous tasks for the client.
2198 def generation( 2199 self, 2200 *, 2201 id: typing.Optional[str] = None, 2202 name: typing.Optional[str] = None, 2203 start_time: typing.Optional[dt.datetime] = None, 2204 end_time: typing.Optional[dt.datetime] = None, 2205 metadata: typing.Optional[typing.Any] = None, 2206 level: typing.Optional[SpanLevel] = None, 2207 status_message: typing.Optional[str] = None, 2208 version: typing.Optional[str] = None, 2209 completion_start_time: typing.Optional[dt.datetime] = None, 2210 model: typing.Optional[str] = None, 2211 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2212 input: typing.Optional[typing.Any] = None, 2213 output: typing.Optional[typing.Any] = None, 2214 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2215 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2216 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2217 prompt: typing.Optional[PromptClient] = None, 2218 **kwargs, 2219 ) -> "StatefulGenerationClient": 2220 """Create a generation nested within the current observation or trace. 2221 2222 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2223 2224 Args: 2225 id (Optional[str]): The id of the generation can be set, defaults to random id. 2226 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2227 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2228 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2229 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2230 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2231 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2232 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2233 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2234 model (Optional[str]): The name of the model used for the generation. 2235 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2236 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2237 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2238 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2239 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2240 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2241 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2242 **kwargs: Additional keyword arguments to include in the generation. 2243 2244 Returns: 2245 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2246 2247 Example: 2248 ```python 2249 from langfuse import Langfuse 2250 2251 langfuse = Langfuse() 2252 2253 # Create a trace 2254 trace = langfuse.trace(name = "llm-feature") 2255 2256 # Create a nested generation in Langfuse 2257 generation = trace.generation( 2258 name="summary-generation", 2259 model="gpt-3.5-turbo", 2260 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2261 input=[{"role": "system", "content": "You are a helpful assistant."}, 2262 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2263 metadata={"interface": "whatsapp"} 2264 ) 2265 ``` 2266 """ 2267 generation_id = id or str(uuid.uuid4()) 2268 try: 2269 generation_body = { 2270 "id": generation_id, 2271 "name": name, 2272 "start_time": start_time or _get_timestamp(), 2273 "metadata": metadata, 2274 "level": level, 2275 "status_message": status_message, 2276 "version": version, 2277 "end_time": end_time, 2278 "completion_start_time": completion_start_time, 2279 "model": model, 2280 "model_parameters": model_parameters, 2281 "input": input, 2282 "output": output, 2283 "usage": _convert_usage_input(usage) if usage is not None else None, 2284 "usage_details": usage_details, 2285 "cost_details": cost_details, 2286 "environment": self.environment, 2287 **_create_prompt_context(prompt), 2288 **kwargs, 2289 } 2290 2291 generation_body = self._add_state_to_event(generation_body) 2292 new_body = self._add_default_values(generation_body) 2293 2294 new_body = CreateGenerationBody(**new_body) 2295 2296 event = { 2297 "id": str(uuid.uuid4()), 2298 "type": "generation-create", 2299 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2300 } 2301 2302 self.log.debug( 2303 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2304 ) 2305 self.task_manager.add_task(event) 2306 2307 except Exception as e: 2308 self.log.exception(e) 2309 finally: 2310 return StatefulGenerationClient( 2311 self.client, 2312 generation_id, 2313 StateType.OBSERVATION, 2314 self.trace_id, 2315 self.task_manager, 2316 self.environment, 2317 )
Create a generation nested within the current observation or trace.
A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI.
Arguments:
- id (Optional[str]): The id of the generation can be set, defaults to random id.
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation( name="summary-generation", model="gpt-3.5-turbo", model_parameters={"maxTokens": "1000", "temperature": "0.9"}, input=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Please generate a summary of the following documents ..."}], metadata={"interface": "whatsapp"} )
2319 def span( 2320 self, 2321 *, 2322 id: typing.Optional[str] = None, 2323 name: typing.Optional[str] = None, 2324 start_time: typing.Optional[dt.datetime] = None, 2325 end_time: typing.Optional[dt.datetime] = None, 2326 metadata: typing.Optional[typing.Any] = None, 2327 input: typing.Optional[typing.Any] = None, 2328 output: typing.Optional[typing.Any] = None, 2329 level: typing.Optional[SpanLevel] = None, 2330 status_message: typing.Optional[str] = None, 2331 version: typing.Optional[str] = None, 2332 **kwargs, 2333 ) -> "StatefulSpanClient": 2334 """Create a span nested within the current observation or trace. 2335 2336 A span represents durations of units of work in a trace. 2337 2338 Args: 2339 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2340 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2341 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2342 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2343 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2344 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2345 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2346 input (Optional[dict]): The input to the span. Can be any JSON object. 2347 output (Optional[dict]): The output to the span. Can be any JSON object. 2348 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2349 **kwargs: Additional keyword arguments to include in the span. 2350 2351 Returns: 2352 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2353 2354 Example: 2355 ```python 2356 from langfuse import Langfuse 2357 2358 langfuse = Langfuse() 2359 2360 # Create a trace 2361 trace = langfuse.trace(name = "llm-feature") 2362 2363 # Create a span 2364 retrieval = langfuse.span(name = "retrieval") 2365 ``` 2366 """ 2367 span_id = id or str(uuid.uuid4()) 2368 try: 2369 span_body = { 2370 "id": span_id, 2371 "name": name, 2372 "start_time": start_time or _get_timestamp(), 2373 "metadata": metadata, 2374 "input": input, 2375 "output": output, 2376 "level": level, 2377 "status_message": status_message, 2378 "version": version, 2379 "end_time": end_time, 2380 "environment": self.environment, 2381 **kwargs, 2382 } 2383 2384 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2385 2386 new_dict = self._add_state_to_event(span_body) 2387 new_body = self._add_default_values(new_dict) 2388 2389 event = CreateSpanBody(**new_body) 2390 2391 event = { 2392 "id": str(uuid.uuid4()), 2393 "type": "span-create", 2394 "body": event, 2395 } 2396 2397 self.task_manager.add_task(event) 2398 except Exception as e: 2399 self.log.exception(e) 2400 finally: 2401 return StatefulSpanClient( 2402 self.client, 2403 span_id, 2404 StateType.OBSERVATION, 2405 self.trace_id, 2406 self.task_manager, 2407 self.environment, 2408 )
Create a span nested within the current observation or trace.
A span represents durations of units of work in a trace.
Arguments:
- id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id.
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a span retrieval = langfuse.span(name = "retrieval")
2436 def score( 2437 self, 2438 *, 2439 id: typing.Optional[str] = None, 2440 name: str, 2441 value: typing.Union[float, str], 2442 data_type: typing.Optional[ScoreDataType] = None, 2443 comment: typing.Optional[str] = None, 2444 config_id: typing.Optional[str] = None, 2445 **kwargs, 2446 ) -> "StatefulClient": 2447 """Create a score attached for the current observation or trace. 2448 2449 Args: 2450 name (str): Identifier of the score. 2451 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2452 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2453 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2454 comment (Optional[str]): Additional context/explanation of the score. 2455 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2456 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2457 **kwargs: Additional keyword arguments to include in the score. 2458 2459 Returns: 2460 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2461 2462 Example: 2463 ```python 2464 from langfuse import Langfuse 2465 2466 langfuse = Langfuse() 2467 2468 # Create a trace 2469 trace = langfuse.trace(name="example-application") 2470 2471 # Add score to the trace 2472 trace = trace.score( 2473 name="user-explicit-feedback", 2474 value=0.8, 2475 comment="I like how personalized the response is" 2476 ) 2477 ``` 2478 """ 2479 score_id = id or str(uuid.uuid4()) 2480 try: 2481 new_score = { 2482 "id": score_id, 2483 "trace_id": self.trace_id, 2484 "name": name, 2485 "value": value, 2486 "data_type": data_type, 2487 "comment": comment, 2488 "config_id": config_id, 2489 "environment": self.environment, 2490 **kwargs, 2491 } 2492 2493 self.log.debug(f"Creating score {new_score}...") 2494 2495 new_dict = self._add_state_to_event(new_score) 2496 2497 if self.state_type == StateType.OBSERVATION: 2498 new_dict["observationId"] = self.id 2499 2500 request = ScoreBody(**new_dict) 2501 2502 event = { 2503 "id": str(uuid.uuid4()), 2504 "type": "score-create", 2505 "body": request, 2506 } 2507 2508 self.task_manager.add_task(event) 2509 2510 except Exception as e: 2511 self.log.exception(e) 2512 finally: 2513 return StatefulClient( 2514 self.client, 2515 self.id, 2516 self.state_type, 2517 self.trace_id, 2518 self.task_manager, 2519 self.environment, 2520 )
Create a score attached for the current observation or trace.
Arguments:
- name (str): Identifier of the score.
- value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores.
- data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores.
- comment (Optional[str]): Additional context/explanation of the score.
- id (Optional[str]): The id of the score. If not provided, a new UUID is generated.
- config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None.
- **kwargs: Additional keyword arguments to include in the score.
Returns:
StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name="example-application") # Add score to the trace trace = trace.score( name="user-explicit-feedback", value=0.8, comment="I like how personalized the response is" )
2522 def event( 2523 self, 2524 *, 2525 id: typing.Optional[str] = None, 2526 name: typing.Optional[str] = None, 2527 start_time: typing.Optional[dt.datetime] = None, 2528 metadata: typing.Optional[typing.Any] = None, 2529 input: typing.Optional[typing.Any] = None, 2530 output: typing.Optional[typing.Any] = None, 2531 level: typing.Optional[SpanLevel] = None, 2532 status_message: typing.Optional[str] = None, 2533 version: typing.Optional[str] = None, 2534 **kwargs, 2535 ) -> "StatefulClient": 2536 """Create an event nested within the current observation or trace. 2537 2538 An event represents a discrete event in a trace. 2539 2540 Args: 2541 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2542 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2543 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2544 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2545 input (Optional[Any]): The input to the event. Can be any JSON object. 2546 output (Optional[Any]): The output to the event. Can be any JSON object. 2547 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2548 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2549 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2550 **kwargs: Additional keyword arguments to include in the event. 2551 2552 Returns: 2553 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2554 2555 Example: 2556 ```python 2557 from langfuse import Langfuse 2558 2559 langfuse = Langfuse() 2560 2561 # Create a trace 2562 trace = langfuse.trace(name = "llm-feature") 2563 2564 # Create an event 2565 retrieval = trace.event(name = "retrieval") 2566 ``` 2567 """ 2568 event_id = id or str(uuid.uuid4()) 2569 try: 2570 event_body = { 2571 "id": event_id, 2572 "name": name, 2573 "start_time": start_time or _get_timestamp(), 2574 "metadata": metadata, 2575 "input": input, 2576 "output": output, 2577 "level": level, 2578 "status_message": status_message, 2579 "version": version, 2580 "environment": self.environment, 2581 **kwargs, 2582 } 2583 2584 new_dict = self._add_state_to_event(event_body) 2585 new_body = self._add_default_values(new_dict) 2586 2587 request = CreateEventBody(**new_body) 2588 2589 event = { 2590 "id": str(uuid.uuid4()), 2591 "type": "event-create", 2592 "body": request, 2593 } 2594 2595 self.log.debug( 2596 f"Creating event {_filter_io_from_event_body(event_body)}..." 2597 ) 2598 self.task_manager.add_task(event) 2599 2600 except Exception as e: 2601 self.log.exception(e) 2602 finally: 2603 return StatefulClient( 2604 self.client, 2605 event_id, 2606 StateType.OBSERVATION, 2607 self.trace_id, 2608 self.task_manager, 2609 self.environment, 2610 )
Create an event nested within the current observation or trace.
An event represents a discrete event in a trace.
Arguments:
- id (Optional[str]): The id of the event can be set, otherwise a random id is generated.
- name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the event started, defaults to the current time.
- metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API.
- input (Optional[Any]): The input to the event. Can be any JSON object.
- output (Optional[Any]): The output to the event. Can be any JSON object.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the event.
Returns:
StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create an event retrieval = trace.event(name = "retrieval")
2617class StatefulGenerationClient(StatefulClient): 2618 """Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient. 2619 2620 This client extends the capabilities of the StatefulClient to specifically handle generation, 2621 allowing for the creation, update, and termination of generation processes in Langfuse. 2622 2623 Attributes: 2624 client (FernLangfuse): Core interface for Langfuse API interaction. 2625 id (str): Unique identifier of the generation. 2626 state_type (StateType): Type of the stateful entity (observation or trace). 2627 trace_id (str): Id of trace associated with the generation. 2628 task_manager (TaskManager): Manager for handling asynchronous tasks. 2629 """ 2630 2631 log = logging.getLogger("langfuse") 2632 2633 def __init__( 2634 self, 2635 client: FernLangfuse, 2636 id: str, 2637 state_type: StateType, 2638 trace_id: str, 2639 task_manager: TaskManager, 2640 environment: Optional[str] = None, 2641 ): 2642 """Initialize the StatefulGenerationClient.""" 2643 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2644 2645 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2646 def update( 2647 self, 2648 *, 2649 name: typing.Optional[str] = None, 2650 start_time: typing.Optional[dt.datetime] = None, 2651 end_time: typing.Optional[dt.datetime] = None, 2652 completion_start_time: typing.Optional[dt.datetime] = None, 2653 metadata: typing.Optional[typing.Any] = None, 2654 level: typing.Optional[SpanLevel] = None, 2655 status_message: typing.Optional[str] = None, 2656 version: typing.Optional[str] = None, 2657 model: typing.Optional[str] = None, 2658 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2659 input: typing.Optional[typing.Any] = None, 2660 output: typing.Optional[typing.Any] = None, 2661 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2662 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2663 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2664 prompt: typing.Optional[PromptClient] = None, 2665 **kwargs, 2666 ) -> "StatefulGenerationClient": 2667 """Update the generation. 2668 2669 Args: 2670 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2671 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2672 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2673 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2674 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2675 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2676 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2677 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2678 model (Optional[str]): The name of the model used for the generation. 2679 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2680 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2681 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2682 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2683 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2684 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2685 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2686 **kwargs: Additional keyword arguments to include in the generation. 2687 2688 Returns: 2689 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2690 2691 Example: 2692 ```python 2693 from langfuse import Langfuse 2694 2695 langfuse = Langfuse() 2696 2697 # Create a trace 2698 trace = langfuse.trace(name = "llm-feature") 2699 2700 # Create a nested generation in Langfuse 2701 generation = trace.generation(name="summary-generation") 2702 2703 # Update the generation 2704 generation = generation.update(metadata={"interface": "whatsapp"}) 2705 ``` 2706 """ 2707 try: 2708 generation_body = { 2709 "id": self.id, 2710 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2711 "name": name, 2712 "start_time": start_time, 2713 "metadata": metadata, 2714 "level": level, 2715 "status_message": status_message, 2716 "version": version, 2717 "end_time": end_time, 2718 "completion_start_time": completion_start_time, 2719 "model": model, 2720 "model_parameters": model_parameters, 2721 "input": input, 2722 "output": output, 2723 "usage": _convert_usage_input(usage) if usage is not None else None, 2724 "usage_details": usage_details, 2725 "cost_details": cost_details, 2726 **_create_prompt_context(prompt), 2727 **kwargs, 2728 } 2729 2730 self.log.debug( 2731 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2732 ) 2733 2734 request = UpdateGenerationBody(**generation_body) 2735 2736 event = { 2737 "id": str(uuid.uuid4()), 2738 "type": "generation-update", 2739 "body": request.dict(exclude_none=True, exclude_unset=False), 2740 } 2741 2742 self.log.debug( 2743 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2744 ) 2745 self.task_manager.add_task(event) 2746 2747 except Exception as e: 2748 self.log.exception(e) 2749 finally: 2750 return StatefulGenerationClient( 2751 self.client, 2752 self.id, 2753 StateType.OBSERVATION, 2754 self.trace_id, 2755 self.task_manager, 2756 self.environment, 2757 ) 2758 2759 def end( 2760 self, 2761 *, 2762 name: typing.Optional[str] = None, 2763 start_time: typing.Optional[dt.datetime] = None, 2764 end_time: typing.Optional[dt.datetime] = None, 2765 completion_start_time: typing.Optional[dt.datetime] = None, 2766 metadata: typing.Optional[typing.Any] = None, 2767 level: typing.Optional[SpanLevel] = None, 2768 status_message: typing.Optional[str] = None, 2769 version: typing.Optional[str] = None, 2770 model: typing.Optional[str] = None, 2771 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2772 input: typing.Optional[typing.Any] = None, 2773 output: typing.Optional[typing.Any] = None, 2774 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2775 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2776 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2777 prompt: typing.Optional[PromptClient] = None, 2778 **kwargs, 2779 ) -> "StatefulGenerationClient": 2780 """End the generation, optionally updating its properties. 2781 2782 Args: 2783 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2784 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2785 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2786 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2787 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2788 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2789 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2790 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2791 model (Optional[str]): The name of the model used for the generation. 2792 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2793 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2794 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2795 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2796 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2797 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2798 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2799 **kwargs: Additional keyword arguments to include in the generation. 2800 2801 Returns: 2802 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2803 2804 Example: 2805 ```python 2806 from langfuse import Langfuse 2807 2808 langfuse = Langfuse() 2809 2810 # Create a trace 2811 trace = langfuse.trace(name = "llm-feature") 2812 2813 # Create a nested generation in Langfuse 2814 generation = trace.generation(name="summary-generation") 2815 2816 # End the generation and update its properties 2817 generation = generation.end(metadata={"interface": "whatsapp"}) 2818 ``` 2819 """ 2820 return self.update( 2821 name=name, 2822 start_time=start_time, 2823 end_time=end_time or _get_timestamp(), 2824 metadata=metadata, 2825 level=level, 2826 status_message=status_message, 2827 version=version, 2828 completion_start_time=completion_start_time, 2829 model=model, 2830 model_parameters=model_parameters, 2831 input=input, 2832 output=output, 2833 usage=usage, 2834 usage_details=usage_details, 2835 cost_details=cost_details, 2836 prompt=prompt, 2837 **kwargs, 2838 )
Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient.
This client extends the capabilities of the StatefulClient to specifically handle generation, allowing for the creation, update, and termination of generation processes in Langfuse.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the generation.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): Id of trace associated with the generation.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
2633 def __init__( 2634 self, 2635 client: FernLangfuse, 2636 id: str, 2637 state_type: StateType, 2638 trace_id: str, 2639 task_manager: TaskManager, 2640 environment: Optional[str] = None, 2641 ): 2642 """Initialize the StatefulGenerationClient.""" 2643 super().__init__(client, id, state_type, trace_id, task_manager, environment)
Initialize the StatefulGenerationClient.
2646 def update( 2647 self, 2648 *, 2649 name: typing.Optional[str] = None, 2650 start_time: typing.Optional[dt.datetime] = None, 2651 end_time: typing.Optional[dt.datetime] = None, 2652 completion_start_time: typing.Optional[dt.datetime] = None, 2653 metadata: typing.Optional[typing.Any] = None, 2654 level: typing.Optional[SpanLevel] = None, 2655 status_message: typing.Optional[str] = None, 2656 version: typing.Optional[str] = None, 2657 model: typing.Optional[str] = None, 2658 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2659 input: typing.Optional[typing.Any] = None, 2660 output: typing.Optional[typing.Any] = None, 2661 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2662 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2663 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2664 prompt: typing.Optional[PromptClient] = None, 2665 **kwargs, 2666 ) -> "StatefulGenerationClient": 2667 """Update the generation. 2668 2669 Args: 2670 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2671 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2672 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2673 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2674 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2675 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2676 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2677 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2678 model (Optional[str]): The name of the model used for the generation. 2679 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2680 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2681 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2682 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2683 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2684 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2685 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2686 **kwargs: Additional keyword arguments to include in the generation. 2687 2688 Returns: 2689 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2690 2691 Example: 2692 ```python 2693 from langfuse import Langfuse 2694 2695 langfuse = Langfuse() 2696 2697 # Create a trace 2698 trace = langfuse.trace(name = "llm-feature") 2699 2700 # Create a nested generation in Langfuse 2701 generation = trace.generation(name="summary-generation") 2702 2703 # Update the generation 2704 generation = generation.update(metadata={"interface": "whatsapp"}) 2705 ``` 2706 """ 2707 try: 2708 generation_body = { 2709 "id": self.id, 2710 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2711 "name": name, 2712 "start_time": start_time, 2713 "metadata": metadata, 2714 "level": level, 2715 "status_message": status_message, 2716 "version": version, 2717 "end_time": end_time, 2718 "completion_start_time": completion_start_time, 2719 "model": model, 2720 "model_parameters": model_parameters, 2721 "input": input, 2722 "output": output, 2723 "usage": _convert_usage_input(usage) if usage is not None else None, 2724 "usage_details": usage_details, 2725 "cost_details": cost_details, 2726 **_create_prompt_context(prompt), 2727 **kwargs, 2728 } 2729 2730 self.log.debug( 2731 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2732 ) 2733 2734 request = UpdateGenerationBody(**generation_body) 2735 2736 event = { 2737 "id": str(uuid.uuid4()), 2738 "type": "generation-update", 2739 "body": request.dict(exclude_none=True, exclude_unset=False), 2740 } 2741 2742 self.log.debug( 2743 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2744 ) 2745 self.task_manager.add_task(event) 2746 2747 except Exception as e: 2748 self.log.exception(e) 2749 finally: 2750 return StatefulGenerationClient( 2751 self.client, 2752 self.id, 2753 StateType.OBSERVATION, 2754 self.trace_id, 2755 self.task_manager, 2756 self.environment, 2757 )
Update the generation.
Arguments:
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The updated generation. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation(name="summary-generation") # Update the generation generation = generation.update(metadata={"interface": "whatsapp"})
2759 def end( 2760 self, 2761 *, 2762 name: typing.Optional[str] = None, 2763 start_time: typing.Optional[dt.datetime] = None, 2764 end_time: typing.Optional[dt.datetime] = None, 2765 completion_start_time: typing.Optional[dt.datetime] = None, 2766 metadata: typing.Optional[typing.Any] = None, 2767 level: typing.Optional[SpanLevel] = None, 2768 status_message: typing.Optional[str] = None, 2769 version: typing.Optional[str] = None, 2770 model: typing.Optional[str] = None, 2771 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2772 input: typing.Optional[typing.Any] = None, 2773 output: typing.Optional[typing.Any] = None, 2774 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2775 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2776 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2777 prompt: typing.Optional[PromptClient] = None, 2778 **kwargs, 2779 ) -> "StatefulGenerationClient": 2780 """End the generation, optionally updating its properties. 2781 2782 Args: 2783 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2784 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2785 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2786 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2787 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2788 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2789 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2790 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2791 model (Optional[str]): The name of the model used for the generation. 2792 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2793 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2794 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2795 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2796 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2797 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2798 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2799 **kwargs: Additional keyword arguments to include in the generation. 2800 2801 Returns: 2802 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2803 2804 Example: 2805 ```python 2806 from langfuse import Langfuse 2807 2808 langfuse = Langfuse() 2809 2810 # Create a trace 2811 trace = langfuse.trace(name = "llm-feature") 2812 2813 # Create a nested generation in Langfuse 2814 generation = trace.generation(name="summary-generation") 2815 2816 # End the generation and update its properties 2817 generation = generation.end(metadata={"interface": "whatsapp"}) 2818 ``` 2819 """ 2820 return self.update( 2821 name=name, 2822 start_time=start_time, 2823 end_time=end_time or _get_timestamp(), 2824 metadata=metadata, 2825 level=level, 2826 status_message=status_message, 2827 version=version, 2828 completion_start_time=completion_start_time, 2829 model=model, 2830 model_parameters=model_parameters, 2831 input=input, 2832 output=output, 2833 usage=usage, 2834 usage_details=usage_details, 2835 cost_details=cost_details, 2836 prompt=prompt, 2837 **kwargs, 2838 )
End the generation, optionally updating its properties.
Arguments:
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time.
- completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The ended generation. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation(name="summary-generation") # End the generation and update its properties generation = generation.end(metadata={"interface": "whatsapp"})
Inherited Members
2841class StatefulSpanClient(StatefulClient): 2842 """Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient. 2843 2844 Attributes: 2845 client (FernLangfuse): Core interface for Langfuse API interaction. 2846 id (str): Unique identifier of the span. 2847 state_type (StateType): Type of the stateful entity (observation or trace). 2848 trace_id (str): Id of trace associated with the span. 2849 task_manager (TaskManager): Manager for handling asynchronous tasks. 2850 """ 2851 2852 log = logging.getLogger("langfuse") 2853 2854 def __init__( 2855 self, 2856 client: FernLangfuse, 2857 id: str, 2858 state_type: StateType, 2859 trace_id: str, 2860 task_manager: TaskManager, 2861 environment: Optional[str] = None, 2862 ): 2863 """Initialize the StatefulSpanClient.""" 2864 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2865 2866 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2867 def update( 2868 self, 2869 *, 2870 name: typing.Optional[str] = None, 2871 start_time: typing.Optional[dt.datetime] = None, 2872 end_time: typing.Optional[dt.datetime] = None, 2873 metadata: typing.Optional[typing.Any] = None, 2874 input: typing.Optional[typing.Any] = None, 2875 output: typing.Optional[typing.Any] = None, 2876 level: typing.Optional[SpanLevel] = None, 2877 status_message: typing.Optional[str] = None, 2878 version: typing.Optional[str] = None, 2879 **kwargs, 2880 ) -> "StatefulSpanClient": 2881 """Update the span. 2882 2883 Args: 2884 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2885 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2886 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2887 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2888 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2889 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2890 input (Optional[dict]): The input to the span. Can be any JSON object. 2891 output (Optional[dict]): The output to the span. Can be any JSON object. 2892 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2893 **kwargs: Additional keyword arguments to include in the span. 2894 2895 Returns: 2896 StatefulSpanClient: The updated span. Passthrough for chaining. 2897 2898 Example: 2899 ```python 2900 from langfuse import Langfuse 2901 2902 langfuse = Langfuse() 2903 2904 # Create a trace 2905 trace = langfuse.trace(name = "llm-feature") 2906 2907 # Create a nested span in Langfuse 2908 span = trace.span(name="retrieval") 2909 2910 # Update the span 2911 span = span.update(metadata={"interface": "whatsapp"}) 2912 ``` 2913 """ 2914 try: 2915 span_body = { 2916 "id": self.id, 2917 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2918 "name": name, 2919 "start_time": start_time, 2920 "metadata": metadata, 2921 "input": input, 2922 "output": output, 2923 "level": level, 2924 "status_message": status_message, 2925 "version": version, 2926 "end_time": end_time, 2927 **kwargs, 2928 } 2929 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2930 2931 request = UpdateSpanBody(**span_body) 2932 2933 event = { 2934 "id": str(uuid.uuid4()), 2935 "type": "span-update", 2936 "body": request, 2937 } 2938 2939 self.task_manager.add_task(event) 2940 except Exception as e: 2941 self.log.exception(e) 2942 finally: 2943 return StatefulSpanClient( 2944 self.client, 2945 self.id, 2946 StateType.OBSERVATION, 2947 self.trace_id, 2948 self.task_manager, 2949 self.environment, 2950 ) 2951 2952 def end( 2953 self, 2954 *, 2955 name: typing.Optional[str] = None, 2956 start_time: typing.Optional[dt.datetime] = None, 2957 end_time: typing.Optional[dt.datetime] = None, 2958 metadata: typing.Optional[typing.Any] = None, 2959 input: typing.Optional[typing.Any] = None, 2960 output: typing.Optional[typing.Any] = None, 2961 level: typing.Optional[SpanLevel] = None, 2962 status_message: typing.Optional[str] = None, 2963 version: typing.Optional[str] = None, 2964 **kwargs, 2965 ) -> "StatefulSpanClient": 2966 """End the span, optionally updating its properties. 2967 2968 Args: 2969 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2970 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2971 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2972 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2973 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2974 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2975 input (Optional[dict]): The input to the span. Can be any JSON object. 2976 output (Optional[dict]): The output to the span. Can be any JSON object. 2977 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2978 **kwargs: Additional keyword arguments to include in the span. 2979 2980 Returns: 2981 StatefulSpanClient: The updated span. Passthrough for chaining. 2982 2983 Example: 2984 ```python 2985 from langfuse import Langfuse 2986 2987 langfuse = Langfuse() 2988 2989 # Create a trace 2990 trace = langfuse.trace(name = "llm-feature") 2991 2992 # Create a nested span in Langfuse 2993 span = trace.span(name="retrieval") 2994 2995 # End the span and update its properties 2996 span = span.end(metadata={"interface": "whatsapp"}) 2997 ``` 2998 """ 2999 try: 3000 span_body = { 3001 "name": name, 3002 "start_time": start_time, 3003 "metadata": metadata, 3004 "input": input, 3005 "output": output, 3006 "level": level, 3007 "status_message": status_message, 3008 "version": version, 3009 "end_time": end_time or _get_timestamp(), 3010 **kwargs, 3011 } 3012 return self.update(**span_body) 3013 3014 except Exception as e: 3015 self.log.warning(e) 3016 finally: 3017 return StatefulSpanClient( 3018 self.client, 3019 self.id, 3020 StateType.OBSERVATION, 3021 self.trace_id, 3022 self.task_manager, 3023 self.environment, 3024 ) 3025 3026 def get_langchain_handler(self, update_parent: bool = False): 3027 """Get langchain callback handler associated with the current span. 3028 3029 Args: 3030 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3031 3032 Returns: 3033 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3034 """ 3035 from langfuse.callback import CallbackHandler 3036 3037 return CallbackHandler( 3038 stateful_client=self, update_stateful_client=update_parent 3039 )
Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the span.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): Id of trace associated with the span.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
2854 def __init__( 2855 self, 2856 client: FernLangfuse, 2857 id: str, 2858 state_type: StateType, 2859 trace_id: str, 2860 task_manager: TaskManager, 2861 environment: Optional[str] = None, 2862 ): 2863 """Initialize the StatefulSpanClient.""" 2864 super().__init__(client, id, state_type, trace_id, task_manager, environment)
Initialize the StatefulSpanClient.
2867 def update( 2868 self, 2869 *, 2870 name: typing.Optional[str] = None, 2871 start_time: typing.Optional[dt.datetime] = None, 2872 end_time: typing.Optional[dt.datetime] = None, 2873 metadata: typing.Optional[typing.Any] = None, 2874 input: typing.Optional[typing.Any] = None, 2875 output: typing.Optional[typing.Any] = None, 2876 level: typing.Optional[SpanLevel] = None, 2877 status_message: typing.Optional[str] = None, 2878 version: typing.Optional[str] = None, 2879 **kwargs, 2880 ) -> "StatefulSpanClient": 2881 """Update the span. 2882 2883 Args: 2884 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2885 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2886 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2887 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2888 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2889 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2890 input (Optional[dict]): The input to the span. Can be any JSON object. 2891 output (Optional[dict]): The output to the span. Can be any JSON object. 2892 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2893 **kwargs: Additional keyword arguments to include in the span. 2894 2895 Returns: 2896 StatefulSpanClient: The updated span. Passthrough for chaining. 2897 2898 Example: 2899 ```python 2900 from langfuse import Langfuse 2901 2902 langfuse = Langfuse() 2903 2904 # Create a trace 2905 trace = langfuse.trace(name = "llm-feature") 2906 2907 # Create a nested span in Langfuse 2908 span = trace.span(name="retrieval") 2909 2910 # Update the span 2911 span = span.update(metadata={"interface": "whatsapp"}) 2912 ``` 2913 """ 2914 try: 2915 span_body = { 2916 "id": self.id, 2917 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2918 "name": name, 2919 "start_time": start_time, 2920 "metadata": metadata, 2921 "input": input, 2922 "output": output, 2923 "level": level, 2924 "status_message": status_message, 2925 "version": version, 2926 "end_time": end_time, 2927 **kwargs, 2928 } 2929 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2930 2931 request = UpdateSpanBody(**span_body) 2932 2933 event = { 2934 "id": str(uuid.uuid4()), 2935 "type": "span-update", 2936 "body": request, 2937 } 2938 2939 self.task_manager.add_task(event) 2940 except Exception as e: 2941 self.log.exception(e) 2942 finally: 2943 return StatefulSpanClient( 2944 self.client, 2945 self.id, 2946 StateType.OBSERVATION, 2947 self.trace_id, 2948 self.task_manager, 2949 self.environment, 2950 )
Update the span.
Arguments:
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The updated span. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested span in Langfuse span = trace.span(name="retrieval") # Update the span span = span.update(metadata={"interface": "whatsapp"})
2952 def end( 2953 self, 2954 *, 2955 name: typing.Optional[str] = None, 2956 start_time: typing.Optional[dt.datetime] = None, 2957 end_time: typing.Optional[dt.datetime] = None, 2958 metadata: typing.Optional[typing.Any] = None, 2959 input: typing.Optional[typing.Any] = None, 2960 output: typing.Optional[typing.Any] = None, 2961 level: typing.Optional[SpanLevel] = None, 2962 status_message: typing.Optional[str] = None, 2963 version: typing.Optional[str] = None, 2964 **kwargs, 2965 ) -> "StatefulSpanClient": 2966 """End the span, optionally updating its properties. 2967 2968 Args: 2969 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2970 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2971 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2972 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2973 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2974 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2975 input (Optional[dict]): The input to the span. Can be any JSON object. 2976 output (Optional[dict]): The output to the span. Can be any JSON object. 2977 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2978 **kwargs: Additional keyword arguments to include in the span. 2979 2980 Returns: 2981 StatefulSpanClient: The updated span. Passthrough for chaining. 2982 2983 Example: 2984 ```python 2985 from langfuse import Langfuse 2986 2987 langfuse = Langfuse() 2988 2989 # Create a trace 2990 trace = langfuse.trace(name = "llm-feature") 2991 2992 # Create a nested span in Langfuse 2993 span = trace.span(name="retrieval") 2994 2995 # End the span and update its properties 2996 span = span.end(metadata={"interface": "whatsapp"}) 2997 ``` 2998 """ 2999 try: 3000 span_body = { 3001 "name": name, 3002 "start_time": start_time, 3003 "metadata": metadata, 3004 "input": input, 3005 "output": output, 3006 "level": level, 3007 "status_message": status_message, 3008 "version": version, 3009 "end_time": end_time or _get_timestamp(), 3010 **kwargs, 3011 } 3012 return self.update(**span_body) 3013 3014 except Exception as e: 3015 self.log.warning(e) 3016 finally: 3017 return StatefulSpanClient( 3018 self.client, 3019 self.id, 3020 StateType.OBSERVATION, 3021 self.trace_id, 3022 self.task_manager, 3023 self.environment, 3024 )
End the span, optionally updating its properties.
Arguments:
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The updated span. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested span in Langfuse span = trace.span(name="retrieval") # End the span and update its properties span = span.end(metadata={"interface": "whatsapp"})
3026 def get_langchain_handler(self, update_parent: bool = False): 3027 """Get langchain callback handler associated with the current span. 3028 3029 Args: 3030 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3031 3032 Returns: 3033 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3034 """ 3035 from langfuse.callback import CallbackHandler 3036 3037 return CallbackHandler( 3038 stateful_client=self, update_stateful_client=update_parent 3039 )
Get langchain callback handler associated with the current span.
Arguments:
- update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run.
Returns:
CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient.
Inherited Members
3042class StatefulTraceClient(StatefulClient): 3043 """Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient. 3044 3045 Attributes: 3046 client (FernLangfuse): Core interface for Langfuse API interaction. 3047 id (str): Unique identifier of the trace. 3048 state_type (StateType): Type of the stateful entity (observation or trace). 3049 trace_id (str): The trace ID associated with this client. 3050 task_manager (TaskManager): Manager for handling asynchronous tasks. 3051 """ 3052 3053 log = logging.getLogger("langfuse") 3054 3055 def __init__( 3056 self, 3057 client: FernLangfuse, 3058 id: str, 3059 state_type: StateType, 3060 trace_id: str, 3061 task_manager: TaskManager, 3062 environment: Optional[str] = None, 3063 ): 3064 """Initialize the StatefulTraceClient.""" 3065 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3066 self.task_manager = task_manager 3067 3068 def update( 3069 self, 3070 *, 3071 name: typing.Optional[str] = None, 3072 user_id: typing.Optional[str] = None, 3073 session_id: typing.Optional[str] = None, 3074 version: typing.Optional[str] = None, 3075 release: typing.Optional[str] = None, 3076 input: typing.Optional[typing.Any] = None, 3077 output: typing.Optional[typing.Any] = None, 3078 metadata: typing.Optional[typing.Any] = None, 3079 tags: typing.Optional[typing.List[str]] = None, 3080 public: typing.Optional[bool] = None, 3081 **kwargs, 3082 ) -> "StatefulTraceClient": 3083 """Update the trace. 3084 3085 Args: 3086 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3087 input: The input of the trace. Can be any JSON object. 3088 output: The output of the trace. Can be any JSON object. 3089 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3090 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3091 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3092 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3093 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3094 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3095 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3096 **kwargs: Additional keyword arguments that can be included in the trace. 3097 3098 Returns: 3099 StatefulTraceClient: The updated trace. Passthrough for chaining. 3100 3101 Example: 3102 ```python 3103 from langfuse import Langfuse 3104 3105 langfuse = Langfuse() 3106 3107 # Create a trace 3108 trace = langfuse.trace( 3109 name="example-application", 3110 user_id="user-1234") 3111 ) 3112 3113 # Update the trace 3114 trace = trace.update( 3115 output={"result": "success"}, 3116 metadata={"interface": "whatsapp"} 3117 ) 3118 ``` 3119 """ 3120 try: 3121 trace_body = { 3122 "id": self.id, 3123 "name": name, 3124 "userId": user_id, 3125 "sessionId": session_id 3126 or kwargs.get("sessionId", None), # backward compatibility 3127 "version": version, 3128 "release": release, 3129 "input": input, 3130 "output": output, 3131 "metadata": metadata, 3132 "public": public, 3133 "tags": tags, 3134 **kwargs, 3135 } 3136 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3137 3138 request = TraceBody(**trace_body) 3139 3140 event = { 3141 "id": str(uuid.uuid4()), 3142 "type": "trace-create", 3143 "body": request, 3144 } 3145 3146 self.task_manager.add_task(event) 3147 3148 except Exception as e: 3149 self.log.exception(e) 3150 finally: 3151 return StatefulTraceClient( 3152 self.client, 3153 self.id, 3154 StateType.TRACE, 3155 self.trace_id, 3156 self.task_manager, 3157 self.environment, 3158 ) 3159 3160 def get_langchain_handler(self, update_parent: bool = False): 3161 """Get langchain callback handler associated with the current trace. 3162 3163 This method creates and returns a CallbackHandler instance, linking it with the current 3164 trace. Use this if you want to group multiple Langchain runs within a single trace. 3165 3166 Args: 3167 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3168 3169 Raises: 3170 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3171 3172 Returns: 3173 CallbackHandler: Langchain callback handler linked to the current trace. 3174 3175 Example: 3176 ```python 3177 from langfuse import Langfuse 3178 3179 langfuse = Langfuse() 3180 3181 # Create a trace 3182 trace = langfuse.trace(name = "llm-feature") 3183 3184 # Get a langchain callback handler 3185 handler = trace.get_langchain_handler() 3186 ``` 3187 """ 3188 try: 3189 from langfuse.callback import CallbackHandler 3190 3191 self.log.debug(f"Creating new handler for trace {self.id}") 3192 3193 return CallbackHandler( 3194 stateful_client=self, 3195 debug=self.log.level == logging.DEBUG, 3196 update_stateful_client=update_parent, 3197 ) 3198 except Exception as e: 3199 self.log.exception(e) 3200 3201 def getNewHandler(self): 3202 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3203 return self.get_langchain_handler()
Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the trace.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): The trace ID associated with this client.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
3055 def __init__( 3056 self, 3057 client: FernLangfuse, 3058 id: str, 3059 state_type: StateType, 3060 trace_id: str, 3061 task_manager: TaskManager, 3062 environment: Optional[str] = None, 3063 ): 3064 """Initialize the StatefulTraceClient.""" 3065 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3066 self.task_manager = task_manager
Initialize the StatefulTraceClient.
3068 def update( 3069 self, 3070 *, 3071 name: typing.Optional[str] = None, 3072 user_id: typing.Optional[str] = None, 3073 session_id: typing.Optional[str] = None, 3074 version: typing.Optional[str] = None, 3075 release: typing.Optional[str] = None, 3076 input: typing.Optional[typing.Any] = None, 3077 output: typing.Optional[typing.Any] = None, 3078 metadata: typing.Optional[typing.Any] = None, 3079 tags: typing.Optional[typing.List[str]] = None, 3080 public: typing.Optional[bool] = None, 3081 **kwargs, 3082 ) -> "StatefulTraceClient": 3083 """Update the trace. 3084 3085 Args: 3086 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3087 input: The input of the trace. Can be any JSON object. 3088 output: The output of the trace. Can be any JSON object. 3089 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3090 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3091 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3092 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3093 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3094 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3095 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3096 **kwargs: Additional keyword arguments that can be included in the trace. 3097 3098 Returns: 3099 StatefulTraceClient: The updated trace. Passthrough for chaining. 3100 3101 Example: 3102 ```python 3103 from langfuse import Langfuse 3104 3105 langfuse = Langfuse() 3106 3107 # Create a trace 3108 trace = langfuse.trace( 3109 name="example-application", 3110 user_id="user-1234") 3111 ) 3112 3113 # Update the trace 3114 trace = trace.update( 3115 output={"result": "success"}, 3116 metadata={"interface": "whatsapp"} 3117 ) 3118 ``` 3119 """ 3120 try: 3121 trace_body = { 3122 "id": self.id, 3123 "name": name, 3124 "userId": user_id, 3125 "sessionId": session_id 3126 or kwargs.get("sessionId", None), # backward compatibility 3127 "version": version, 3128 "release": release, 3129 "input": input, 3130 "output": output, 3131 "metadata": metadata, 3132 "public": public, 3133 "tags": tags, 3134 **kwargs, 3135 } 3136 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3137 3138 request = TraceBody(**trace_body) 3139 3140 event = { 3141 "id": str(uuid.uuid4()), 3142 "type": "trace-create", 3143 "body": request, 3144 } 3145 3146 self.task_manager.add_task(event) 3147 3148 except Exception as e: 3149 self.log.exception(e) 3150 finally: 3151 return StatefulTraceClient( 3152 self.client, 3153 self.id, 3154 StateType.TRACE, 3155 self.trace_id, 3156 self.task_manager, 3157 self.environment, 3158 )
Update the trace.
Arguments:
- name: Identifier of the trace. Useful for sorting/filtering in the UI.
- input: The input of the trace. Can be any JSON object.
- output: The output of the trace. Can be any JSON object.
- metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API.
- user_id: The id of the user that triggered the execution. Used to provide user-level analytics.
- session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier.
- version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging.
- release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging.
- tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API.
- public: You can make a trace
public
to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. - **kwargs: Additional keyword arguments that can be included in the trace.
Returns:
StatefulTraceClient: The updated trace. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace( name="example-application", user_id="user-1234") ) # Update the trace trace = trace.update( output={"result": "success"}, metadata={"interface": "whatsapp"} )
3160 def get_langchain_handler(self, update_parent: bool = False): 3161 """Get langchain callback handler associated with the current trace. 3162 3163 This method creates and returns a CallbackHandler instance, linking it with the current 3164 trace. Use this if you want to group multiple Langchain runs within a single trace. 3165 3166 Args: 3167 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3168 3169 Raises: 3170 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3171 3172 Returns: 3173 CallbackHandler: Langchain callback handler linked to the current trace. 3174 3175 Example: 3176 ```python 3177 from langfuse import Langfuse 3178 3179 langfuse = Langfuse() 3180 3181 # Create a trace 3182 trace = langfuse.trace(name = "llm-feature") 3183 3184 # Get a langchain callback handler 3185 handler = trace.get_langchain_handler() 3186 ``` 3187 """ 3188 try: 3189 from langfuse.callback import CallbackHandler 3190 3191 self.log.debug(f"Creating new handler for trace {self.id}") 3192 3193 return CallbackHandler( 3194 stateful_client=self, 3195 debug=self.log.level == logging.DEBUG, 3196 update_stateful_client=update_parent, 3197 ) 3198 except Exception as e: 3199 self.log.exception(e)
Get langchain callback handler associated with the current trace.
This method creates and returns a CallbackHandler instance, linking it with the current trace. Use this if you want to group multiple Langchain runs within a single trace.
Arguments:
- update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run.
Raises:
- ImportError: If the 'langchain' module is not installed, indicating missing functionality.
Returns:
CallbackHandler: Langchain callback handler linked to the current trace.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Get a langchain callback handler handler = trace.get_langchain_handler()
3201 def getNewHandler(self): 3202 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3203 return self.get_langchain_handler()
Alias for the get_langchain_handler
method. Retrieves a callback handler for the trace. Deprecated.
Inherited Members
3206class DatasetItemClient: 3207 """Class for managing dataset items in Langfuse. 3208 3209 Args: 3210 id (str): Unique identifier of the dataset item. 3211 status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'. 3212 input (Any): Input data of the dataset item. 3213 expected_output (Optional[Any]): Expected output of the dataset item. 3214 metadata (Optional[Any]): Additional metadata of the dataset item. 3215 source_trace_id (Optional[str]): Identifier of the source trace. 3216 source_observation_id (Optional[str]): Identifier of the source observation. 3217 dataset_id (str): Identifier of the dataset to which this item belongs. 3218 dataset_name (str): Name of the dataset to which this item belongs. 3219 created_at (datetime): Timestamp of dataset item creation. 3220 updated_at (datetime): Timestamp of the last update to the dataset item. 3221 langfuse (Langfuse): Instance of Langfuse client for API interactions. 3222 3223 Example: 3224 ```python 3225 from langfuse import Langfuse 3226 3227 langfuse = Langfuse() 3228 3229 dataset = langfuse.get_dataset("<dataset_name>") 3230 3231 for item in dataset.items: 3232 # Generate a completion using the input of every item 3233 completion, generation = llm_app.run(item.input) 3234 3235 # Evaluate the completion 3236 generation.score( 3237 name="example-score", 3238 value=1 3239 ) 3240 ``` 3241 """ 3242 3243 log = logging.getLogger("langfuse") 3244 3245 id: str 3246 status: DatasetStatus 3247 input: typing.Any 3248 expected_output: typing.Optional[typing.Any] 3249 metadata: Optional[Any] 3250 source_trace_id: typing.Optional[str] 3251 source_observation_id: typing.Optional[str] 3252 dataset_id: str 3253 dataset_name: str 3254 created_at: dt.datetime 3255 updated_at: dt.datetime 3256 3257 langfuse: Langfuse 3258 3259 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3260 """Initialize the DatasetItemClient.""" 3261 self.id = dataset_item.id 3262 self.status = dataset_item.status 3263 self.input = dataset_item.input 3264 self.expected_output = dataset_item.expected_output 3265 self.metadata = dataset_item.metadata 3266 self.source_trace_id = dataset_item.source_trace_id 3267 self.source_observation_id = dataset_item.source_observation_id 3268 self.dataset_id = dataset_item.dataset_id 3269 self.dataset_name = dataset_item.dataset_name 3270 self.created_at = dataset_item.created_at 3271 self.updated_at = dataset_item.updated_at 3272 3273 self.langfuse = langfuse 3274 3275 def flush(self, observation: StatefulClient, run_name: str): 3276 """Flushes an observations task manager's queue. 3277 3278 Used before creating a dataset run item to ensure all events are persistent. 3279 3280 Args: 3281 observation (StatefulClient): The observation or trace client associated with the dataset item. 3282 run_name (str): The name of the dataset run. 3283 """ 3284 observation.task_manager.flush() 3285 3286 def link( 3287 self, 3288 trace_or_observation: typing.Union[StatefulClient, str, None], 3289 run_name: str, 3290 run_metadata: Optional[Any] = None, 3291 run_description: Optional[str] = None, 3292 trace_id: Optional[str] = None, 3293 observation_id: Optional[str] = None, 3294 ): 3295 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3296 3297 Args: 3298 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3299 run_name (str): The name of the dataset run. 3300 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3301 run_description (Optional[str]): Description of the dataset run. 3302 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3303 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3304 """ 3305 parsed_trace_id: str = None 3306 parsed_observation_id: str = None 3307 3308 if isinstance(trace_or_observation, StatefulClient): 3309 # flush the queue before creating the dataset run item 3310 # to ensure that all events are persisted. 3311 if trace_or_observation.state_type == StateType.TRACE: 3312 parsed_trace_id = trace_or_observation.trace_id 3313 elif trace_or_observation.state_type == StateType.OBSERVATION: 3314 parsed_observation_id = trace_or_observation.id 3315 parsed_trace_id = trace_or_observation.trace_id 3316 # legacy support for observation_id 3317 elif isinstance(trace_or_observation, str): 3318 parsed_observation_id = trace_or_observation 3319 elif trace_or_observation is None: 3320 if trace_id is not None: 3321 parsed_trace_id = trace_id 3322 if observation_id is not None: 3323 parsed_observation_id = observation_id 3324 else: 3325 raise ValueError( 3326 "trace_id must be provided if trace_or_observation is None" 3327 ) 3328 else: 3329 raise ValueError( 3330 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3331 ) 3332 3333 self.log.debug( 3334 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3335 ) 3336 self.langfuse.client.dataset_run_items.create( 3337 request=CreateDatasetRunItemRequest( 3338 runName=run_name, 3339 datasetItemId=self.id, 3340 traceId=parsed_trace_id, 3341 observationId=parsed_observation_id, 3342 metadata=run_metadata, 3343 runDescription=run_description, 3344 ) 3345 ) 3346 3347 def get_langchain_handler( 3348 self, 3349 *, 3350 run_name: str, 3351 run_description: Optional[str] = None, 3352 run_metadata: Optional[Any] = None, 3353 ): 3354 """Create and get a langchain callback handler linked to this dataset item. 3355 3356 Args: 3357 run_name (str): The name of the dataset run to be used in the callback handler. 3358 run_description (Optional[str]): Description of the dataset run. 3359 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3360 3361 Returns: 3362 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3363 """ 3364 metadata = { 3365 "dataset_item_id": self.id, 3366 "run_name": run_name, 3367 "dataset_id": self.dataset_id, 3368 } 3369 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3370 3371 self.link( 3372 trace, run_name, run_metadata=run_metadata, run_description=run_description 3373 ) 3374 3375 return trace.get_langchain_handler(update_parent=True) 3376 3377 @contextmanager 3378 def observe( 3379 self, 3380 *, 3381 run_name: str, 3382 run_description: Optional[str] = None, 3383 run_metadata: Optional[Any] = None, 3384 trace_id: Optional[str] = None, 3385 ): 3386 """Observes a dataset run within the Langfuse client. 3387 3388 Args: 3389 run_name (str): The name of the dataset run. 3390 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3391 run_description (Optional[str]): The description of the dataset run. 3392 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3393 3394 Yields: 3395 StatefulTraceClient: The trace associated with the dataset run. 3396 """ 3397 from langfuse.decorators import langfuse_context 3398 3399 root_trace_id = trace_id or str(uuid.uuid4()) 3400 3401 langfuse_context._set_root_trace_id(root_trace_id) 3402 3403 try: 3404 yield root_trace_id 3405 3406 finally: 3407 self.link( 3408 run_name=run_name, 3409 run_metadata=run_metadata, 3410 run_description=run_description, 3411 trace_or_observation=None, 3412 trace_id=root_trace_id, 3413 ) 3414 3415 @contextmanager 3416 def observe_llama_index( 3417 self, 3418 *, 3419 run_name: str, 3420 run_description: Optional[str] = None, 3421 run_metadata: Optional[Any] = None, 3422 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3423 ): 3424 """Context manager for observing LlamaIndex operations linked to this dataset item. 3425 3426 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3427 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3428 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3429 3430 Args: 3431 run_name (str): The name of the dataset run. 3432 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3433 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3434 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3435 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3436 3437 Yields: 3438 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3439 3440 Example: 3441 ```python 3442 dataset_item = dataset.items[0] 3443 3444 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3445 # Perform LlamaIndex operations here 3446 some_llama_index_operation() 3447 ``` 3448 3449 Raises: 3450 ImportError: If required modules for LlamaIndex integration are not available. 3451 """ 3452 metadata = { 3453 "dataset_item_id": self.id, 3454 "run_name": run_name, 3455 "dataset_id": self.dataset_id, 3456 } 3457 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3458 self.link( 3459 trace, run_name, run_metadata=run_metadata, run_description=run_description 3460 ) 3461 3462 try: 3463 import llama_index.core 3464 from llama_index.core import Settings 3465 from llama_index.core.callbacks import CallbackManager 3466 3467 from langfuse.llama_index import LlamaIndexCallbackHandler 3468 3469 callback_handler = LlamaIndexCallbackHandler( 3470 **llama_index_integration_constructor_kwargs, 3471 ) 3472 callback_handler.set_root(trace, update_root=True) 3473 3474 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3475 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3476 prev_global_handler = llama_index.core.global_handler 3477 prev_langfuse_handler = None 3478 3479 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3480 llama_index.core.global_handler = None 3481 3482 if Settings.callback_manager is None: 3483 Settings.callback_manager = CallbackManager([callback_handler]) 3484 else: 3485 for handler in Settings.callback_manager.handlers: 3486 if isinstance(handler, LlamaIndexCallbackHandler): 3487 prev_langfuse_handler = handler 3488 Settings.callback_manager.remove_handler(handler) 3489 3490 Settings.callback_manager.add_handler(callback_handler) 3491 3492 except Exception as e: 3493 self.log.exception(e) 3494 3495 try: 3496 yield callback_handler 3497 finally: 3498 # Reset the handlers 3499 Settings.callback_manager.remove_handler(callback_handler) 3500 if prev_langfuse_handler is not None: 3501 Settings.callback_manager.add_handler(prev_langfuse_handler) 3502 3503 llama_index.core.global_handler = prev_global_handler 3504 3505 def get_llama_index_handler( 3506 self, 3507 *, 3508 run_name: str, 3509 run_description: Optional[str] = None, 3510 run_metadata: Optional[Any] = None, 3511 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3512 ): 3513 """Create and get a llama-index callback handler linked to this dataset item. 3514 3515 Args: 3516 run_name (str): The name of the dataset run to be used in the callback handler. 3517 run_description (Optional[str]): Description of the dataset run. 3518 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3519 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3520 3521 Returns: 3522 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3523 """ 3524 metadata = { 3525 "dataset_item_id": self.id, 3526 "run_name": run_name, 3527 "dataset_id": self.dataset_id, 3528 } 3529 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3530 3531 self.link( 3532 trace, run_name, run_metadata=run_metadata, run_description=run_description 3533 ) 3534 3535 try: 3536 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3537 3538 callback_handler = LlamaIndexCallbackHandler( 3539 **llama_index_integration_constructor_kwargs, 3540 ) 3541 callback_handler.set_root(trace, update_root=True) 3542 3543 return callback_handler 3544 except Exception as e: 3545 self.log.exception(e)
Class for managing dataset items in Langfuse.
Arguments:
- id (str): Unique identifier of the dataset item.
- status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'.
- input (Any): Input data of the dataset item.
- expected_output (Optional[Any]): Expected output of the dataset item.
- metadata (Optional[Any]): Additional metadata of the dataset item.
- source_trace_id (Optional[str]): Identifier of the source trace.
- source_observation_id (Optional[str]): Identifier of the source observation.
- dataset_id (str): Identifier of the dataset to which this item belongs.
- dataset_name (str): Name of the dataset to which this item belongs.
- created_at (datetime): Timestamp of dataset item creation.
- updated_at (datetime): Timestamp of the last update to the dataset item.
- langfuse (Langfuse): Instance of Langfuse client for API interactions.
Example:
from langfuse import Langfuse langfuse = Langfuse() dataset = langfuse.get_dataset("<dataset_name>") for item in dataset.items: # Generate a completion using the input of every item completion, generation = llm_app.run(item.input) # Evaluate the completion generation.score( name="example-score", value=1 )
3259 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3260 """Initialize the DatasetItemClient.""" 3261 self.id = dataset_item.id 3262 self.status = dataset_item.status 3263 self.input = dataset_item.input 3264 self.expected_output = dataset_item.expected_output 3265 self.metadata = dataset_item.metadata 3266 self.source_trace_id = dataset_item.source_trace_id 3267 self.source_observation_id = dataset_item.source_observation_id 3268 self.dataset_id = dataset_item.dataset_id 3269 self.dataset_name = dataset_item.dataset_name 3270 self.created_at = dataset_item.created_at 3271 self.updated_at = dataset_item.updated_at 3272 3273 self.langfuse = langfuse
Initialize the DatasetItemClient.
3275 def flush(self, observation: StatefulClient, run_name: str): 3276 """Flushes an observations task manager's queue. 3277 3278 Used before creating a dataset run item to ensure all events are persistent. 3279 3280 Args: 3281 observation (StatefulClient): The observation or trace client associated with the dataset item. 3282 run_name (str): The name of the dataset run. 3283 """ 3284 observation.task_manager.flush()
Flushes an observations task manager's queue.
Used before creating a dataset run item to ensure all events are persistent.
Arguments:
- observation (StatefulClient): The observation or trace client associated with the dataset item.
- run_name (str): The name of the dataset run.
3286 def link( 3287 self, 3288 trace_or_observation: typing.Union[StatefulClient, str, None], 3289 run_name: str, 3290 run_metadata: Optional[Any] = None, 3291 run_description: Optional[str] = None, 3292 trace_id: Optional[str] = None, 3293 observation_id: Optional[str] = None, 3294 ): 3295 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3296 3297 Args: 3298 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3299 run_name (str): The name of the dataset run. 3300 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3301 run_description (Optional[str]): Description of the dataset run. 3302 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3303 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3304 """ 3305 parsed_trace_id: str = None 3306 parsed_observation_id: str = None 3307 3308 if isinstance(trace_or_observation, StatefulClient): 3309 # flush the queue before creating the dataset run item 3310 # to ensure that all events are persisted. 3311 if trace_or_observation.state_type == StateType.TRACE: 3312 parsed_trace_id = trace_or_observation.trace_id 3313 elif trace_or_observation.state_type == StateType.OBSERVATION: 3314 parsed_observation_id = trace_or_observation.id 3315 parsed_trace_id = trace_or_observation.trace_id 3316 # legacy support for observation_id 3317 elif isinstance(trace_or_observation, str): 3318 parsed_observation_id = trace_or_observation 3319 elif trace_or_observation is None: 3320 if trace_id is not None: 3321 parsed_trace_id = trace_id 3322 if observation_id is not None: 3323 parsed_observation_id = observation_id 3324 else: 3325 raise ValueError( 3326 "trace_id must be provided if trace_or_observation is None" 3327 ) 3328 else: 3329 raise ValueError( 3330 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3331 ) 3332 3333 self.log.debug( 3334 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3335 ) 3336 self.langfuse.client.dataset_run_items.create( 3337 request=CreateDatasetRunItemRequest( 3338 runName=run_name, 3339 datasetItemId=self.id, 3340 traceId=parsed_trace_id, 3341 observationId=parsed_observation_id, 3342 metadata=run_metadata, 3343 runDescription=run_description, 3344 ) 3345 )
Link the dataset item to observation within a specific dataset run. Creates a dataset run item.
Arguments:
- trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID.
- run_name (str): The name of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
- run_description (Optional[str]): Description of the dataset run.
- trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided.
- observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided.
3347 def get_langchain_handler( 3348 self, 3349 *, 3350 run_name: str, 3351 run_description: Optional[str] = None, 3352 run_metadata: Optional[Any] = None, 3353 ): 3354 """Create and get a langchain callback handler linked to this dataset item. 3355 3356 Args: 3357 run_name (str): The name of the dataset run to be used in the callback handler. 3358 run_description (Optional[str]): Description of the dataset run. 3359 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3360 3361 Returns: 3362 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3363 """ 3364 metadata = { 3365 "dataset_item_id": self.id, 3366 "run_name": run_name, 3367 "dataset_id": self.dataset_id, 3368 } 3369 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3370 3371 self.link( 3372 trace, run_name, run_metadata=run_metadata, run_description=run_description 3373 ) 3374 3375 return trace.get_langchain_handler(update_parent=True)
Create and get a langchain callback handler linked to this dataset item.
Arguments:
- run_name (str): The name of the dataset run to be used in the callback handler.
- run_description (Optional[str]): Description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
Returns:
CallbackHandler: An instance of CallbackHandler linked to the dataset item.
3377 @contextmanager 3378 def observe( 3379 self, 3380 *, 3381 run_name: str, 3382 run_description: Optional[str] = None, 3383 run_metadata: Optional[Any] = None, 3384 trace_id: Optional[str] = None, 3385 ): 3386 """Observes a dataset run within the Langfuse client. 3387 3388 Args: 3389 run_name (str): The name of the dataset run. 3390 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3391 run_description (Optional[str]): The description of the dataset run. 3392 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3393 3394 Yields: 3395 StatefulTraceClient: The trace associated with the dataset run. 3396 """ 3397 from langfuse.decorators import langfuse_context 3398 3399 root_trace_id = trace_id or str(uuid.uuid4()) 3400 3401 langfuse_context._set_root_trace_id(root_trace_id) 3402 3403 try: 3404 yield root_trace_id 3405 3406 finally: 3407 self.link( 3408 run_name=run_name, 3409 run_metadata=run_metadata, 3410 run_description=run_description, 3411 trace_or_observation=None, 3412 trace_id=root_trace_id, 3413 )
Observes a dataset run within the Langfuse client.
Arguments:
- run_name (str): The name of the dataset run.
- root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created.
- run_description (Optional[str]): The description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata for the dataset run.
Yields:
StatefulTraceClient: The trace associated with the dataset run.
3415 @contextmanager 3416 def observe_llama_index( 3417 self, 3418 *, 3419 run_name: str, 3420 run_description: Optional[str] = None, 3421 run_metadata: Optional[Any] = None, 3422 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3423 ): 3424 """Context manager for observing LlamaIndex operations linked to this dataset item. 3425 3426 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3427 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3428 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3429 3430 Args: 3431 run_name (str): The name of the dataset run. 3432 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3433 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3434 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3435 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3436 3437 Yields: 3438 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3439 3440 Example: 3441 ```python 3442 dataset_item = dataset.items[0] 3443 3444 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3445 # Perform LlamaIndex operations here 3446 some_llama_index_operation() 3447 ``` 3448 3449 Raises: 3450 ImportError: If required modules for LlamaIndex integration are not available. 3451 """ 3452 metadata = { 3453 "dataset_item_id": self.id, 3454 "run_name": run_name, 3455 "dataset_id": self.dataset_id, 3456 } 3457 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3458 self.link( 3459 trace, run_name, run_metadata=run_metadata, run_description=run_description 3460 ) 3461 3462 try: 3463 import llama_index.core 3464 from llama_index.core import Settings 3465 from llama_index.core.callbacks import CallbackManager 3466 3467 from langfuse.llama_index import LlamaIndexCallbackHandler 3468 3469 callback_handler = LlamaIndexCallbackHandler( 3470 **llama_index_integration_constructor_kwargs, 3471 ) 3472 callback_handler.set_root(trace, update_root=True) 3473 3474 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3475 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3476 prev_global_handler = llama_index.core.global_handler 3477 prev_langfuse_handler = None 3478 3479 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3480 llama_index.core.global_handler = None 3481 3482 if Settings.callback_manager is None: 3483 Settings.callback_manager = CallbackManager([callback_handler]) 3484 else: 3485 for handler in Settings.callback_manager.handlers: 3486 if isinstance(handler, LlamaIndexCallbackHandler): 3487 prev_langfuse_handler = handler 3488 Settings.callback_manager.remove_handler(handler) 3489 3490 Settings.callback_manager.add_handler(callback_handler) 3491 3492 except Exception as e: 3493 self.log.exception(e) 3494 3495 try: 3496 yield callback_handler 3497 finally: 3498 # Reset the handlers 3499 Settings.callback_manager.remove_handler(callback_handler) 3500 if prev_langfuse_handler is not None: 3501 Settings.callback_manager.add_handler(prev_langfuse_handler) 3502 3503 llama_index.core.global_handler = prev_global_handler
Context manager for observing LlamaIndex operations linked to this dataset item.
This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all operations performed within the context are linked to the appropriate dataset item and run in Langfuse.
Arguments:
- run_name (str): The name of the dataset run.
- run_description (Optional[str]): Description of the dataset run. Defaults to None.
- run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None.
- llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass to the LlamaIndex integration constructor. Defaults to an empty dictionary.
Yields:
LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations.
Example:
dataset_item = dataset.items[0] with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: # Perform LlamaIndex operations here some_llama_index_operation()
Raises:
- ImportError: If required modules for LlamaIndex integration are not available.
3505 def get_llama_index_handler( 3506 self, 3507 *, 3508 run_name: str, 3509 run_description: Optional[str] = None, 3510 run_metadata: Optional[Any] = None, 3511 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3512 ): 3513 """Create and get a llama-index callback handler linked to this dataset item. 3514 3515 Args: 3516 run_name (str): The name of the dataset run to be used in the callback handler. 3517 run_description (Optional[str]): Description of the dataset run. 3518 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3519 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3520 3521 Returns: 3522 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3523 """ 3524 metadata = { 3525 "dataset_item_id": self.id, 3526 "run_name": run_name, 3527 "dataset_id": self.dataset_id, 3528 } 3529 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3530 3531 self.link( 3532 trace, run_name, run_metadata=run_metadata, run_description=run_description 3533 ) 3534 3535 try: 3536 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3537 3538 callback_handler = LlamaIndexCallbackHandler( 3539 **llama_index_integration_constructor_kwargs, 3540 ) 3541 callback_handler.set_root(trace, update_root=True) 3542 3543 return callback_handler 3544 except Exception as e: 3545 self.log.exception(e)
Create and get a llama-index callback handler linked to this dataset item.
Arguments:
- run_name (str): The name of the dataset run to be used in the callback handler.
- run_description (Optional[str]): Description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
- llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor.
Returns:
LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item.
3548class DatasetClient: 3549 """Class for managing datasets in Langfuse. 3550 3551 Attributes: 3552 id (str): Unique identifier of the dataset. 3553 name (str): Name of the dataset. 3554 description (Optional[str]): Description of the dataset. 3555 metadata (Optional[typing.Any]): Additional metadata of the dataset. 3556 project_id (str): Identifier of the project to which the dataset belongs. 3557 dataset_name (str): Name of the dataset. 3558 created_at (datetime): Timestamp of dataset creation. 3559 updated_at (datetime): Timestamp of the last update to the dataset. 3560 items (List[DatasetItemClient]): List of dataset items associated with the dataset. 3561 runs (List[str]): List of dataset runs associated with the dataset. Deprecated. 3562 3563 Example: 3564 Print the input of each dataset item in a dataset. 3565 ```python 3566 from langfuse import Langfuse 3567 3568 langfuse = Langfuse() 3569 3570 dataset = langfuse.get_dataset("<dataset_name>") 3571 3572 for item in dataset.items: 3573 print(item.input) 3574 ``` 3575 """ 3576 3577 id: str 3578 name: str 3579 description: Optional[str] 3580 project_id: str 3581 dataset_name: str # for backward compatibility, to be deprecated 3582 metadata: Optional[Any] 3583 created_at: dt.datetime 3584 updated_at: dt.datetime 3585 items: typing.List[DatasetItemClient] 3586 runs: typing.List[str] = [] # deprecated 3587 3588 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3589 """Initialize the DatasetClient.""" 3590 self.id = dataset.id 3591 self.name = dataset.name 3592 self.description = dataset.description 3593 self.project_id = dataset.project_id 3594 self.metadata = dataset.metadata 3595 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3596 self.created_at = dataset.created_at 3597 self.updated_at = dataset.updated_at 3598 self.items = items
Class for managing datasets in Langfuse.
Attributes:
- id (str): Unique identifier of the dataset.
- name (str): Name of the dataset.
- description (Optional[str]): Description of the dataset.
- metadata (Optional[typing.Any]): Additional metadata of the dataset.
- project_id (str): Identifier of the project to which the dataset belongs.
- dataset_name (str): Name of the dataset.
- created_at (datetime): Timestamp of dataset creation.
- updated_at (datetime): Timestamp of the last update to the dataset.
- items (List[DatasetItemClient]): List of dataset items associated with the dataset.
- runs (List[str]): List of dataset runs associated with the dataset. Deprecated.
Example:
Print the input of each dataset item in a dataset.
from langfuse import Langfuse langfuse = Langfuse() dataset = langfuse.get_dataset("<dataset_name>") for item in dataset.items: print(item.input)
3588 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3589 """Initialize the DatasetClient.""" 3590 self.id = dataset.id 3591 self.name = dataset.name 3592 self.description = dataset.description 3593 self.project_id = dataset.project_id 3594 self.metadata = dataset.metadata 3595 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3596 self.created_at = dataset.created_at 3597 self.updated_at = dataset.updated_at 3598 self.items = items
Initialize the DatasetClient.